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ABSTRACT

In this paper we propose new models for the plucking interac-
tion of the player with the string for use with digital waveguide
simulation of guitar. Unlike the previously presented models, the
new models are based on structurally passive scattering junctions,
which have the main advantage of being properly scaled for use in
fixed-point waveguide implementations and of guaranteeing sta-
bility independently of the plucking excitation.

In a first model we start from the Cuzzucoli-Lombardo equa-
tions [[1], within the Evangelista-Eckerholm [2]] propagation for-
mulation, in order to derive the passive scattering junction by
means of bilinear transformation. In a second model we start from
equations properly modeling the finger compliance by means of a
spring. In a third model we formalize the interaction in terms of
driving impedances. The model is also extended using nonlinear
(feathering) compliance models.

1. INTRODUCTION

Physical models of the interaction of the player with the string dur-
ing plucking were introduced in [1]], for use with digital waveguide
(DW) simulations [3]]. In recent works, the first author together
with F. Eckerholm introduced a more consistent model for simu-
lating the plucking of the string by means of a finger [2,4]. In this
model, the finger is modeled as a linear spring-mass system com-
ing into contact with the string during the plucking action. The
action of the finger system builds up a traveling perturbation of the
string displacement in a short time interval, lasting until the finger
is completely detached and the string is released into free motion.
Based on the equations of dynamics, the interface of the finger
with the string can be described by means of a scattering matrix S
[5] linking the two rails of the waveguide, together with a coupling
term converting the force exerted by the player to string displace-
ment. The scattering matrix, which is a function of frequency, also
depends on the physical parameters of finger and string, such as
tension, mass, damping and stiffness coefficients. The force ex-
erted on the string by the player is converted into wave variables
and injected to the two rails of the waveguide in equal amounts. In
our model, the preferred choice of wave variables is displacement,
in view of the fact that string-fret collisions are easier to detect and
compute in this representation [4], albeit other choices are possi-
ble.

In [4] the discrete-time plucking model was derived by replac-
ing derivatives with central differences and led to a scattering ma-
trix S(z) that is not structurally passive, i.e., for some values of
the physical parameters, and for some frequencies, the magnitude
of the determinant of S(e’*’), which is the power gain of the scat-
tering junction, can grow larger than 1.
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In this paper, we present new discrete-time models for the
plucking scattering matrix that are derived from the Laplace do-
main counterpart of the PDE of the coupled finger-string system
or directly from load impedances. The system is solved for the
Laplace transform of the wave variables. The discrete-time form is
obtained by means of the bilinear transformation, which preserves
stability.

In Section 2] we review the Cuzzucoli-Lombardo pluck model,
introduce a special form for the scattering matrix and formulate
the corresponding pluck scattering junction. In Section 3] we in-
troduce a structurally passive discrete-time scattering junction de-
rived from the pluck model via bilinear transformation. We also
provide a lattice-ladder implementation for the scattering filter,
which helps preventing critical pole-zero cancellation at the offset
of the pluck excitation. In Section ] we introduce a more accu-
rate model for the pluck, in which finger compliance is modeled
by a spring. The model is revisited and extended by means of load
impedance formulation in Section 5} In Section [6] we draw our
conclusions.

2. MODELING THE FINGER-STRING INTERACTION

In this section we review the damped mass-spring model for the
finger pluck introduced in [l 2]], together with its previous real-
ization as scattering junction in a DW [4]. First-order nonlinear
effects due to string pulling are disregarded since they can be rein-
troduced through suitable modulation of the string tension [6] and
by modeling the collisions of the string with the neck or frets [4].
We also assume that the string is ideally flexible, i.e., dispersive
propagation phenomena are disregarded.

A finger plucking the string is shown in Fig. There, the
finger comes in contact with a segment of the string of length A
centered at coordinate point z,, along the string axis (at rest). Dur-
ing a pluck, the finger exerts a time-varying force f(;(t).

In the general case, the direction of the force changes with
time and is contained in a plane orthogonal to the string rest line.
However, for simplicity, here we assume that the player’s force
is not changing direction. Then we can consider only the projec-
tion fo(t) of the force in the vertical direction with respect to the
soundboard. Projection onto the horizontal direction leads to a
similar system. Oscillations in these two directions are coupled at
the bridge (e.g., see [7] and references therein).

Two DW structures are needed to capture the two polarization
modes of the string in planes orthogonal to the string rest axis. The
force input is distributed among these two waveguides, accord-
ing to the plucking direction. Once this structure is put together,
changing the player’s force direction in time is only a matter of
dynamically changing the projection angle.
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Figure 1: A finger plucking the string.

During a pluck, the wave equation for the string holds for co-
ordinate points not in contact with the finger. For a string of length
L we have

262 62U.

A
5 = o 2L, M

E]O,xp— %[U]x;,—!—
where ¢ = y/ Ko/ is the propagation velocity, with K the ten-
sion of the string, and p the linear mass density, both assumed to
be constant. Here we assume that all propagation losses along the
string can be consolidated at one of the extremities and embed-
ded in the bridge model [8]. The solution of @) can be written
in D’Alembert form as a superposition of a left-going v~ and a
right-going u™ wave:

w(z,t) =u (z,t)+ut (z,t) = wt+z/c)+u-(t—z/c), (2)

where u;(z/c) = ur(x/c) = u(z,0)/2 for a static initial condi-
tion.

In the first part of this paper, we consider the Cuzzucoli-
Lombardo (C-L) model for the string-finger interaction. Although
this model is extremely simplified and not so well justified from
a physical point of view, it provides good acoustic results for the
synthesis of the pluck. In Sections ] and [3] the C-L model is re-
placed by a more accurate model including finger compliance, as
considered in [9]] and [10].

According to the C-L model, on the string-finger contact seg-
ment, the equilibrium equation of the string with the damped
spring-mass system modeling the finger is enforced:

82u ou
Ot = RO Kut J(0) + folt)

mE]z,,—%,x,,—O—%[,

M + pA
(M + pA) - 3)

where M, K, and R are respectively the mass, stiffness, and damp-

ing parameters of the finger [1]]. The force f(t) is the resultant of

the transversal component of the tensile force of the string acting

at the extreme points of the plucking segment. For small deforma-
ou

tions we have:
f(t) = Ko (6‘:5 z—zp—é) . 4

Finally, at the interface points = x, — % and x = zp + %
between the string and string-finger systems, the continuity of the
solution is enforced.
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Figure 2: Diagram of two DWs linked by a scattering junction
modeling the pluck interaction. Nut and bridge terminations are
also visible at the extremities.

2.1. Scattering in discrete-time

In discrete-time, free wave propagation can be efficiently simu-
lated by means of two DWs, one for each string segment on ei-
ther side of the plucking zone, as shown in Fig. J} The plucking
interaction is suitably modeled by means of a scattering junction
described, in a linear model, by means of a scattering matrix S(z)
and a force coupling transfer function G(z), linking the variables
according to the following update equation:

(e ]-so [0+ p9 ] o

Here, Um Jour are the z-transforms of the input and output sig-
nals on either side of the scattering junction and Fo(z) is the z-
transform of the discrete-time signal fo(n) representing the time-
varying force exerted by the player on the string. For an interaction
at a single point, by a string continuity argument, the total displace-
ments on each side of the junction must be identical. This gives us
the condition:

Uput (2) + Ui (2) = Uy, (2) + Ui (2).- (6)

Since the two directions of propagation are physically equivalent,
a two-port representation of the scattering junction should be re-
ciprocal, i.e., it should look the same from either port. It is well
known that the scattering matrix of a reciprocal two- pon is sym-
metric. In other words, the changes U = U,, and U}, = U, ,
leaves the result unchanged. The most general stable scattering
matrix satisfying these requirements has the following structure

(70
LQ(z)+1 Q(z) -1
S(z) == 7
@=300" &35 @
where Q(z) is the transfer function of a stable filter.
‘When evaluated on the unit circle, the modulus of the determi-
nant of (7) provides the power gain of the scattering junction:

Py(e%) = ‘det S(ej“)‘ - ‘Q(J“)]. ®)

Both the scattering matrix and force coupling factor can be de-
rived from a discrete model of the differential equations governing
the plucking action. The procedure to derive the discrete model is,
however, not unique.

2.2. The CLEE scattering junction

In (11121 4], equation (3) was discretized by replacing partial deriva-
tives with central differences and by sampling all signals. Under
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the simplifying assumption that the width of the finger-string con-
tact is exactly one space sampling interval we have A = X, where
X = (T is the string spatial sampling interval, and 7" is time sam-
pling interval. In this case, in [4], a scattering junction in the form
was derived, where Q(z) = 1/A(%) is an allpole filter with

(2) = lj‘f( (1—2~ 1)2+p(1—z_2)+/£z_1+1 )

and R KX
- - na 10
P=35 Ky R (10)

are dimensionless parameters respectively proportional to the
damping coefficient R and to the stiffness constant K of the finger.
The force coupling filter for the same discrete model is

Xzt

We refer to the above model as the CLEE scattering junction,
where CLEE stands for Cuzzucoli-Lombardo scheme as revised
by Evangelista-Eckerholm.

Notice that, since Q(z) = 1/A(z) is a generic 2nd order
allpole filter, then Py in (8) is not constrained to guarantee that
the CLEE scattering matrix (7)) is passive for all values of physical
parameters.

In order to simulate the effect of variable contact of the finger
with the string during the preliminary and final phases of plucking,
together with the force, the finger parameters M, K and R are
considered as time varying signals that are identically zero when
the finger is away from the string.

Since the plucking transient has typically short duration, so
that the scattering matrix is different from the unit matrix only for
a finite time interval, there is no overall DW stability concern as
long as the filters in (7) and (TT)) are stable. This remains true even
in the time-varying case [4]]. However, in order to maintain a fixed
output level range, or in order to prevent overflow in fixed point
applications, suitable scaling must be applied to the non-passive
scattering junction, where the scaling gains must be estimated also
depending on the duration of the plucking action.

In order to circumvent these problems and simplify the use
of the plucking scattering junction in DWs simulating a guitar,
it would be desirable that the scattering matrix be passive. The
derivation of a structurally passive junction is the object of the
next section.

3. ASTRUCTURALLY PASSIVE PLUCKING JUNCTION

Following the general method outlined in [11f], a structurally pas-
sive scattering junction for pluck synthesis can be derived by com-
bining the Laplace transform version of the differential equation
@) with the Laplace domain rewriting of the traveling wave solu-
tion (Z). A discrete-time passive scattering junction is then derived
by means of bilinear transformation, which preserves passivity.
Taking the Laplace transform on both sides of (3) we obtain

[(M + pA) s* + Rs + K| U(z,s) = F(s) + Fo(s), (12)

where

U(z,s) = Llu(z,t)](s) = /000 u(zx, t)e *tdt (13)

is the Laplace transform, with respect to time, of the solution
u(z, t), while Fy(s) is the Laplace transform of the player’s force
signal and

_ oU(z, s)
F(S) = Ko <8:C

is the Laplace domain counterpart of @). On the other hand,

_ 0U(z,s)
Ox

A
2

z:z,,—‘— % T=Tp—

(14)

U™ (2,5) = Llu (2, )](s) = Lhu(t +2/0)](s) = ¢* ¢ Ui(s)
U™ (2,8) = Ll (2,))(s) = Llur(t - 2/e)](s) = ¢ Un(s)
(15)

are the Laplace transforms of the traveling waves (Z). At the inter-
face points ¢ = z, + the solution is continuous. Thus, in order
to obtaln the ei uatlons coupling the two systems, one can substi-

tute (15)) in (14). Knowing that U(z,s) = U™ (z,s) + U™ (x, s),
and that
oU (@,5) =+3e e Uz( )= +§U7(z,s)
ox c c (16)
oUt(z,s) s _su - -
T__Ee UT(S)——EU (z,5),
we obtain
K()S — +
F(s):7 [U (ﬂcp—o—%,s)—U (a:p—t-%,s) an

7U7(xp - 378) + U+(:EP - %73)] .

Moreover, one can consider (T2) at the interface points, again using
the substitutions (T3). This yields the following system:

{[[U’(wp e s)+ U™ (zp Ké )]]E(s)—F(s):Fo(s)
U (zp+ 5,8) + Ut (zp + 5, 5)] E(s) — F(s) = Fo(s),
(18)

where
E():(M+uA)32+Rs+K (19)

Substltutmg in and solving for U™ (z, — £,s) and
Ut(zp+ 5 ,s) in terms of the other variables obtains

U (zp—5.8) | _g U™ (zp s)
{Uﬂ%+§m}‘s@[Uﬂp—§m}
(20
wpe ]
+7 ,
where the matrix
ooy 1 Q(s)—&-l Q(S)—1:|
56=3 69 11 69 11)" @v
has the same structure as (]Z]), with
=\ cE(s) —2sKo
@s) = cE(s) + 25Ky 22)
and the force coupling factor is
~ 2c
G(s) = ) £ 25K (23)

DAFX-3



Proc. of the 13" Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

The denominator D(s) and the numerator N(s) of the transfer
function Q(s) = —N(s)/D(s), respectively, are

~ 2K

D(s) = s*(M +pA) + (TO +R) s+ K

9K 24)
N(s) =s*(M 4 uA) — (TO—R> s+ K,

where the parameters M, K, R, Ko, 1 and A are all nonnega-
tive physical quantities. Also notice that G(s) = 2¢/D(s). The
transfer functions Q(s) and G(s) are both stable since the coeffi-
cients of the denominator l~)(s) all have the same sign (positive).
In fact, this is a necessary and sufficient condition for the second
order polynomial D(s) to be Hurwitz, i.e., its roots all lie in the
left hand semiplane in the Laplace domain. When the damping
coefficient R = 0 then Q(s) = —D(—s)/D(s) has the form of a
2nd-order allpass filter, the coefficients of the numerator being the
same as those of the denominator but alternating in sign. In this
case, the system (20) is lossless. Moreover, it is easy to show that
in the general case where R > 0 we have |Q(jw)| < 1, which
means that the system @) is passive.

3.1. Passive scattering in discrete time

In order to derive a scattering junction for use with the discrete-
time DWs in Fig. 2} one can re-interpret (20) so as to “shrink” the
finger-string system to a single computational node (in-between
two delays of the DW), without changing its physical length A.
In other words, we concentrate the plucking system to a point x,
belonging to the spatial sampling grid =, = n, X where n, is an
integer. This can be interpreted as an infinite sound-speed across
the plucking system, as if it were rigid.

To obtain a discrete-time structurally passive junction from its
continuous-time counterpart, it suffices to apply the bilinear trans-
formation

2z—-1

Tz+1
to the system @), with sampling interval 7. This transformation
has the property of preserving both stability and passivity when
mapping from continuous time to discrete time. The main ingre-
dients of , i.e., the transfer functions Q(s) and G(s), respec-
tively, transform as follows:

Q(Z):Q<2z—l> __N@

(25)

/9 zT—Z1+ 1 chQg(i)n? (26)
o0 =6 (F51) - 55
where
D(z) = (V +2¢RT) 2* — 2Yz+ W — 2¢cRT o7

N(z) = (W +2¢RT) 2> —2Y 2+ V — 2¢RT
and we have defined
V=4c(uA+ M)+ cKT* +4K,T
W =de(uA+ M) +cKT? —4K,T (28)
Y =4dc(pA+ M) — cKT?.

The discrete-time update equation is in the form (). The discrete-
time scattering matrix S(z) is obtained from Q(z) in (26) using
the same matrix structure as in (7).

Jr
+a
—o,
Jr
Zfl
By Bo

Figure 3: Lattice-ladder implementation of the scattering filter

Q(2).

When the damping coefficient R is zero, we can check that
the discrete-time system becomes lossless since, in that case, the
determinant of the scattering matrix Q(z) = —2z2D(271)/D(z)
has the form of a second-order digital allpass filter, so it is lossless.

When the finger is detached from the string, all the finger pa-
rameters M, K, R, and A become zero, together with the player’s
force. In practical uses of the plucking junction, one would like to
continuously transition from “finger touching the string” to “finger
away from the string” cases. However, when all the finger param-
eters are zero, from @) and @) it is easy to see that the transfer
function Q(z) becomes equal to 1 only through second order pole-
zero cancellation, with two poles on the unit circle at z = +1:

z2—1_
22 -1

QM Kk, R,a—0(2) = 1. (29)
This is a critical feature that is not so relevant when the parame-
ters are exactly zero since one can switch off the scattering matrix
filters in that case. However, when the parameters are assigned
time-varying values gradually approaching zero as the result of the
loosening of the finger-string contact, the system may transition
through scattering matrices in which imperfect pole-zero cancel-
lation occurs with poles very close to the unit circle. This could
be the source of numerical instabilities especially in fixed point
implementations. This will be addressed further below.

Notice that even if one leaves a non-zero damping term for
last, the poles are still on the unit circle, but retaining some mass
M, stiffness K or simply A will do.

An improvement over the direct implementation of the IIR
scattering filters can be achieved if the filter Q(z) is implemented
in lattice-ladder form, shown in Fig. E} In this case, one finds the
values for the reflection coefficients

W 2
TV w 30
W — 2¢RT
A2 = ———(—F——,
V + 2¢RT

which are both not larger than 1 (stability). For the ladder coeffi-
cients 3 one has

4cRT (W +V)? —4Y?)

B = W) (V + 2eRT)?
8cRTY
___ecnsr 31
b= aemTy?
ﬁ_V_QCRT
> V+2cRT

Both reflection coefficients a tend to —1 when all the finger pa-
rameters become 0. The lattice-ladder implementation ensures that
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Figure 4: A complete spring-mass system modeling the pluck in-
teraction where the finger pulls the string (upwards in the figure).

when the parameters are not all zero the filter is robustly stable
with respect to coefficient rounding or operation round off error
in fixed point implementation. When the finger parameters all be-
come 0, a switch is necessary to revert the scattering matrix to
the identity matrix, thus avoiding the exact pole-zero cancellation
problem.

4. MODELING FINGER COMPLIANCE

In the Cuzzucoli-Lombardo model (3) the finger-spring K appears
to be always attached to the string, with its elongation computed
from the string rest position. The masses of finger and string seg-
ment are always in contact during pluck so that they sum. In this
section and in Section|§[, we present more realistic models in which
finger compliance, i.e., compression of the finger flesh, is intro-
duced by means of a spring whose end-points are attached, respec-
tively, to the finger and to the string during a pluck, as diagrammed
in Fig. @] There, the finger of equivalent mass M interacts with
a segment of length A of the string of linear mass density y by
means of a spring of elastic constant K and elongation at rest L. If
u denotes the displacement of the string and u ¢ the vertical coordi-
nate of the finger, both with respect to rest position, then the elastic
force “felt” by the string is — K (u —uy — L) = K (ue —u), where
u. is the “end at rest” of the spring K. More rigorously, the spring
should be considered as one-sided, i.e., the elastic force should be
present only if the finger is in contact with the string, which hap-
pens when u — uy < L, which is u < u.. We will not consider
this complication until Section 5.1} here we assume that the fin-
ger is always in contact with the string during the pluck action. In
the figure, all forces directed upward are considered to be positive.
The finger exerts a force fo(¢) on one end of the spring connecting
the mass M to the string. The string feels the vertical resultant of
the tension f(¢) at the two sides of the plucking segment, as given
in @. In addition to the above forces, a damping factor —R is
introduced. The overall system modelling the finger-string inter-
action is described by the following set of equations:

pAt = f(t) — K(u—ue) — R 32)
Miiy = K(u —ue) + fo(t),

where dots over symbols denote time derivatives.

We remark that the model we employ here is simplified and
does not include, e.g., the finger stick-slip behavior, which can be
introduced as in [10].

Given the external force fo(¢), simultaneous solution of the
two equations in will determine both string u(x, t) and finger
uy(t) trajectories at the plucking point z,. However, computation
can be simplified further for real-time implementations: If, instead
of the force fo(¢) the input of the system is directly the trajectory
of the finger u s (¢), then only the first equation in needs to be
considered. In this case, passing to the Laplace transform domain,
one obtains

pASPU(s) = F(s) — K(U(s) — Ue(s)) — RsU(s),  (33)

where F'(s) is given in and U, (s) is the Laplace transform of
ue(t).

Reasoning as in Section 3] one can consider equation (33) at
both sides of the plucking segment, replacing U with the sum
of progressive and regressive waves at these points. Solving for
U (xp — %, s) and Ut (z, + %, s) in terms of the other vari-
ables, one arrives at a scattering equation similar to (20)

Zlﬁﬁﬁlgg } :S(s)[ U~ (ap+ %.9) }

where the matrix 5(5) has the same structure as in (21, where

now
~ . 2Kgs — (uAs® + Rs + K)c

(s) = 2Kos + (pAs? + Rs + K)c (33)
and the finger coordinate coupling factor is
G(s) Ke (36)

T 2Kos + (uAs? + Rs+ K)c'

The discrete counterpart of this plucking model can be obtained by
applying the bilinear transform (23) to the system (34). The trans-
fer functions Q)(s) and G(s), respectively, transform as follows:

a0 -a(3:1) =34

Tz+1 D(z)
~(2z—1 KcT?(z +1)? G7
G(Z):G(fz+1>: D(z)

where D(z) and N(z) are given as in but with the following
different definitions for V', W and Y":

V=dcuA+cKT?> +4K,T
W=4cuA+cKT?* —4K,T (38)
Y =dceu A — cKT?.

We notice that here too, as in Section the scattering filter Q(z)
reduces to singular pole-zero cancellation when all the finger pa-
rameters go to O as a result of detachment. In order to prevent
critical round-off effects, a lattice-ladder implementation is con-
sidered. With the new definitions (38}, the equations for the reflec-
tion and ladder coefficients are formally the same as in (30) and

(1), respectively.

5. IMPEDANCE SCATTERING FORMULATION

From the point of view of traveling waves in the string, the pluck-
ing system can be formulated as a “load impedance” at the junction
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of two identical waveguides (strings) [5 p. 124], [12]E| Referring
to Fig. ] letting A = R = 0 (R will be re-introduced in Section
|32| below) and assuming the finger position uy is approximately
constant (relative to vibrations on the string), and that the string is
in contact with the spring, then the Laplace-domain impedance of
the plucking finger is that of the spring K EI

Rs) =& (39)

13 ”

(The subscript “a” means “analog” as opposed to “digital”.) De-
noting the wave impedance of the string by 7 = +/Kou, the
reflectance of the finger-impedance R(s) on the string for force
waves is given b

N [R(S)‘l’?"]*?“_ %
P = R rrar s+ E

and the transmittance for force waves is

#(s) = 1+ j(s).

For velocity and displacement waves, the reflectance and transmit-
tance are given by —5(s) and 1— (), respectively. The scattering
relations for “small-signal” displacement waves given a constant
finger position (i.e., eliminating any static component) are

Uput(s) = —p(s)Uik(s) + [1— p(8)]U;, ()

= Up(s) = p(s)[UL(s) + U (s)]  (40)
Utue(s) = —=p(s)Up(s) + [L = p(s)]U% (s)

= Uph(s) = p(s)[Up(5) + Uin(s)] (41

Note that the expressions (#0) and @I) indicate a one-filter
scattering-junction implementation (dropping the common ‘s’ ar-
gument for simplicity of notation):

vt = Ut +U;,
Upie = Uy —pU”
Uout = U;L - ﬁU+

where p(s) = (K/2r)/[s + (K/2r)]. Here again, the scattering
matrix has the form 1) with
~ _ K
=1-2p(s) = 2r 42
Q) =1-20() = T % @)

It correspond to (33) when A = R = 0. This one-filter scattering
junction is diagrammed in Fig. The filter p(s) may now be
digitized using the bilinear transform (23). However, before we do
this, we should decide how the finger will drive the string.

http://ccrma.stanford.edu/” jos/pasp/—
Loaded_Waveguide_Junctions.html

2https://ccrma.stanford.edu/” jos/pasp/-
Spring_Mass_System.html

3https://ccrma.stanford.edu/” jos/pasp/—-
Simplified_TImpedance_Analysis.html

Figure 5: Displacement-wave scattering model for a spring.

5.1. Incorporating Finger Motion

The finger position uy causes a force fx = K - (ue — u) to be
exerted upward on the string, where u. = uy + L. The force
fx is applied given u. > u (spring is in contact with string) and
given fx < fmax (the force at which the pluck releases). For
ue < wor fxr > fmax the applied force is zero and the entire
plucking system disappears to leave U,,,,, = U, and U}, = U},
or equivalently, p = 0 above.

Let the subscripts 1 and 2 each denote one side of the scatter-
ing system. Thus, for example, u1 = u,,; + u is the displace-
ment of the string on the left (side 1) of pluckmg Force equilib-
rium at the plucking point require

0=fi+ fx—fo

where f; = —KoOu; /0. Bxpressing f; = fit + fi7 = v
rv; and solving for the velocity at the plucking point yields

_ 1
U:U;""Um‘i‘%fK
or, for displacement waves,
_ 1
u:u;+um+§/fx 43)
t

Substituting fxr = K - (ue — u) in , with ue = uy + L,
taking the Laplace transform, and solving for U (s) yields

UG = [ 56 [U5205) + U] + 50 |59 + %
= Uin(s) + Uin(s) = 5(5) [Uin (5) + U () — Ue(s)]

so that we can formulate the one-filter form as

uf = U.- (U} +U;,)
Upe = Up+pUS
Uout = Uj'r»z + ﬁU;

This system can be rewritten in a vector form similar to (20) where
the scattering matrix is constructed as in , with and Q(s) as in
, and G(s) = 2p(s) coupling the input U, (s) with the two
rails of the DW.

The system is diagrammed in Fig. [f] The manipulation of
the minus signs makes it convenient for restricting u} (t) to pos-
itive values only (as shown in the figure), corresponding to the

“https://ccrma.stanford.edu/” jos/pasp/—
Mass_Termination_Model.html
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Figure 6: Instantaneous spring displacement-wave scattering
model driven by the spring edge u.(t) = us(t) + L.

finger/plectrum engaging the string. This uses the approximation
w1 (t) = ua(t) ~ u} (t)+uj, (t), which is exact when p = 0, i.e.,
when the finger/pick does not affect the string displacement at the
current time. Similarly, ud+ (t) > fmax/K can be used to trigger
a release of the string from the finger/plectrum. After a release,
a bit of state is needed to inhibit further engagement of the string
and plectrum until plectrum “comes back around”. For example,
if only “down picks” are supported, then engagement can be sup-
pressed after a release until ue(¢) comes back down below the en-
velope of string vibration (e.g., ue(t) < —umax). On the other
hand, intermittent disengagements as a plucking cycle begins are
normal; there is often an audible “buzzing” or “chattering” when
plucking an already vibrating string.

5.2. Finger Damping

To add damping R to the finger-flesh model, the load impedance
(39 becomes instead

~ K
That is, the spring K and its damping R are formally in “series”
because they share a common velocity, so that their impedances
sum. The corresponding force reflectance is then

[R(s) +7] —7 Rs+ K R s+%

= Ry e 1

(44)
Thus, in addition to a single real pole at s = — K /(R4 2r), which
is more damped than the previous pole at s = K/(2r), we now
have a zero at s = — K/ R, farther from the frequency axis than
the pole, and formerly at infinity.
The scattering matrix has the form (ZI) with

K
~ - (-R+2r)s— K 2r—RST @—p
s)=1-—2p(s) = = ,
Q(s) p(s) (R+2r)s+K — 2r+R s+ ;1
(45)

which corresponds to when A = 0 (using Ko/c = 7).

In addition to being a more realistic model, spring damping
prevents the reflection coefficient from reaching magnitude 1 at
any frequency. That means the string segments are never com-
pletely isolated from each other, which has led to discontinuity
problems in prior work.

5.3. Digitization

Applying the bilinear transformation (23)) to the reflectance (@4)
p(s) (including damping) yields the following first-order digital

(R+2r)s+ K R+2rs+ =

reflectance filter:

21—2"1 K _
po) = B TimTte o 1-Cr
- 2121 K - _pa—1
R+2T?1+271+m 1—pz
where
1_§7T
2 2r ..
p = H(ig) (digital pole) (46)
2(R+2r)
1 - KT
¢ = Hifi; (digital zero) (47)
2R
g = 1%? (gain term) 48)

5.4. Feathering

Since the pluck model is linear, the parameters are not signal-
dependent. As a result, when the string and spring separate, there
is a discontinuous change in the reflection and transmission coef-
ficients. In practice, it is useful to “feather” the switch-over from
one model to the next [[13]]. In this instance, one appealing choice
is to introduce a nonlinear spring, as is commonly used for piano-
hammer models [14]E| In such models, the layer of felt surround-
ing the wooden hammer-head is represented as a nonlinear spring
with a compression equation of the form

frc(ua) = Kug

where p = 1 for linear behavior, and generally 2 < p < 3 for
pianos.
The linearized spring constant is

K(ug) = frc(ua) = pKuZi1

which, for p > 1, approaches zero as uq — 0. We see from @)
above that this reduces the reflectance to a frequency-independent
reflection coefficient p = R/(R + 2r) resulting from the damping
R that remains in the spring model. As a result, there is still a
discontinuity when the spring disengages from the string.

The foregoing suggests a nonlinear tapering of the damping R
as well as the stiffness K as the spring compression approaches
zero. A natural choice would be

R(uq) = pRuby™"

so that R(uq) approaches zero at the same rate as K (uq). It would
be interesting to estimate p for the spring and damper from mea-
sured data. In the absence of such data, p = 2 is easy to compute
(requiring a single multiplication). More generally, an interpolated
lookup of u!] values can be used.

In summary, the engagement and disengagement of the pluck-
ing system can be “feathered” by a nonlinear spring and damper in
the finger-flesh/plectrum model.

Shttp://paws.kettering.edu/ drussell/Piano/-
NonlinearHammer.html
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6. CONCLUSION

This paper introduces structurally passive models of the plucking
action in guitar playing, where the player’s finger (or plectrum)
is modeled as a damped mass-spring system. A passive version
of a previously presented non-passive model for the pluck inter-
action is provided. The model was further extended, both in PDE
and impedance formulations, to allow for the introduction of fin-
ger compliance, which is further generalized to a nonlinear system.
The passive structure has the advantage of not requiring signal de-
pendent scaling for its use in limited-level-range or fixed-point ap-
plications.

Sound examples for the techniques illustrated can be
found at |http://staffwww.itn.liu.se/~giaev/
soundexamples.html, Future work will include parameter
estimation and evaluation of the presented models relative to
real-life mechanical plucking.
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