
Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

 DAFX-1

GPU-BASED SPECTRAL MODEL SYNTHESIS FOR REAL-TIME SOUND RENDERING TEMPLATES FOR DAFX-08, FINLAND, FRANCE

Pei-Yin Tsai, Tien-Ming Wang, and Alvin Su

SCREAM Lab

National Cheng Kung University

Tainan, Taiwan
vivian7684@gmail.com

ABSTRACT

The timbre of an instrument is usually represented by sinusoids

plus noise. Spectral modeling synthesis (SMS) is an audio syn-

thesis technique which can create musical timbre and give con-

trol over the frequency and amplitude. Additive synthesis and

LPC synthesis are usually applied for synthesizing sinusoids and

residuals, respectively. However, it takes fairly large computing

power while implementing the algorithms. The purpose of this

paper is to present GPU-based techniques of implementing SMS

for real-time audio processing by using parallelism and pro-

grammability in graphics pipeline. The performance is compared

to CPU-based implementations.

1. INTRODUCTION

In recent years, audio synthesizer is a fundamental compo-

nent in most of multimedia systems. The software version of syn-

thesizer presents significant advantages such as great flexibility

for porting. However, some algorithms are computational inten-

sive when synthesizing lots of channels is required. It is limited

by the computational capacity of CPU. Even though current

CPUs are so powerful that they can handle most common audio

processing tasks, it is hard for them to accomplish such real-time

missions. Therefore, parallel architectures are likely to improve

the efficiency.

On the other hand, modern video cards have presented theo-

retical throughput capabilities that highly exceed most CPUs.

Graphics hardware companies have recently developed technolo-

gies such as CUDA (NVIDIA) [1] and CTM (AMD) [2] which

are oriented toward general-purpose processing in order to reflect

a demand for offloading compute-intensive processes to GPUs.

Unlike CPUs, however, GPUs have parallel many-core architec-

ture, and each core is capable of handling thousands of threads

simultaneously. In CUDA, a GPU belongs to one abstract object

named grid. The grid consists of a number of abstract objects

named blocks. The minimum process unit called thread is capa-

ble of executing user-specified kernel function in parallel. The

flexibility is obviously taken into account while user can specify

the number of threads and blocks for a certain application.

Some researchers presented the performance of video cards

by implementing several common algorithms such as matrix mul-

tiplication [3, 4], fast Fourier transform [5, 6], Viterbi algorithm

[7], and digital filter design [8, 9]. Moreover, a number of tech-

niques about audio processing such as sound spatialization [10,

11] and modal synthesis [12] were proposed by using GPU-

based implementation. The parallel programming model for

prevalent algorithms is the most important topic discussed by

above literatures. In this paper, techniques for implementing

spectral modeling synthesis (SMS) [13] are presented for real-

time audio processing by using parallelism and programmability

in graphics pipeline.

The paper is organized as follows. The introduction of spec-

tral modeling representation is given in Section 2. The detail im-

plementation of spectral modeling synthesis on GPUs is de-

scribed in Section 3. Section 4 presents GPU performances com-

paring to CPU. Finally, Section 5 concludes with a brief sum-

mary.

2. DESCRIPTION OF SPECTRAL MODELING

REPRESENTATION

As mentioned in [13], sounds are modeled as stable sinusoids

(deterministic component) plus noise (residual component). The

deterministic component is assumed to be represented by har-

monics, sh , while the residual component is represented by a fil-

tered noise, sn . Therefore, the input sound can be represented by

sinusoidal model formulation as

     

 
 

 
1

cos ()

h n

P t

p p n

p

s t s t s t

A t t s t


 

   
 (1)

, where  pA t , and ()p t are the instantaneous amplitude and

phase of thp harmonic, respectively. ()P t denotes the number of

harmonics included in the harmonic part. If the estimation the

fundamental frequency
0 is achieved, equation 1 can be re-

placed by

   
 

 0

1

cos

P t

p p n

p

s t A t p t s t 


     (2)

, where
p the initial phase of thp harmonic.

By using time-domain additive synthesis, the deterministic

component is able to be generated with neglecting phase infor-

mation. Therefore, the fundamental frequency and the amplitude

of each harmonic are recorded at each time unit which is set as

10 milliseconds. On the other hand, the synthesis of the stochas-

tic component can be understood as the generation of a noise

signal that has the spectral envelopes of the stochastic representa-

tion. A low-order LPC filter can completely characterize the re-

sidual by encoding its amplitude and spectral features. The pre-

diction model can be represented as

   
1

ˆ ,
P

n i n

i

s n a s n i


   (3)

where  ˆ
ns n is the predicted noise signal,  ns n i the previous

observed noise samples, and
ia the predictor coefficients. By

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

 DAFX-2

taking the white noise as the excitation, we can generate the sto-

chastic component by an all-pole filter with the coefficients
ia .

3. SPECTRAL MODELING SYNTHESIS ON GPUS

Several algorithms are presented on GPUs in this section. In

the simulation, hundreds of instruments are synthesized using

SMS. Each of them comprises 50 partials. The sampling rate is

44100 Hz. Furthermore, for real-time purpose, application pro-

grams manage concurrency through streams. A stream is a se-

quence of commands that execute in order. On the other hand,

different streams may execute their commands out of order con-

currently or with respect to one another. The length of a stream

here is defined as one time unit (10ms).

3.1. Deterministic part

Two algorithms are implemented for the generation of sinu-

soids to test the speedup. Let there be N instruments to be syn-

thesized. The other method is designed for residual part.

Algorithm 1

Here one stream represents a frame of synthetic audio sam-

ples. The synthetic sound is stereo; sinusoids of N/2 instruments

are synthesized in each channel. Based on CUDA’s structure, we

set 2 blocks per grid, each of them deals with one channel. Then

441 threads are constructed for each block because the length of

a stream is one time unit (10 ms). A straightforward implementa-

tion using C is shown in Appendix A. Figure 1 shows the mem-

ory model of this algorithm.

Figure 1: The memory model of Algorithm 1.

Algorithm 2

In Algorithm 1, threads deal with (N/2)*50 sinusoids to gen-

erate an audio sample simultaneously. In this case, Algorithm 1 is

re-designed with two kernel functions by using more GPU re-

sources to shorten the execution time. The first one allocates an

N/2-by-882 memory space in order to store the samples of one

stream. There are 441 blocks being included in one grid and N

threads in one block. Every thread calculates the value of one

instrument. Figure 2 shows the memory model of the first kernel

function.

The second kernel function is designed for calculating the

samples. We use 2 blocks to construct one grid for stereo. Each

block contains 441 threads which sum up the values of the N/2

instruments at each time instant. Figure 3 shows the memory

model of the second kernel function. The kernel functions are

shown in Appendix B.

Figure 2: The memory model of the first kernel function in Algo-

rithm 2.

Figure 3: The memory model of the second kernel function in Al-

gorithm 2.

3.2. Residuals

In this part, we apply an all-pole filter to generate residuals.

In a recursive filter, however, the value of an output sample de-

pends on the values of previous ones. Such values may not be

available in parallel computation architecture.

Two kernel functions are presented in this stage. The first

one allocates a 2-D memory with 441*n-by-N, where n is the

number of time units in a granularity which stands for the latency

of updating parameters when synthesizing sounds. Then one

block is set in a grid and N threads in a block. Each thread is in

charge of generating residual samples of some instrument in a

certain granularity. The difference between deterministic part and

residual part is that the samples of one synthesized instrument

cannot be computed in parallel in residual part because the de-

pendency exists in such a prediction model. Figure 4 shows the

memory model of the first kernel function.

The second kernel function adds the residuals to the sinuso-

ids. The parameters are set as n block per grid, 441 threads per

block. Each block here is responsible for one time unit. Each

thread in a certain block is going to add the residual values to the

corresponding sinusoidal samples. Figure 5 shows the memory

model of the second kernel function. The kernel functions are

shown in Appendix C.

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

 DAFX-3

Figure 4: The memory model of the first kernel function of resi-

dual part.

Figure 5: The memory model of the second kernel function of re-

sidual part.

4. RESULTS AND DISCUSSION

The environment of the SMS CUDA implementation is pre-

sented in Table 1. Table 2 shows the execution time of SMS in

the experiment. These GPUs are able to achieve the task (synthe-

sizing 5000 sinusoids + residual for each sample) in real time

when alternative GPU implementations are used. CPU imple-

mentations fail in all cases. Though Intel Q6600 CPU is more

powerful then T8300, the CPU execution time of personal com-

puter is still quite similar to notebook. One reason is that the test-

ing program executed on CPU is implemented on single thread,

which is independent of the number of CPU cores. Figure 6

shows the line charts of Table 2. Table 3 shows that Algorithm 2

has the most significant speed up.

Machine 1

(Notebook)

Machine 2

(PC)

OS Windows 7 Windows XP

CPU

Intel® CoreTM Duo

Mobile Processor

T8300 (2.4 GHz)

Intel® CoreTM

Quad Processor

Q6600 (2.4 GHz)

GPU GeForce 9500M GS Tesla C1060

CUDA Capability

revision number
1.1 1.3

Number of mul-

tiprocessors
4 30

Number of cores 32 240

Clock rate 0.95 GHz 1.30 GHz

Table 1: The specifications of two machines.

Granularity

(sec)

NB(sec) PC(sec)

CPU Alg 1 Alg 2 CPU Alg 1 Alg 2

0.01 0.160 0.0047 0.0044 0.152 0.003 0.002

0.05 0.799 0.023 0.022 0.761 0.015 0.010

0.1 1.599 0.044 0.042 1.522 0.029 0.019

0.5 7.993 0.214 0.206 7.611 0.141 0.093

1 15.99 0.420 0.409 15.222 0.282 0.185

5 79.93 2.134 2.050 76.108 1.406 0.924

10 159.86 4.238 4.098 152.217 2.805 1.850

Table 2: The execution time of SMS with different granularities.

(N=100)

Granularity

(sec)

NB(sec) PC(sec)

Alg 1 Alg 2 Alg 1 Alg 2

0.01 34.012 36.332 50.739 76.108

0.05 34.752 36.665 52.129 80.114

0.1 36.414 37.881 53.409 81.399

0.5 37.403 38.782 53.863 82.191

1 38.026 39.057 53.997 82.146

5 37.454 38.992 54.116 82.404

10 37.719 39.008 54.272 82.293

Table 3: The speed up of GPUs comparing to CPUs. (N=100)

Execution Time (GPU) Part 1

0

0.05

0.1

0.15

0.2

0.25

0.01 0.05 0.1 0.5

Granularity (second)

T
im

e
(s

ec
on

d)

NB algorithm 1

NB algorithm 2

PC algorithm 1

PC algorithm 2

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

 DAFX-4

(a)

Execution Time (GPU) Part 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 5 10

Granularity (second)

T
im

e
(s

ec
on

d)

NB algorithm 1

NB algorithm 2

PC algorithm 1

PC algorithm 2

(b)

Figure 6: The line charts of table 1. Granularity is presented by

two parts depending on (a) smaller and (b) larger than 0.5

second.

Execution time (Telsa) with 10ms granularity

0

1

2

3

4

5

6

7

8

9

10

11

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

Number of instruments

T
im

e
(m

il
li

se
co

nd
)

tesla C010 with algorithm 2

Figure 7: The execution time of synthesizing different numbers of

instruments on Tesla C1060 by using Algorithm 2.

The performance limitation of Tesla is also tested by increas-

ing the number of synthetic instruments. The execution time of

implementing Algorithm 2 by synthesizing different number of

instruments is shown in Figure 7. It is executed on Tesla and the

granularity is 10 ms. The execution time is growing intuitively

and almost linearly with the number of instruments. When the

number is larger than 1700, the computing power will be so huge

that Algorithm 2 may not be performed in real time.

5. CONCLUSION

In this paper, we present efficient implementations of SMS

on GPUs. The alternative solutions are presented and discussed

based on CUDA architecture, and particularly designed for addi-

tive synthesis. In addition, we compare the methods on two dif-

ferent hardware platforms. This may enable new sound rendering

applications that require real-time processing with a huge number

of target sources.

6. APPENDIX

Appendix A. Kernel function of algorithm 1

__global__ void sinusoidal_mehod1(

float* freq , // pointer to frequency array in global memory

float* amplitude, // pointer to amplitude array in global memory

short* samples, // pointer to sample array in global memory

int streamNo, // the stream index

float timeOffset // the time offset of current granularity

) {

float t = (float)(threadIdx.x) / sampleRate // sampleRate : 44100Hz

 + (float)streamNo*UnitTime + timeOffset ; // UnitTime : 0.01s

float sum = 0;

// blockIdx.x: 0 for left channel, 1 for right channel.

if (blockIdx.x == 0) {

 // block 0 computes the instrument index 0 – 49 for left channel

 // d_nInstrument : number of instruments. (N=100)

 for (int i = 0 ; i < d_nInstrument/2 ; i ++) {

 // each instrument has 50 partials

 // d_ nPartials: number of partials of one instrument.

 for (int k = 0 ; k < d_nPartials ; k ++) {

 // texPartials : the look-up table of normalized partial energy

 sum += amplitude [i] *

tex2D(texPartials, i*d_nPartials + (k-1), streamNo) *

__sinf(2 * Pi * freq[i] * k * t) ;

 }

 }

 samples [threadIdx.x*2] = (short) sum ;

}

else{

 // block 1 compute the instrument index 50 – 99 for right channel

 for (int i = d_nInstrument/2 ; i < d_nInstrument ; i ++) {

 for (int k = 1 ; k <= d_nPartials ; k ++) {

 sum += amplitude [i] *

tex2D(texPartials, i*d_nPartials + (k-1), streamNo) *

__sinf(2 * Pi * freq[i] * k * t) ;

 }

 }

 samples[threadIdx.x*2 +1] = (short) sum ;

}

}

Appendix B. Kernel function of algorithm 2

/********** first kernel **********/

__global__ void sinusoidal_method2_1 (

float* freq , // pointer to frequency array in global memory

float* amplitude, // pointer to amplitude array in global memory

short* samples, // pointer to sample array in global memory

int streamNo, // the stream index

float timeOffset // the time offset of current granularity

){

float t = (float)(threadIdx.x) / sampleRate // sampleRate : 44100Hz

 + (float)streamNo*UnitTime + timeOffset ; // UnitTime : 0.01s

float sum = 0;

// The frequency and amplitude in one block is the same.

__shared__ float f;

__shared__ float a;

If (threadIdx.x == 0) {

 f = freq [blockIdx.x];

 a = amplitude [blockIdx.x];

}

__syncthreads();

// one instrument has 50 partials

for (int k = 1 ; k <= d_nPartials ; k ++) {

 // texPartials : the look-up table of normalized partial energy

 sum += a *

tex2D(texPartials, blockIdx.x*d_nPartials + (k-1), streamNo)

 * __sinf(2 * Pi * f * k * t) ;

}

// assign sum register to temporary storing matrix in global memory

Non-real-time

Real-time

Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

 DAFX-5

stored_matrix[blockIdx.x * blockDim.x + threadIdx.x] = sum;

}

/********** second kernel **********/

__global__ void sinusoidal_method2_2 (short* samples){

float sum = 0;

 // blockIdx.x: 0 for left channel, 1 for right channel.

 if (blockIdx.x == 0) {

 // block 0 compute the instrument index 0 – 49 for left channel

 for (int i = 0 ; i < d_nInstrument/2 ; i ++)

 sum += stored_matrix[threadIdx.x + i * blockDim.x];

 // assign sum register to sample array in global memory

 samples[threadIdx.x*2] = (short) sum;

}

 else {

 // block 1 compute the instrument index 50 – 99 for right channel

 // d_nInstrument : number of instruments. (N=100)

 for (int i = d_nInstrument/2 ; i < d_nInstrument ; i ++)

 sum += stored_matrix[threadIdx.x + i*blockDim.x];

 // assign sum register to sample array in global memory

 samples[threadIdx.x*2 +1] = (short) sum;

}

}

Appendix C. Kernel function of residual part

/********** first kernel **********/

__global__ void noise_1(

int* noise // pointer to noise array in global memory

){

int index = 0;

for(int i = 0 ; i < fsize ; i++) { // fsize: the frame size (= granularity size)

// index : the index of temporary matrix in global memory

// FILTER_ORDER : the order of LPC filter (5)

index = (i+ FILTER_ORDER)*blockDim.x + threadIdx.x ;

// (i%n) is equivalent to (i&(n-1)) if the second number is a power of two.

// WHITE_NOISE_LENGTH : 10240

noise[index] =

tex1Dfetch(texWhiteNoise, i&(WHITE_NOISE_LENGTH-1));

for (int k = 1 ; k <= FILTER_ORDER ; k++)

 //d_a : the array for storing the preceding noise samples

 noise[index] -= (int)(d_a[k-1] *

(float)noise[index - k * blockDim.x]);

}

}

/********** second kernel **********/

__global__ void noise_2(

float* d_g, // pointer to filter gains in global memory

short* samples, // pointer to synthetic sample array in global memory

int* noise // pointer to noise array in global memory

){

int index = blockIdx.x * blockDim.x + threadIdx.x ;

int noiseL = 0, noiseR = 0;

int halfInstrumentNum = N_INSTRUMENT/2;

// halfInstrumentNum : 100/2 = 50

for(int i = 0 ; i < halfInstrumentNum; i++) {

 // left channel

 noiseL += (int)((float)

noise[(index+FILTER_ORDER)*N_INSTRUMENT + i] *

d_g [i] / (float)halfInstrumentNum) ; // d_g : filter gain

 // right channel

 noiseR += (int)((float)

noise[(index+FILTER_ORDER)*N_INSTRUMENT + i +

halfInstrumentNum] *

d_g [i + halfInstrumentNum] / (float)halfInstrumentNum) ;

}

// truncation of left channel

if(noiseL > SHRT_MAX) noiseL = SHRT_MAX;

else if (noiseL < SHRT_MIN) noiseL = SHRT_MIN;

//add noise to the correspond sample value

samples[index*2] += (short) noiseL;

// truncation of right channel

if(noiseR > SHRT_MAX) noiseR = SHRT_MAX;

else if (noiseR < SHRT_MIN) noiseR = SHRT_MIN;

//add noise to the correspond sample value

samples[index*2+1] += (short)noiseR ;

}

7. REFERENCES

[1] NVIDIA. "NVIDIA GPU Computing Developer Home

Page,"

http://developer.nvidia.com/object/gpucomputing.html.

[2] J. Hensley, “AMD CTM overview,” in International Confe-

rence on Computer Graphics and Interactive Techniques,

San Diego, California, 2007, pp. 7.

[3] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understand-

ing the efficiency of GPU algorithms for matrix-matrix mul-

tiplication,” in Proceedings of the ACM SIGGRAPH

/EUROGRAPHICS conference on Graphics hardware,

Grenoble, France, 2004, pp. 137.

[4] E. Larsen, and D. McAllister, “Fast matrix multiplies using

graphics hardware,” in Proceedings of the 2001 ACM/IEEE

conference on Supercomputing, Denver, Colorado, 2001, pp.

55-55.

[5] K. Moreland, and E. Angel, “The FFT on a GPU,” in Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS confe-

rence on Graphics hardware, San Diego, California, USA,

2003, pp. 112-119.

[6] T. Jansen, B. von Rymon-Lipinski, N. Hanssen et al.,

"Fourier volume rendering on the GPU using a split-stream-

FFT," in Proceedings of the Vision, Modeling, and Visuali-

zation Conference, Stanford, California, USA, 2004, pp.

395–403.

[7] D. Horn, M. Houston, and P. Hanrahan, “ClawHMMER: A

Streaming HMMer-Search Implementatio,” in Proceedings

of the 2005 ACM/IEEE conference on Supercomputing,

Seattle, Washinton, 2005, pp. 11.

[8] A. Smirnov, and T. Chiueh, "An Implementation of a FIR

Filter on a GPU," Tech. rep., Experimental Computer Sys-

tems Lab, Stony Brook University, 2005. http://www. ecsl.

cs. sunysb. edu/fir, 2005.

[9] F. Trebien, and M. Oliveira, “Realistic real-time sound re-

synthesis and processing for interactive virtual worlds,” The

Visual Computer, vol. 25, no. 5, pp. 469-477, 2009.

[10] N. Tsingos, E. Gallo, and G. Drettakis, “Breaking the 64

spatialized sources barrier,” Gamasutra Audio Resource

Guide 2003, 2003.

[11] E. Gallo, and N. Tsingos, "Efficient 3D audio processing

with the GPU," in ACM Workshop on General Purpose

Computing on Graphics Processors, Los Angeles, Califor-

nia, 2004.

[12] Q. Zhang, L. Ye, and Z. Pan, “Physically-based sound syn-

thesis on GPUs,” Lecture notes in computer science, vol.

3711, pp. 328, 2005.

[13] X. Serra, and J. Smith III, “Spectral modeling synthesis: A

sound analysis/synthesis system based on a deterministic

plus stochastic decomposition,” Computer Music Journal,

vol. 14, no. 4, pp. 12-24, 1990.

