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ABSTRACT 

This paper will consider wave (amplitude) and phase signal shap-

ing techniques for the digital emulation of distortion effect 

processing. We examine how to determine the Wave- and Phase-

shaping functions with harmonic amplitude and phase data. 

Three distortion effects units are used to provide test data. The 

action of the Wave- and Phase- shaping functions derived for 

these effects is demonstrated with the assistance of a super-

resolution frequency-domain analysis technique.  

1. INTRODUCTION 

Distortion units essentially are a non-linear Waveshaping cir-

cuit that alters the amplitude of the input waveform thereby mod-

ifying its spectrum, typically using some form of diode-based 

clipping [1]. Digital emulation of these analogue processes has 

appeared in a variety of forms. In some, the aim is to directly 

model a specific analogue circuit [2], while in others the aim is to 

create algorithms that conceptually capture the analogue 

processing [3]. The advantages of the latter are flexibility and the 

ability to control the use of use of oversampling (a necessity for 

circuit modeling [1]). Emulation using the algorithmic approach 

can be divided into a nonlinear system model with memory or 

without memory [4]. However, incorporating memory for sys-

tems with strong nonlinearities is computationally expensive for 

real-time synthesis. Thus, it is more common to use a nonlinear 

system that is memoryless. While Waveshaping [5] is an ampli-

tude distortion of the input signal, it has been shown more re-

cently that distortion can also be applied to the signal phase to 

achieve a similar result [6], [7], [8]. In this work we establish a 

spectral connection between the Wave- and Phase- shaping me-

thods of amplitude and phase distortion [9] respectively. To illu-

strate the analysis, examples of nonlinearly shaped sinusoids that 

have been processed using analogue distortion effects will be 

used.  

The paper is organized as follows. We will first introduce 

and discuss the amplitude and phase signal shaping techniques. 

Then we will examine three distortion effects, followed by the 

application of the previously discussed algorithms to emulate 

these effects.  

2. SIGNAL SHAPING METHODS 

2.1. Non-linear Waveshaping 

The basic idea is that given some sinewave at a frequency ω 

 

x t( )= cos ωt( )            (1) 

there is a nonlinear function f(.) that will alter the amplitude of 

x(t) to produce an output 

 

y t( )= f x t( )( )= f cos ωt( )( )                     (2) 

    In [10] Chebyshev polynomials were introduced as a use-

ful description for such nonlinearities. The output of eq. 2 can be 

written as a power series 

 

( ) ( ) ( ) K+ω+ω+= tdtddty
2

210 coscos     (3) 

 

or more compactly 

y t( )= dp x
p

t( )
p= 0

∞

∑                    (4) 

Using a Fourier decomposition to determine the coefficients 

of eq.4 is difficult because of the expansion of the trigonometric 

product terms. The useful property of Chebyshev polynomials is 

that 

 

Tk cos ωt( )( )= cos kωt( )       (5) 

 

where Tk denotes a Chebyshev polynomial of order k. Applying 

these polynomials to describe eq. 4 results in  

 

( ) NNTaTaTaT
a

ty ++++= K22110
0

2

                  (6) 

 

where a0, a1, a2 ... are the Fourier series coefficient of y(t). 

The original work of [10] was extended by [11] to the syn-

thesis of complex dynamic spectra. In particular, [11] provided a 

matrix based technique for computing the coefficients of the 

power series in eq.4 using the Fourier series coefficients of eq.6. 

This simplified the procedure for calculating the Waveshaping 

transfer function given a set of spectral harmonic magnitudes. 

Using an (N+1)×(N+1) generative matrix P the relationship is 



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010 

 DAFX-2 

 

  

( )

( )

( )






































=



















N
N

N a

a

a

P

d

d

d

MMM

1

0

1

0

1

0

2

2

2

5.0
  (7) 

 

The first row of the generative matrix P is  

 

( ) [ ]K2020201,1 −−=jp          (8) 

and subsequent rows can be computed using the recursion 

 

 p i, j( )= p i −1, j −1( )− p i, j − 2( )                     (9) 

 

It can be noted from eq.7 that the harmonic phase is missing 

from the relationship. To include this means a phase quadrature 

form of Waveshaping [5]. With this, each harmonic magnitude, 

except the DC component, has an associated phase [5]. Defining 

these as   

 

  [ ]Nφφφφ= K210φ                     (10) 

 

To take account of the phase two Waveshaping polynomials 

now need to be generated. Furthermore, the second polynomial 

requires Chebyshev polynomials of the second kind. Again, fol-

lowing the example of [11] matrix relationships can be expressed 

for phase quadrature Waveshaping 
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and 
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where the first row of the generative matrix Q is  

 

  ( ) [ ]K1010101,1 −−=jq  (13) 

 

and subsequent rows can be computed using the recursion 

 

 q i, j( )= q i −1, j −1( )− q i, j − 2( ) (14) 

 

The quadrature waveshaper output is then given by 

 

y t( )= dI p x
p

t( )
p= 0

∞

∑ +sin ωt( ) dQp x
p

t( )
p= 0

∞

∑         (15) 

2.2. Non-linear Phaseshaping 

The technique of phase distortion, which is the core of our Pha-

seshaping approach, was originally proposed as a digital wave 

synthesis method [9]. More recently, in [7] and [8] it was ex-

plored as an efficient alternative for the design of virtual analo-

gue oscillators, and in [6] it was proposed to implement it using 

time-varying allpass filters as a distortion effect on arbitrary in-

puts. To establish the connection between Wave- and Phase- 

shaping we start with the same sinusoidal signal of eq. 4, and 

propose that there is a non-linear function g(.) such that 

 

( ) ( )( )tgty ω= cos                                   (16) 

 

will produce a complex signal. While a detailed analysis of its 

spectrum is found in [8], it is also possible to establish a connec-

tion between the harmonic magnitudes of this signal and its in-

stantaneous phase. First, defining a N harmonic analytic signal of 

fundamental frequency ω and amplitudes a1...aN  as 

 

  ( ) tN

N

ttt eaeaeaeats ωωωω ++++= K
3

3

2

21
 (17) 

 

This can be written as into its real and imaginary components 

 

  s t( )= u t( )+ jv t( )         (18) 

where u(t) and v(t) denote the real and imaginary parts respec-

tively. If the relationship between the harmonic magnitudes satis-

fies the conditions given in [12], then the instantaneous fre-

quency of this signal can be written as [13] 

        

 ( )
( ) ( ) ( ) ( )

2
A

tvtutvtu
ts

&&
& −

=φ   (19) 

 

where ( )tu&  and ( )tv&  are the first differences of the real and 

imaginary parts, respectively, and  

 

   A = u
2

t( )+ v
2

t( )                  (20) 

 

Substituting for u(t), v(t), ( )tu&  and ( )tv& the above will lead to 

an expression from which the instantaneous frequency can be 

directly calculated.  

Defining the combination 

   C =
N

2

 

 
 

 

 
      (21) 

This will have the set of combinadics denoted M(N,2) that 

contains L = N!/(2!(N-2)!) vectors each denoted as M(N,2)(.). 

Also, the vectors of magnitudes and frequencies are  

 

   [ ]Naaa K21=a         (22a) 

and 

   [ ]ωωω= NK2ω          

(22b) 

Then, defining two terms 

 

φsnum t( )= a
2
.ωωωω +

i=1

L

∑ ωωωω M N,2 i( )( )
i=1

L

∑ a M N ,2 i( )( )cos ′ ω ω ω ω M N ,2 i( )( ) t( )

      (23a) 
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where ωωωω′′′′ is the difference between the pair of frequencies deter-

mined by M(N,2)(.)  and 

 

φsden t( )= a
2 +

i=1

L

∑ 2

i=1

L

∑ a M N,2 i( )( )cos ′ ω ω ω ω M N ,2 i( )( ) t( )      (23b) 

 

The instantaneous frequency is given by 

 

   ( )
( )
( )t

t
t

dens

nums

s
φ

φ
=φ

&

&
&            (24) 

 

The instantaneous frequency can be written in terms of the 

fundamental frequency and frequency deviation 

 

   ( ) ( )tt devss φ+ω=φ &&                            (25) 

 

This deviation term can be integrated to convert it into an 

equivalent modulation or Phaseshaping 

 

   ( ) ( )∑φ=φ
n

devss tt &
mod

  (26) 

Thus it is possible to represent a harmonic signal as the 

Phaseshaping of a cosine signal at the same fundamental fre-

quency. No harmonic phases were taken into account so far and 

the equations need to be extended to achieve this. Using our 

phase vector defined in eq. 10, the terms in eq. 23a and 23b can 

be redefined 

 

φsnum t( )= a
2
.ωωωω +

i=1

L

∑

ωωωω M N ,2 i( )( )
i=1

L

∑ a M N,2 i( )( )cos ′ ϕ ϕ ϕ ϕ M N,2 i( )( )+ ′ ω ω ω ω M N,2 i( )( ) t( )

(27a) 

 

where ϕϕϕϕ′′′′ is the difference between the pair of phases determined 

by M(N,2)(.)  and 

 

φsden t( )= a
2 +

i=1

L

∑

2

i=1

L

∑ a M N ,2 i( )( )cos ′ ϕ ϕ ϕ ϕ M N ,2 i( )( )+ ′ ω ω ω ω M N ,2 i( )( ) t( )

       (27b)  

 

These can be substituted into eq. 24, eq. 25 and eq. 26 to find 

the Phaseshaping that will produce the signal s(t). 

3. THE DISTORTION EFFECT  

    Two broad classes of distortion circuits exist: (a) Hard clip-

ping and (b) Soft clipping [1]. For this work, three distortion cir-

cuits were used, built using PCBs purchased from [14]. The first 

was El Griton, a Tubescreamer-type circuit that gave an asymme-

trical soft clipping. The second was Disto-Uno, a Boss DS-1 type 

circuit and the third was MAS Distortion, a MXR distortion-type 

circuit, both of which were hard clippers. These circuits will be 

termed as ‘Overdrive’, ‘Clipper 1’ and ‘Clipper 2’ in the follow-

ing. The output waveform from all three circuits is shown in fig 

1. The circuits were driven by a 2V peak-peak sinewave at fre-

quency 146.8 Hz (note D) and the output was sampled at 

44100Hz using an M-audio Audiophile soundcard. The three 

panels from top to bottom show the waveforms for the Over-

drive, Clipper 1 and Clipper 2 respectively.  

In fig. 1 the soft clipping action of the Overdrive contrasts to 

the hard clipping of the others as some of the roundness of the 

input sinewave is still visible in the output.  
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Figure 1: Waveform outputs from the three distortion 

circuits fed by a sinewave signal. 

4. DIGITAL MODELLING BY MEANS OF WAVE- AND 

PHASE- SHAPING 

Once the output waveforms were recorded the next task was to 

find the spectral peaks for input to the Wave- and Phase- shaping 

algorithms. A super-resolution frequency analysis technique was 

applied. Exact values for the harmonic magnitudes and phases of 

the measured waveforms were derived using the Complex Spec-

tral Phase Evolution (CSPE) algorithm [15]. Empirically it was 

found that 40 harmonics only were required from the spectrum of 

the Overdrive for the analysis, otherwise the output of the wave-

shaper (eq. 4) was prone to instability.  It was the weakness of 

the higher harmonics that gave rise to this. The magnitude of the 

40th harmonic relative to the fundamental was below 60dB so the 

timbral reproduction should not be overly compromised.  
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Figure 2: Output of the phase quadrature waveshaper 
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Using the phase quadrature Waveshaping with eq. 11, 12 and 

15 produces the plot in fig. 2. The reproduction of the original 

waveshape can be achieved and compares well to the originals in 

fig. 1  

 

0 0.005 0.01 0.015 0.02 0.025

-0.5

0

0.5

Overdrive

R
a
d
ia

n
s

0 0.005 0.01 0.015 0.02 0.025

-2

0

2

Clipper 1

R
a
d
ia

n
s

0 0.005 0.01 0.015 0.02 0.025

-1

0

1

Clipper 2

R
a
d
ia

n
s

Time (Sec)

 

Figure 3: Phaseshaping functions computing using har-

monic magnitudes and phases 
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Figure 4 Reconstructed waveforms using Phaseshaping 

functions derived from harmonic magnitudes and phases 

Fig. 3 plots the Phaseshaping functions when the phase in-

formation is included using eqs. 27a and 27b. Notably the phase 

excursion for the Clipper 1 is greatest whilst that for the Over-

drive is smallest.  Reconstructing the time waveforms from the 

Phaseshaping functions given in fig. 3 gives the result in fig. 4.  

Comparing the waveforms of fig. 4 with the originals in fig. 1 

they have a good visual match. This demonstrates how amplitude 

and Phaseshaping can both produce equivalent results. 

 

5. CONCLUSION 

In this article, we have explored two techniques of signal shap-

ing. Expressions were presented that extended the matrix ap-

proach of [11] to include quadrature Waveshaping, and also to 

compute a Phaseshaping function given a set of harmonic magni-

tudes and phases. These methods were applied to the emulation 

of distortion effects driven by a sinusoidal input. A good signal 

match was obtained utilizing with both the quadrature Wave-

shaping and Phaseshaping algorithms.   
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