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ABSTRACT 

The aim of sound morphing is to obtain a sound that falls percep-
tually between two (or more) sounds. Ideally, we want to morph 
perceptually relevant features of sounds and be able to independ-
ently manipulate them. In this work we present a method to ob-
tain perceptually intermediate spectral envelopes guided by high-
level spectral shape descriptors and a technique that employs 
evolutionary computation to independently manipulate the tim-
bral features captured by the descriptors. High-level descriptors 
are measures of the acoustic correlates of salient timbre dimen-
sions derived from perceptual studies, such that the manipulation 
of the descriptors corresponds to potentially interesting timbral 
variations. 

1. INTRODUCTION 

There is a burgeoning interest in the search for computational 
techniques that allow the user to obtain perceptually relevant 
sound transformations and seamless transitions because computer 
sound manipulations are widespread in audio applications. Fea-
ture-based synthesis is a promising candidate to attain perceptu-
ally relevant sound transformations when the features closely 
capture salient perceptual dimensions [1]. Among the many dif-
ferent possible transformations [2], we will focus specifically on 
morphing acoustic musical instrument sounds. There seems to be 
no consensus on what sound morphing is. Most authors seem to 
agree that morphing involves the hybridization of two (or more) 
sounds by blending auditory features. One frequent requirement 
is that the result should fuse into a single percept, somewhat rul-
ing out simply mixing the sources [3], [4], because the ear is still 
usually capable of distinguishing them due to a number of cues 
and auditory processes. Although many different methods are 
described as morphing [5], the result is usually associated with 
what many authors describe as timbre interpolation [4], [6], [7]. 
The goal of timbre interpolation is to obtain a hybrid sound that 
is perceived to come from more than one source at the same 
time. For instance, we could seek to get a hybrid between a vio-
lin and a trumpet sound. We should bear in mind that this defini-
tion of morphing supposes that timbre is the perceptual phe-
nomenon responsible for sound source identification [8], some-
what ignoring that the same sound can present timbral variations 
related to the perceptual dimensions of timbre unveiled by psy-
choacoustic experiments [9]. A crescendo trumpet note, for ex-
ample, becomes perceptually brighter as it gets louder. 

Most morphing techniques described in the literature consist 
in interpolating the parameters of a model used to represent both 
sounds we wish to morph between, regardless of features [3], [6] 
[7], [10], [13], [11]. These techniques usually aim at obtaining a 
sound with an intermediate timbre [3], [6]. The basic idea behind 

the interpolation principle is that if we can represent different 
sounds by simply adjusting the parameters of a model, we should 
obtain a somewhat smooth transition between two (or more) 
sounds by interpolating between these parameters. Interpolation 
of sinusoidal modeling is amongst the most common approaches 
[3], [4], [6], [10]. The sinusoidal parameters can be directly in-
terpolated [3], [6], or by means of another technique [10]. A few 
authors have proposed to detach the spectral envelope from the 
pitch information and interpolate them separately [7], [11]. Even 
more interesting seems to be the approach of designing the spec-
tral envelope separately [12], [13] and imposing the result later 
for synthesis [14]. 

Our main motivation is to find a morphed sound that would 
not only be perceived as a hybridization of the sources, but 
would also be perceptually intermediate with respect to known 
salient timbre dimensions, such as brightness [9]. In other words, 
instead of simply obtaining morphed sounds, we want to control 
the morphing process perceptually. We want to be able to decide 
how much of each timbrally related feature we will include from 
each source. So, for example, when morphing between a bright 
trumpet sound and a duller clarinet sound, we want to be able to 
control the perceived brightness of the trumpet-clarinet hybrid. 
For this, we need to be able to independently manipulate indi-
vidual features. There have been different proposals in the litera-
ture to use features to guide synthesis and transformations. Yee-
King [15] uses a genetic algorithm to tune the parameters of an 
FM synthesis model according to target MFCC values. Hoffman 
[16] presents preliminary results on an MFCC-based synthesis 
module that uses some descriptors as guides, while Le Groux 
[17] uses a support vector machine approach to map an additive 
synthesis PCA-reduced model to descriptors such as fundamental 
frequency and loudness. In turn, Park [18] proposes ways of 
modulating various descriptor-based features, although not inde-
pendently, such that varying one feature also changes the others 
in unexpected ways. Verfaille [1] details a general framework to 
manipulate low-level features to obtain sound transformations 
that control certain perceptually related features. 

However, for morphing, only recently did we start to take 
perceptual aspects into consideration [4], [5], [12], and the result 
is the addition of one more step in the process, feature calcula-
tion. In most models proposed, linear variation of interpolation 
parameters does not produce perceptually linear morphs [5]. For 
the moment, we are interested in being able to control perceptual 
features of sounds related to the spectral shape, so we will study 
spectral envelope morphing [13] and manipulation techniques, 
such as that proposed by Caetano [12]. In this work, we aim at 
spectral envelope design guided by high-level features, such that 
in general terms our approach consists of first obtaining an enve-
lope with the general desired number of formant peaks and then 
shaping it so as to manipulate the high-level features. More spe-
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cifically, we will study a method that produces more perceptu-
ally relevant morphed envelopes with the desired intermediate 
number of formant peaks guided by high-level spectral shape 
descriptors. High-level descriptors are acoustic correlates of tim-
bral dimensions, such that manipulation of the descriptors corre-
sponds to potentially interesting timbral variations. So we define 
the most suitable representation of the spectral envelope that al-
lows manipulating the spectral envelope shape while retaining 
the number of peaks. Finally, we describe a technique that uses a 
genetic algorithm (GA) [19] to independently manipulate the 
timbral dimensions guided by the descriptors. 

The next section presents the basic notion behind the spectral 
envelope and sound source identification. Then we describe how 
slight variations of a spectral envelope can be perceived as pre-
senting slightly different timbral features (different neighboring 
points in timbre space), while still being associated with the 
same instrument. Next, we introduce the high-level spectral 
shape descriptors, which capture the acoustic correlates of timbre 
dimensions. We proceed with the description of the methods to 
obtain morphed spectral envelopes and study their perceptual 
impact. The next step is to introduce a technique that uses evolu-
tionary computation to independently manipulate timbral fea-
tures associated with an envelope. Finally, we describe the ex-
periment we devised to validate our proposal, followed by an 
evaluation of the results and the conclusions and future perspec-
tives. 

2. SOURCE-FILTER MODEL AND SOUND 
SOURCE IDENTIFICATION 

Listeners use many acoustical properties to identify sonic events, 
such as the spectral shape, formant frequencies, attack and/or 
onset and decay and/or offset, noise, among others [8]. The cues 
to identification and timbre vary across notes, durations, intensi-
ties and tempos. One model of sound production is based on two 
possibly interactive components, the source and the filter. The 
basic notion is that the source applies excitation energy to gener-
ate a vibration pattern composed of several vibration modes 
(modeled as sinusoidal components). This pattern is imposed on 
the filter, which acts to modify the relative amplitudes of the 
components of the source input. Resonators, by their nature, tend 
to amplify certain frequencies louder than others. These resonant 
frequency regions, or formant peaks, are uniquely related to the 
size and shape of the instrument and its resonator. We obtain es-
timates of the excitation and the filter by calculating the spectral 
envelope, which is a smooth curve that approximately matches 
the peaks of the spectrum. The peaks of the spectral envelope 
(also called formants in voice research) correspond roughly to 
the vibration modes of the source-filter model. The number and 
absolute position of spectral peaks in frequency is important for 
musical instrument (sound source) identification. However, we 
cannot underestimate the perceptual impact of slight variations of 
spectral shape. The relationship between fundamental frequency 
and timbre, for example, is readily apparent in some acoustic 
instruments. The clarinet, for instance, has three distinct regis-
ters, that is, three distinct pitch ranges with three different tim-
bral characteristics. It is remarkable that a single instrument can 
have such a variety of timbres, but the example of the clarinet 
proves the impact of variations of spectral shape on an instru-
ment’s timbre and even temporal evolution. The relationship be-
tween applied energy and timbre is relatively clear. As more en-
ergy is input to the instrument, higher modes of vibration are 

achieved such that more partials are present in the frequency 
spectrum. This is why a note played forte is not just louder than 
piano, but also brighter in timbre. A classical example is Risset’s 
discovery that brassy trumpet sounds, usually described as 
bright, present a broader spectrum resulting from the appearance 
of higher partials. The spectral centroid, defined later in Section 
4, was found [9], [23] to be highly correlated with the dimension 
of timbre usually verbally labeled as brightness. Therefore, 
brassy trumpet sounds that are perceived as bright can be charac-
terized at the signal level as presenting a high spectral centroid 
value. Notably, a crescendo trumpet note would exhibit an in-
creasing spectral centroid, while roughly preserving the general 
position of the first formant peaks (because other peaks appear at 
high frequency regions). 

The vast majority of research in sound perception has fo-
cused either on the acoustic properties of musical instruments 
[20] or on the perception of sounds as unveiled by psycho-
acoustic experiments [9]. The challenge we face today is to find 
the link between the two in order to be able to manipulate the 
sounds in a more perceptually meaningful way. 

3. ACOUSTIC CORRELATES OF TIMBRE 
SPACES 

In this section we briefly present timbre perception, timbre 
spaces and the most relevant acoustic correlates of timbral di-
mensions obtained in the literature of timbre perception. The 
concept of timbre is related to the subjective response to the per-
ceptual qualities of sound objects and events [8]. We know that 
source identification is not reduced to waveform memorization 
because the intrinsic dynamic nature of the sources produces 
variations [8]. Timbre perception is inherently multidimensional, 
involving features such as the attack, spectral shape, and har-
monic content. 

Historically, Helmholtz was the first to propose an acoustic 
model of musical instrument sounds. Helmholtz characterized 
what he called musical tone as a waveform that follows an ampli-
tude envelope that consists of the attack, the steady state and the 
decay, as shown in Figure 1. During the attack, the amplitude 
increases from zero to its peak value. In the steady state portion 
the amplitude is constant and finally decreases back to zero dur-
ing the decay. Helmholtz concluded that sounds that evoke the 
sensation of pitch possess fixed waveforms that do not change in 
the course of the tone, apart from the amplitude envelope, whose 
temporal evolution has great impact on the perception of the 
tone, according to him. The classical Helmholtz model breaks 
down when we examine musical instrument sounds on a small 
scale. When the harmonic content of sound is examined with the 
STFT over small time periods, we discover that, contrary to the 
Helmholtz model, a sound’s spectrum changes profoundly over 
time. During the attack portion of a sound, harmonic content may 
change rapidly and unpredictably. This phenomenon is called the 
initial transient. During the release, upper partials tend to disap-
pear more quickly before the entire sounds fades away. While 
the sustain portion of the sound, when it exists, is certainly more 
stable than the attack or decay, it is hardly as static as Helmholtz 
would suggest. Clearly, the basic premise of the classical Helm-
holtz model - a static spectral envelope with a fixed amplitude 
envelope temporal evolution – is by no means an accurate and 
robust characterization of a wide range of acoustic musical in-
strument sounds. 
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Figure 1: Classical acoustic model of musical instrument 
sounds. Original figure from [22]. 

Since the pioneering work of Helmholtz, multidimensional 
scaling techniques figure among the most prominent when trying 
to quantitatively describe timbre. Handel [8] gives a comprehen-
sive review of the early timbre space studies. Grey [23] investi-
gated the multidimensional nature of the perception of musical 
instrument timbre and constructed a three-dimensional timbre 
space and proposed acoustic correlates for each dimension. He 
concluded that the first dimension corresponded to spectral en-
ergy distribution (measured by the spectral centroid), the second 
and third dimensions were related to the temporal variation of the 
notes (onset synchronicity). Krumhansl [24] conducted a similar 
study using synthesized sounds and also found three dimensions 
related to attack, synchronicity and brightness (spectral energy 
distribution). Krimphoff [25] studied acoustic correlates of tim-
bre dimensions and concluded that brightness is correlated with 
the spectral centroid and rapidity of attack with rise time in a 
logarithmic scale. McAdams [9] conducted similar experiments 
with synthesized musical instrument timbres and concluded that 
the most salient dimensions were log rise time, spectral centroid 
and degree of spectral variation. More recently, Caclin [26] stud-
ied the perceptual relevance of a number of acoustic correlates of 
timbre-space dimensions with MDS techniques and concluded 
that listeners use attack time, spectral centroid and spectrum fine 
structure in dissimilarity rating experiments. 

These results suggest that slight changes in the spectral shape 
produce perceptual changes in timbre that can be measured with 
high-level spectral shape descriptors. Notably, a morphed 
sound/spectral envelope with intermediate descriptors should be 
perceived not only as a hybrid of the source envelopes, but espe-
cially as perceptually intermediate. 

4. HIGH-LEVEL DESCRIPTORS 

In this section we present the general scheme used to calculate 
the descriptors used in this work, depicted in Figure 2. The sound 
signal is highlighted with a dark background, all the purely sig-
nal processing stages have white background and the steps where 
we calculate the descriptors present a light background. Peeters 
[27] describes exhaustively how to calculate all the descriptors 
we use in this work and proposes to use them in audio classifica-
tion tasks instead of traditional MFCCs. We are going to present 
every step of the descriptor extraction scheme with emphasis on 
the descriptor calculation procedures. The basic signal process-
ing step is the STFT, which refers to the blocks that read “signal 
frame” and “FFT”. 
 

 
Figure 2. Simplified scheme to calculate the descriptors. 
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Figure 3: Mid-ear filter applied to extracted spectral en-
velopes 

4.1. Spectral Shape 

The calculation of the spectral shape descriptors consists of three 
steps, spectral envelope estimation, application of the perceptual 
model, and finally calculation of the spectral shape descriptors, 
namely, spectral centroid, spread, skewness, kurtosis and slope 
[27]. For every frame, we calculate the spectral envelope using a 
cepstral smoothing technique, called true envelope [28]. Next, 
we apply the perceptual model, which consists of the mid-ear 
filter shown in Figure 3 evaluated on the mel frequency scale. 
We should notice that this calculation is like the MFCC-based 
spectral envelope used in [7] without critical band smoothing, 
such that we do not lose information. Finally we calculate the 
spectral shape descriptors with the mid-ear attenuated, mel-
warped spectral envelope. The spectral shape descriptors consid-
ered are calculated as if the magnitude spectrum were a probabil-
ity distribution. So we associate the frequency bins i of the DFT 
with the sample space and the probabilities to observe them with 
the magnitude of the normalized spectral envelope, given by 
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such that the spectral shape descriptors are defined as the mo-
ments of p(k), where k is the frequency index. The spectral cen-
troid is measured as the mean of p(k) and the spectral spread as 
the standard deviation, shown in equations (2) and (3) respec-
tively. 
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The third and forth standardized moments are respectively skew-
ness and kurtosis, shown in equations (4) and (5). 

 
( ) ( )

3

3

3 σ

µ
γ

∑ −
= k

kpk
 (4) 

 
( ) ( )

4

4

4 σ

µ
γ

∑ −
= k

kpk
 (5) 

And finally the spectral slope is given by equation (6), where i is 
the FFT frequency bin index 
 

∑ ∑

∑ ∑∑
∑









−

−
=

i i

i ii

i ikikN

ikipikipN

ip 2
2 )()(

)()()()(

)(
1λ

 (6) 



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010 

 DAFX-4 

5. SPECTRAL ENVELOPE MORPHING BY HIGH-
LEVEL DESCRIPTORS 

In this section we explain our motivation for using spectral shape 
descriptors as guides in obtaining perceptually relevant morphed 
spectral envelopes. The aim of morphing spectral envelopes is to 
obtain a result that is perceived not only as a hybrid between the 
original sounds, but especially perceptually intermediate between 
them. Slaney [7] explains the concept by analogy with image 
morphing, where the aim is to gradually change from one image 
to the other, producing perceptually convincing intermediates (or 
hybrids) along the way. Other authors have proposed the same 
analogy [3]. Figure 4 shows such an example of image morphing 
with faces. Clearly, it is not enough to blindly interpolate pa-
rameters (pixels, for instance, for the images) since there are a 
number of important features in the faces that we must take into 
account. Finding those features is an important task, and devel-
oping techniques to obtain intermediate (hybrid) images that use 
those features as cues is the key to a successful morph. The anal-
ogy with spectral envelope morphing is immediate. Each frame 
of the STFT is interpreted as a snapshot of the spectrum of the 
sounds seen through a time window. So the task of morphing 
spectral envelopes becomes similar to image morphing, each hy-
brid envelope must present intermediate features to be perceptu-
ally convincing. Here we argue that high-level descriptors cap-
ture salient timbre dimensions of sounds, so we use them as a 
guide to morph spectral shapes. An important concept that can be 
inferred from Figure 4 is the fact that there are many possible 
intermediate steps between the two images shifting from the first 
(S1) to the second (S2) spectral envelope. So, if we consider each 
intermediate hybrid spectral envelope as the result of a different 
combination of S1 and S2, this convex combination can be mathe-
matically expressed as equation (7) 
 ( ) [ ] 21 )(1)(, StSttM ααα −+=  (7) 

and each step is characterized by one value of a single parameter 
(α), called morphing factor, as shown at the bottom of Figure 4. 
The morphing factor should vary between 0 and 1, such that α = 
1 and α = 0 produces S1 and S2 respectively. 

Usually, morphing techniques propose to interpolate the pa-
rameters of a model without making sure that the results will 
(perceptually) correspond in the feature space. Moreover, de-
pending on the parameters we interpolate, the morphed spectral 
envelope will not present the desired number and position of 
peaks. Ideally, we want the morphed spectral envelope to have 
an intermediate number and position of peaks and to match as 
closely as possible the values of target perceptually related fea-
tures, in this case, spectral shape descriptors. So we present in 
Figure 5 an example of the perceptual impact of morphing spec-
tral envelopes by three different methods proposed in the litera-
ture, namely, linear predictive coefficients (LPC) [12], [29] line 
spectral frequencies (LSF) [5], [30], [32], and dynamic frequency 
warping (DFW) [13], [32]. 

 

 

Figure 4: Depiction of image morphing to exemplify the 
aim of sound morphing 
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Figure 5. Spectral envelopes (left) and spectral shape de-
scriptor values (right) corresponding to linearly varying 
the interpolation factor α from 0 to 1 for LPC (top), LSF 
(middle) and DFW (bottom) spectral envelope interpola-
tion. 

Figure 5 compares the result of varying the interpolation fac-
tor from 0 to 1 for LPC, LSF and DFW both in number of peaks 
and in shape for two very different spectral envelopes, labeled 
clavi and tuba. Notice that, for this example, LPC (top) does not 
interpolate well either the peaks or the shape. Neither the spectral 
envelopes nor the descriptors vary smoothly from one extreme to 
the other as desired. Although DFW (middle) visually seems to 
render a satisfactory shift, the descriptors vary in unexpected 
ways. LSFs (bottom) interpolate better both the peaks and the 
shape. Ideally, we expect the hybrid spectral envelope to 
smoothly change from source to target, with peaks shifting, ap-
pearing or splitting and disappearing or merging. The change is 
also very satisfactory in the descriptor domain, varying almost as 
straight lines. Ideally, we want a spectral envelope morphing 
method that generates hybrid envelopes with not only an inter-
mediate number of peaks, but also with intermediate values of 
features, as measured by the descriptors. When we set α = 0.5, 
we seek for a morphed envelope whose descriptors are halfway 
between those of S1 and S2. Table 1 shows an example of the ac-
curacy of the three methods for α = 0.5. We show the target 
value for each descriptor considered, calculated applying equa-
tion (7) using the descriptor values as S1 and S2, and the value 
measured for the spectral envelope produced by each morphing 
method. We consider a method that generates morphed enve-
lopes with descriptor values closer to the target values to render 
more perceptually relevant morphed spectral envelopes [5]. This 
is an objective measure of the perceptual impact of the morphed 
envelopes obtained with each method. 
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Descriptor Target LPC DFW LSF 
Centroid (x10+3) 3.20 3.57 3.34 3.27 
Spread (x10+6) 2.70 2.01 2.62 2.70 
Skewness 1.27 1.21 0.94 1.27 
Kurtosis 12.4 12.5 7.46 9.15 
Slope (-1x10-16) 3.14 1.12 1.54 3.12 

Table 1. Target (α = 0.5) and measured spectral shape de-
scriptors. 

6. INDEPENDENT MANIPULATION OF 
FEATURES BY EVOLUTIONARY COMPUTATION 

In this section we explain the technique we use to manipulate 
perceptually relevant timbral features of the morphed envelopes 
to produce interesting timbral variants. In other words, we are 
still looking for a morphed envelope that is perceived halfway (α 
= 0.5) between a clarinet and a trombone, but now we dot not 
want all the timbral features to be also automatically in the mid-
dle. We want to be able to control them independently and obtain 
a hybrid clarinet-trombone morphed envelope that sounds as 
bright as the original trombone, for example. This would corre-
spond to obtaining a hybrid image morph of the Bush-Obama 
faces where all the features are halfway, except the nose, which 
still resembles Obama’s. The technique consists in generating a 
prototype morphed envelope with intermediate features, and then 
manipulating the features independently to match new target val-
ues set for each descriptor. The variants are obtained by setting 
the morphing factor α independently for each descriptor, repre-
senting each feature we want to control. The prototype morphed 
envelope can potentially be obtained with any method because 
we can convert the representation of a spectral envelope. This 
means that we can obtain the LSF representation of an envelope 
estimated with true envelope [28], linear prediction [29], or any 
other method. Particularly, we can calculate the LSF representa-
tion of an envelope generated with DFW [32]. Therefore, we will 
verify if there is one prototyping method that outperforms the 
other between prototype envelopes generated with LSF and 
DFW. We clearly need a suitable representation that allows local 
manipulation of the spectral shape without completely changing 
the overall prototype envelope (i.e., the number and location of 
peaks). 

6.1. Line Spectral Frequency Pairs 

Line spectral frequency pairs (LSFs) are an alternative parame-
terization of LPC [29] with a one to one correspondence. The 
two LSF polynomials are given by 
 ( ) ( ) ( ) ( )11 −+−+= zAzzAzP p  (8) 

 ( ) ( ) ( ) ( )11 −+−−= zAzzAzQ p  (9) 

where A(z) is the linear prediction polynomial of order p [29]. 
The roots of the polynomials in equations (8) and (9) determine 
the LSFs. If A(z) is minimum phase, the roots of P(z) and Q(z) 
are on the unit circle, are real, interleaved with each other, and 
always lead to stable envelopes when arranged in ascending or-
der [30]. LSFs also present the useful tendency to be located 
where the peaks of the envelope they represent are. Figure 6 
shows that each pair tends to be close together when near a peak 
of the spectral envelope and far apart when not, depicting an-
other useful property of LSFs. The closer the line spectrum pair 
is, the narrower the peak. 

 

Figure 6: Depiction of LSFs and corresponding spectral 
envelope. Original figure from [30]. 

Based on these properties of LSFs, McLoughlin [30] exem-
plifies how we can manipulate the LSFs to produce small 
changes in the shape of the spectral envelope and Morris [31] 
presents a method for modifying formant peak locations and 
bandwidths in the line spectrum domain. Figure 6 shows the 
original spectral envelope in grey and a modified envelope (solid 
line) with its corresponding LSFs. Since there are LSF pairs that 
correspond roughly to specific spectral peaks, we generally can 
make changes to a specific peak without changing much the 
overall spectral envelope. With this in mind, for a prototype 
morphed envelope, there must be a variant with slightly different 
LSFs whose shape matches more closely the independently set 
target spectral shape descriptors. Because fine tuning the LSFs to 
match all descriptors at once is a difficult task (highly nonlinear 
mapping), we use a genetic algorithm (GA) to perform the 
search. The GA will manipulate the LSF representation of proto-
type morphed envelopes obtained with both LSF and DFW. 

6.2. Genetic Algorithms 

Genetic algorithms (GAs) are the most commonly used paradigm 
of evolutionary computation due to the robustness with which 
they explore complex search spaces. They codify the parameters 
of a model into a chromosome-like structure so that each indi-
vidual corresponds to a point in the parameter space, depending 
on the values of the parameters. The resulting search space con-
tains the candidate solutions, and the evolutionary operators will 
implement exploration and exploitation of the search space aim-
ing at finding quasi-global optima. The GA iteratively manipu-
lates populations of individuals at a given generation by means 
of the simple genetic operations of selection, crossover and mu-
tation. The evolutionary process combines survival of the fittest 
with the exchange of information in a structured yet random 
way. The standard genetic algorithm [19] consists of the steps 
shown in Table 2. 
 
(*Initialize Population*) 

(*Main Cycle*) generations 

repeat 

(*Competition Cycle*) 

Crossover 

Mutation 

Fitness Evaluation 

Selection 
until termination criterion met 

Table 2. Standard Genetic Algorithm. 
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Figure 7. Depiction of the chromosome (top), crossover 
(middle) and mutation operations (bottom). 

6.3. Codification and Evolutionary Operators 

In this section we explain how we apply the steps presented in 
Table 2 to the population of candidate prototype spectral enve-
lopes in the search for the variant envelope model that best 
matches the independent target envelope shape descriptor values. 

6.3.1. Initialization 

We initialize the population of N candidate solutions by produc-
ing variants of a prototype spectral envelope. We obtain the pro-
totype morphed envelope with either LSF or DFW. The variants 
are obtained by adding a perturbation vector (normal distribution 
N(0,10-3)) to the LSFs of the prototype morphed envelope, so 
that each individual is a variant of the prototype with a slightly 
different spectral shape. Each individual in the population is 
codified as a chromosome that lists LSF pairs in ascending order, 
as represented on the top of Figure 7. This initialization process 
is intended to sample the search space (spectral shape descrip-
tors) while restricting the positions of the peaks of the envelopes. 

6.3.2. Crossover 

Crossover is responsible for the exploitation of regions of interest 
of the search space by means of the exchange of information be-
tween individuals of a population. Crossover consists of selecting 
two parent individuals, the crossover points, and swapping the 
chromosome segments (represented by different shades in Figure 
7) between them, thus generating two offspring. We mate each 
individual of the current population with one randomly chosen 
partner (uniform distribution) using a one-point crossover opera-
tor with a uniform distribution [19]. Both offspring are inserted 
in the population and the parents are also kept. We use a one-
point crossover operator, which consists of selecting one mating 
partner for each individual in the population (those are the parent 
chromosomes), randomly (uniform distribution) choosing a 
crossover point and swapping the segments between the parents, 
thus generating the offspring chromosomes shown in the middle 
of Figure 7, where each segment is represented by a different 
shade. The result of the crossover operation is two offspring in-
dividuals comprised of LSFs that come from both parents. Thus 
the offspring consist of variant spectral envelopes whose spectral 
shape inherits characteristics of both parents. It is important to 
notice that both offspring generated are inserted in the population 
and the parents are also kept, thus increasing the number of can-
didate solutions by 2. That is, now we have three times the initial 
number of individuals in the population, or 3N, because for each 
individual we mate, they produce two offspring that are inserted 
in the current generation and we keep the current individuals in 
the population. 

6.3.3. Mutation 

Mutation is responsible for the exploration of the search space by 
randomly replacing the value of one randomly selected pair of 
LSFs, thus allowing different regions of the search space to be 
investigated. The mutation operation, applied to all individuals in 
this increased population, is depicted at the bottom of Figure 7 
and consists of randomly (uniform distribution) choosing a muta-
tion point, represented in black in Figure 7, and adding a pertur-
bation to it (normal distribution N(0,10-3)). Thus mutation is a 
kind of perturbation of the LSF pair selected, resulting in a 
slightly different shape. 

6.3.4. Fitness Evaluation 

Next we measure the fitness of all individuals in the current 
population using the fitness function (ff) in equation (10). The 
fitness function operates on the feature space (the spectral shape 
descriptors) and here it is a very simple error (or distance) meas-
ure between the target and the calculated descriptor values. 
Equation 10 below shows the computation as the absolute value 
of the difference between target descriptors (T) and the descrip-
tor values (ci) calculated for each individual in the current gen-
eration, weighted (ωi) and normalized by the target value T for 
each spectral shape descriptor used in the method so that they are 
all dimensionless and therefore can be compared. 

 
( )

∑
∑ −

=

i
i

i i

ii
i T

cT

ff
ω

ω  (10) 

6.3.5. Selection 

Finally, the selection operator discards individuals with low fit-
ness values, only keeping individuals that correspond to promis-
ing regions of the search space for the next generation. Selection 
is done by sorting the individuals of the population of the current 
generation by increasing values of fitness and selecting the first 
N as the population for the next generation. We use a strategy 
called elitism that consists of keeping the best individual found 
so far in all generations even if it is lost in the current population 
due to crossover and mutation. The termination criterion is met 
when either a minimum fitness threshold or the maximum num-
ber of generations is reached. 

7. EXPERIMENT AND RESULTS 

We aim to show that the GA allows us to obtain hybrid morphed 
envelopes that closely match the target perceptual descriptor val-
ues even if we use independent morphing factors for the descrip-
tors. We also want to verify which method used to obtain the 
prototype envelope, DFW or LSF, renders resultant envelopes 
that retain the desired overall number and position of peaks. So 
we set a variable morphing factor (α = [0.1, 0.3, 0.5, 0.7, 0.9]) 
for the spectral centroid and kept the others constant at α = 0.5. 
We expect the results to show hybrid spectral envelopes whose 
centroid varies as desired while keeping the other descriptors 
considered unchanged. We measure the quality of the results as 
how closely they match the values of target perceptual spectral 
shape descriptors while retaining the desired overall number and 
position of peaks of the prototype spectral envelope. Table 3 
shows the target and measured descriptor values for each morph-
ing factor α indicated, applied only to the perceptual centroid. 
Figure 8 depicts the resultant envelopes for LSF and DFW proto- 
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 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 
Descriptor Targ DFW LSF Targ DFW LSF Targ DFW LSF Targ DFW LSF Targ DFW LSF 
Centr (x10+3) 2.35 3.53 2.35 2.78 2.78 2.78 3.20 2.69 3.20 3.63 2.43 3.63 4.05 2.42 4.05 
Spread (x10+6) 2.70 4.52 1.66 2.70 3.91 2.08 2.70 2.71 2.57 2.70 1.94 2.99 2.70 1.44 3.49 
Skew 1.27 1.07 1.82 1.27 1.86 1.47 1.27 2.48 1.17 1.27 2.69 0.93 1.27 1.93 0.68 
Kurt 12.4 5.35 16.6 12.4 8.64 12.6 12.4 14.9 9.52 12.4 21.2 7.49 12.4 20.7 5.84 
Slope (-1x10-16) 3.14 5.63 1.89 3.14 5.84 2.64 3.14 5.11 3.39 3.14 3.54 3.97 3.14 1.85 4.39 

Table 3. Target and measured perceptual spectral shape descriptor values for DFW and LSF after the application of the GA with morph-
ing factor independently set. 

type spectral envelopes. If we compare the number and position 
of peaks of the results presented in Figure 8 with the correspond-
ing morphed prototypes in Figure 5, we readily see that the de-
sired intermediate number and position of peaks was retained for 
LSF. Although DFW generates morphed prototypes with 
smoothly varying intermediate number and position of peaks, 
since the corresponding descriptor values are farther from the 
target (see Table 1), the GA compromises the original number 
and position of peaks in favor of shape. 

Table 3, on the other hand, shows that, for LSFs, as the spec-
tral centroid shifts as expected, the other values vary slightly. In 
general, LSFs outperformed DFW in matching the target descrip-
tors. We do not control the individual accuracy of descriptors; 
therefore, because they all have different ranges, the precision of 
matching the spectral centroid differs from the other descriptors. 
Without the weights, descriptors with smaller ranges tend to be 
matched with greater precision. The weights allow us to tip the 
scales and focus on the descriptors of interest. If we compare the 
corresponding columns in Table 1 with the column labelled α = 
0.5 in Table 3, we see that DFW performed poorly in matching 
the target descriptors even after the application of the GA. On the 
other hand, for LSFs, in this case and all others presented, even 
though the GA unmatched the other descriptors a little, the de-
scriptor of interest (centroid) is always a perfect match. We do 
not directly compare the results quantitatively with the manipula-
tion of LPCs by a GA [12] because qualitatively they are not 
equivalent. The method presented in [12] does not manipulate 
LSFs and therefore would probably not render results with the 
desired number and position of peaks for, as we showed in sec-
tion 5, the interpolation of LPCs is highly unstable. 

We did not find any studies on how the accuracy of the spec-
tral shape descriptors affects the perception of the features they 
are related to, such that, it is not possible as of now to decide 
how perceptually relevant the values are and how accurate the 
matching should be. We would need to study whether there is a 
sort of just noticeable difference (JND) for the descriptors in or-
der to infer how their individual accuracies affect perception. 
The most important aspect of the results lies in the independent 
control of the descriptors given that the relevance of the descrip-
tors values is only relative and there is no scale at present with 
which to perform a deep quantitative analysis. Controlling the 
descriptors individually is a first step toward the study of percep-
tually motivated feature-based sound transformations such as 
morphing. All the results presented in this article are available 
online http://recherche.ircam.fr/anasyn/caetano/morph.html. 

8. CONCLUSION AND FUTURE PERSPECTIVES 

The aim of sound morphing is to find a morphed sound that 
would not only be perceived as a hybridization of the original 
sounds, but would also be perceptually intermediate with respect 

to known salient timbre dimensions. We studied methods to ob-
tain a morphed spectral envelope that contains both the desired 
intermediate number and position of resonant peaks, but also cor-
responding intermediate perceptual features, measured by high-
level spectral shape descriptors. High-level descriptors are acous-
tic correlates of timbral dimensions, such that manipulation of 
the descriptors corresponds to potentially interesting timbral 
variations. We compared the morphed spectral envelopes ob-
tained with LPC [29], DFW [32] and LSFs [30] and found that 
LSFs generate more smoothly varying hybrids according to two 
criteria, number and position of spectral peaks and values of 
spectral shape descriptors. 

Then, we defined LSFs as the most suitable representation of 
the spectral envelope that allows manipulating the spectral enve-
lope shape while roughly retaining the desired number and posi-
tion of peaks of the prototype morphed envelope we wish to 
transform. Finally, we described a technique that uses a genetic 
algorithm (GA) to independently manipulate perceptually rele-
vant timbral features of the morphed spectral envelopes guided 
by the descriptors to produce interesting timbral variants. 

We verified that we have finer control over sound transfor-
mations perceptually if we are able to control how individual 
features behave under each transformation. Using our proposed 
technique, we can perform transformations where only one de-
scriptor changes, or they all change in different ways, so there 
would be many different possible transformations between two 
different sounds regarding the perceptual shape, instead of only 
one. For example, we could obtain a morphed clarinet-trumpet 
sound and impose the brightness of the trumpet on the morphed 
result. 

However, we would need to perform listening tests to verify 
how these differences manifest perceptually, since the perceptual 
impact of manipulating such nuances of timbral perception is still 
unclear. 

Future perspectives of this work include investigating the 
impact of the timbral variants on the spectral shape of the origi- 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80
DFW: Spectral Envelopes

Mel Frequency

A
m

pl
itu

de

clavi
alpha 0.1
alpha 0.2
alpha 0.3
alpha 0.4
alpha 0.5
alpha 0.6
alpha 0.7
alpha 0.8
alpha 0.9
tuba

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80
LSF: Spectral Envelopes

Mel Frequency

A
m

pl
itu

de

clavi
alpha 0.1
alpha 0.2
alpha 0.3
alpha 0.4
alpha 0.5
alpha 0.6
alpha 0.7
alpha 0.8
alpha 0.9
tuba

 

Figure 8. Spectral envelopes resulting from the applica-
tion of the GA with a varying morphing factor independ-
ently controlling the perceptual spectral shape descrip-
tors for LSF and DFW prototype envelopes. 
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nal sounds alone. We could investigate if the timbral variation-
technique presented here could render a trumpet sound brighter, 
like it was played louder. Also, we could verify whether im-
provements on the perceptual model used to calculate the de-
scriptors would render more perceptually relevant results. Fi-
nally, there are many possible variations of the application of the 
GA that should be investigated, such as a different crossover op-
erator, mutation, selection, fitness function, among others. One 
could even test other optimization methods or even different 
mapping strategies to obtain the variant spectral envelopes. 
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