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ABSTRACT 

The timbre of an instrument is usually represented by sinusoids 

plus noise. Spectral modeling synthesis (SMS) is an audio syn-

thesis technique which can create musical timbre and give con-

trol over the frequency and amplitude. Additive synthesis and 

LPC synthesis are usually applied for synthesizing sinusoids and 

residuals, respectively. However, it takes fairly large computing 

power while implementing the algorithms. The purpose of this 

paper is to present GPU-based techniques of implementing SMS 

for real-time audio processing by using parallelism and pro-

grammability in graphics pipeline. The performance is compared 

to CPU-based implementations. 

1. INTRODUCTION 

In recent years, audio synthesizer is a fundamental compo-

nent in most of multimedia systems. The software version of syn-

thesizer presents significant advantages such as great flexibility 

for porting. However, some algorithms are computational inten-

sive when synthesizing lots of channels is required. It is limited 

by the computational capacity of CPU. Even though current 

CPUs are so powerful that they can handle most common audio 

processing tasks, it is hard for them to accomplish such real-time 

missions. Therefore, parallel architectures are likely to improve 

the efficiency. 

On the other hand, modern video cards have presented theo-

retical throughput capabilities that highly exceed most CPUs. 

Graphics hardware companies have recently developed technolo-

gies such as CUDA (NVIDIA) [1] and CTM (AMD) [2] which 

are oriented toward general-purpose processing in order to reflect 

a demand for offloading compute-intensive processes to GPUs. 

Unlike CPUs, however, GPUs have parallel many-core architec-

ture, and each core is capable of handling thousands of threads 

simultaneously. In CUDA, a GPU belongs to one abstract object 

named grid. The grid consists of a number of abstract objects 

named blocks. The minimum process unit called thread is capa-

ble of executing user-specified kernel function in parallel. The 

flexibility is obviously taken into account while user can specify 

the number of threads and blocks for a certain application. 

Some researchers presented the performance of video cards 

by implementing several common algorithms such as matrix mul-

tiplication [3, 4], fast Fourier transform [5, 6], Viterbi algorithm 

[7], and digital filter design [8, 9]. Moreover, a number of tech-

niques about audio processing such as sound spatialization [10, 

11] and modal synthesis [12] were proposed by using GPU-

based implementation. The parallel programming model for 

prevalent algorithms is the most important topic discussed by 

above literatures. In this paper, techniques for implementing 

spectral modeling synthesis (SMS) [13] are presented for real-

time audio processing by using parallelism and programmability 

in graphics pipeline. 

The paper is organized as follows. The introduction of spec-

tral modeling representation is given in Section 2. The detail im-

plementation of spectral modeling synthesis on GPUs is de-

scribed in Section 3. Section 4 presents GPU performances com-

paring to CPU. Finally, Section 5 concludes with a brief sum-

mary. 

2. DESCRIPTION OF SPECTRAL MODELING 

REPRESENTATION 

As mentioned in [13], sounds are modeled as stable sinusoids 

(deterministic component) plus noise (residual component). The 

deterministic component is assumed to be represented by har-

monics, sh , while the residual component is represented by a fil-

tered noise, sn . Therefore, the input sound can be represented by 

sinusoidal model formulation as 
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, where  pA t , and ( )p t  are the instantaneous amplitude and 

phase of thp  harmonic, respectively. ( )P t  denotes the number of 

harmonics included in the harmonic part. If the estimation the 

fundamental frequency 
0  is achieved, equation 1 can be re-

placed by 
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, where 
p  the initial phase of thp  harmonic. 

By using time-domain additive synthesis, the deterministic 

component is able to be generated with neglecting phase infor-

mation. Therefore, the fundamental frequency and the amplitude 

of each harmonic are recorded at each time unit which is set as 

10 milliseconds. On the other hand, the synthesis of the stochas-

tic component can be understood as the generation of a noise 

signal that has the spectral envelopes of the stochastic representa-

tion. A low-order LPC filter can completely characterize the re-

sidual by encoding its amplitude and spectral features. The pre-

diction model can be represented as 
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where  ˆ
ns n  is the predicted noise signal,  ns n i  the previous 

observed noise samples, and 
ia  the predictor coefficients. By 



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010 

 DAFX-2 

taking the white noise as the excitation, we can generate the sto-

chastic component by an all-pole filter with the coefficients 
ia . 

3. SPECTRAL MODELING SYNTHESIS ON GPUS 

Several algorithms are presented on GPUs in this section. In 

the simulation, hundreds of instruments are synthesized using 

SMS. Each of them comprises 50 partials. The sampling rate is 

44100 Hz. Furthermore, for real-time purpose, application pro-

grams manage concurrency through streams. A stream is a se-

quence of commands that execute in order. On the other hand, 

different streams may execute their commands out of order con-

currently or with respect to one another. The length of a stream 

here is defined as one time unit (10ms). 

3.1. Deterministic part 

Two algorithms are implemented for the generation of sinu-

soids to test the speedup. Let there be N instruments to be syn-

thesized. The other method is designed for residual part. 

 

Algorithm 1 

 

Here one stream represents a frame of synthetic audio sam-

ples. The synthetic sound is stereo; sinusoids of N/2 instruments 

are synthesized in each channel. Based on CUDA’s structure, we 

set 2 blocks per grid, each of them deals with one channel. Then 

441 threads are constructed for each block because the length of 

a stream is one time unit (10 ms). A straightforward implementa-

tion using C is shown in Appendix A. Figure 1 shows the mem-

ory model of this algorithm. 

 
Figure 1: The memory model of Algorithm 1. 

 

Algorithm 2 

 

In Algorithm 1, threads deal with (N/2)*50 sinusoids to gen-

erate an audio sample simultaneously. In this case, Algorithm 1 is 

re-designed with two kernel functions by using more GPU re-

sources to shorten the execution time. The first one allocates an 

N/2-by-882 memory space in order to store the samples of one 

stream. There are 441 blocks being included in one grid and N 

threads in one block. Every thread calculates the value of one 

instrument. Figure 2 shows the memory model of the first kernel 

function. 

The second kernel function is designed for calculating the 

samples. We use 2 blocks to construct one grid for stereo. Each 

block contains 441 threads which sum up the values of the N/2 

instruments at each time instant. Figure 3 shows the memory 

model of the second kernel function. The kernel functions are 

shown in Appendix B. 

 
Figure 2: The memory model of the first kernel function in Algo-

rithm 2. 

 

 
Figure 3: The memory model of the second kernel function in Al-

gorithm 2. 

3.2. Residuals 

In this part, we apply an all-pole filter to generate residuals. 

In a recursive filter, however, the value of an output sample de-

pends on the values of previous ones. Such values may not be 

available in parallel computation architecture. 

Two kernel functions are presented in this stage. The first 

one allocates a 2-D memory with 441*n-by-N, where n is the 

number of time units in a granularity which stands for the latency 

of updating parameters when synthesizing sounds. Then one 

block is set in a grid and N threads in a block. Each thread is in 

charge of generating residual samples of some instrument in a 

certain granularity. The difference between deterministic part and 

residual part is that the samples of one synthesized instrument 

cannot be computed in parallel in residual part because the de-

pendency exists in such a prediction model. Figure 4 shows the 

memory model of the first kernel function. 

The second kernel function adds the residuals to the sinuso-

ids. The parameters are set as n block per grid, 441 threads per 

block. Each block here is responsible for one time unit. Each 

thread in a certain block is going to add the residual values to the 

corresponding sinusoidal samples. Figure 5 shows the memory 

model of the second kernel function. The kernel functions are 

shown in Appendix C. 
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Figure 4: The memory model of the first kernel function of resi-

dual part. 

 

 
Figure 5: The memory model of the second kernel function of re-

sidual part. 

 

4. RESULTS AND DISCUSSION 

The environment of the SMS CUDA implementation is pre-

sented in Table 1. Table 2 shows the execution time of SMS in 

the experiment. These GPUs are able to achieve the task (synthe-

sizing 5000 sinusoids + residual for each sample) in real time 

when alternative GPU implementations are used. CPU imple-

mentations fail in all cases. Though Intel Q6600 CPU is more 

powerful then T8300, the CPU execution time of personal com-

puter is still quite similar to notebook. One reason is that the test-

ing program executed on CPU is implemented on single thread, 

which is independent of the number of CPU cores. Figure 6 

shows the line charts of Table 2. Table 3 shows that Algorithm 2 

has the most significant speed up. 

 

 

 

 

 

 

 

 
Machine 1 

(Notebook) 

Machine 2 

(PC) 

OS Windows 7 Windows XP 

CPU 

Intel®  CoreTM Duo 

Mobile Processor 

T8300 (2.4 GHz) 

Intel®  CoreTM 

Quad Processor 

Q6600 (2.4 GHz) 

GPU GeForce 9500M GS Tesla C1060 

CUDA Capability 

revision number 
1.1 1.3 

Number of mul-

tiprocessors 
4 30 

Number of cores 32 240 

Clock rate 0.95 GHz 1.30 GHz 

Table 1: The specifications of two machines. 

 

Granularity 

(sec) 

NB(sec) PC(sec) 

CPU Alg 1 Alg 2 CPU Alg 1 Alg 2 

0.01 0.160 0.0047 0.0044 0.152 0.003 0.002 

0.05 0.799 0.023 0.022 0.761 0.015 0.010 

0.1 1.599 0.044 0.042 1.522 0.029 0.019 

0.5 7.993 0.214 0.206 7.611 0.141 0.093 

1 15.99 0.420 0.409 15.222 0.282 0.185 

5 79.93 2.134 2.050 76.108 1.406 0.924 

10 159.86 4.238 4.098 152.217 2.805 1.850 

Table 2: The execution time of SMS with different granularities. 

(N=100) 

 

Granularity 

(sec) 

NB(sec) PC(sec) 

Alg 1 Alg 2 Alg 1 Alg 2 

0.01 34.012 36.332 50.739 76.108 

0.05 34.752 36.665 52.129 80.114 

0.1 36.414 37.881 53.409 81.399 

0.5 37.403 38.782 53.863 82.191 

1 38.026 39.057 53.997 82.146 

5 37.454 38.992 54.116 82.404 

10 37.719 39.008 54.272 82.293 

Table 3: The speed up of GPUs comparing to CPUs. (N=100) 

 

Execution Time (GPU) Part 1

0

0.05

0.1

0.15

0.2

0.25

0.01 0.05 0.1 0.5

Granularity (second)

T
im

e 
(s

ec
on

d)

NB algorithm 1

NB algorithm 2

PC algorithm 1

PC algorithm 2

 



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010 

 DAFX-4 
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(b) 

Figure 6: The line charts of table 1. Granularity is presented by 

two parts depending on (a) smaller and (b) larger than 0.5 

second. 

 

Execution time (Telsa) with 10ms granularity

0

1

2

3

4

5

6

7

8

9

10

11

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

Number of instruments

T
im

e 
(m

il
li

se
co

nd
)

tesla C010 with algorithm 2

 
Figure 7: The execution time of synthesizing different numbers of 

instruments on Tesla C1060 by using Algorithm 2. 

 

The performance limitation of Tesla is also tested by increas-

ing the number of synthetic instruments. The execution time of 

implementing Algorithm 2 by synthesizing different number of 

instruments is shown in Figure 7. It is executed on Tesla and the 

granularity is 10 ms. The execution time is growing intuitively 

and almost linearly with the number of instruments. When the 

number is larger than 1700, the computing power will be so huge 

that Algorithm 2 may not be performed in real time. 

5. CONCLUSION 

In this paper, we present efficient implementations of SMS 

on GPUs. The alternative solutions are presented and discussed 

based on CUDA architecture, and particularly designed for addi-

tive synthesis. In addition, we compare the methods on two dif-

ferent hardware platforms. This may enable new sound rendering 

applications that require real-time processing with a huge number 

of target sources. 

6. APPENDIX 

Appendix A. Kernel function of algorithm 1 

 
__global__ void sinusoidal_mehod1( 

float* freq ,     // pointer to frequency array in global memory 

float* amplitude,    // pointer to amplitude array in global memory 

short* samples,      // pointer to sample array in global memory 

int streamNo,      // the stream index 

float timeOffset     // the time offset of current granularity 

) { 

float t = (float)(threadIdx.x) / sampleRate            // sampleRate : 44100Hz 

 + (float)streamNo*UnitTime + timeOffset ;  // UnitTime : 0.01s 

float sum = 0; 

// blockIdx.x: 0 for left channel, 1 for right channel. 

if ( blockIdx.x == 0 ) { 

  // block 0 computes the instrument index 0 – 49 for left channel 

  // d_nInstrument : number of instruments. (N=100) 

   for ( int i = 0 ; i < d_nInstrument/2 ; i ++) {  

      // each instrument has 50 partials 

      // d_ nPartials: number of partials of one instrument. 

      for ( int k = 0 ; k < d_nPartials ; k ++) { 

      // texPartials : the look-up table of normalized partial energy 

             sum += amplitude [ i ] *  

tex2D( texPartials, i*d_nPartials + (k-1), streamNo ) *  

__sinf(2 * Pi * freq[i] * k * t) ;  

       } 

 } 

 samples [ threadIdx.x*2 ] = (short) sum ;  

} 

else{ 

 // block 1 compute the instrument index 50 – 99 for right channel 

 for ( int i = d_nInstrument/2 ; i < d_nInstrument ; i ++) { 

       for ( int k = 1 ; k <= d_nPartials ; k ++) { 

             sum += amplitude [ i ] * 

tex2D( texPartials, i*d_nPartials + (k-1), streamNo ) *  

__sinf(2 * Pi * freq[i] * k * t) ;   

       } 

 } 

 samples[ threadIdx.x*2 +1 ] = (short) sum ; 

} 

} 

 

Appendix B. Kernel function of algorithm 2 

 
/********** first kernel **********/ 

__global__ void sinusoidal_method2_1 (  

float* freq ,     // pointer to frequency array in global memory 

float* amplitude,    // pointer to amplitude array in global memory 

short* samples,      // pointer to sample array in global memory 

int streamNo,      // the stream index 

float timeOffset     // the time offset of current granularity 

){ 

float t = (float)(threadIdx.x) / sampleRate             // sampleRate : 44100Hz 

 + (float)streamNo*UnitTime + timeOffset ;  // UnitTime : 0.01s 

float sum = 0; 

// The frequency and amplitude in one block is the same. 

__shared__ float f; 

__shared__ float a; 

If ( threadIdx.x == 0 ) { 

  f = freq [ blockIdx.x ]; 

  a = amplitude [ blockIdx.x ]; 

} 

__syncthreads(); 

// one instrument has 50 partials 

for ( int k = 1 ; k <= d_nPartials ; k ++) { 

 // texPartials : the look-up table of normalized partial energy 

 sum += a *  

tex2D( texPartials, blockIdx.x*d_nPartials + (k-1), streamNo )  

       * __sinf(2 * Pi * f * k * t) ;   

} 

// assign sum register to temporary storing matrix in global memory 

Non-real-time 

Real-time 
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stored_matrix[ blockIdx.x * blockDim.x + threadIdx.x ] = sum;  

} 

/********** second kernel **********/ 

__global__ void sinusoidal_method2_2 ( short* samples ){ 

float sum = 0; 

 // blockIdx.x: 0 for left channel, 1 for right channel. 

 if ( blockIdx.x == 0 ) { 

     // block 0 compute the instrument index 0 – 49 for left channel 

     for ( int i = 0 ; i < d_nInstrument/2 ; i ++)  

       sum += stored_matrix[ threadIdx.x + i * blockDim.x ]; 

     // assign sum register to sample array in global memory 

     samples[ threadIdx.x*2 ] = (short) sum;  

} 

 else {  

      // block 1 compute the instrument index 50 – 99 for right channel 

      // d_nInstrument : number of instruments. (N=100) 

     for ( int i = d_nInstrument/2 ; i < d_nInstrument ; i ++)   

  sum += stored_matrix[ threadIdx.x + i*blockDim.x ]; 

     // assign sum register to sample array in global memory 

     samples[ threadIdx.x*2 +1 ] = (short) sum; 

} 

} 

 

Appendix C. Kernel function of residual part 

 
/********** first kernel **********/ 

__global__ void noise_1(  

int* noise // pointer to noise array in global memory 

){ 

int index = 0; 

for( int i = 0 ; i < fsize ; i++ ) {  // fsize: the frame size (= granularity size) 

// index : the index of temporary matrix in global memory  

// FILTER_ORDER : the order of LPC filter (5) 

index = (i+ FILTER_ORDER)*blockDim.x + threadIdx.x ;  

// (i%n) is equivalent to (i&(n-1)) if the second number is a power of two. 

// WHITE_NOISE_LENGTH : 10240 

noise[ index ] =  

tex1Dfetch( texWhiteNoise, i&(WHITE_NOISE_LENGTH-1) );  

for ( int k = 1 ; k <= FILTER_ORDER ; k++ ) 

 //d_a : the array for storing the preceding noise samples 

 noise[ index ] -= (int)( d_a[ k-1 ] *  

(float)noise[ index - k * blockDim.x ] ); 

} 

} 

/********** second kernel **********/ 

__global__ void noise_2(  

float* d_g, // pointer to filter gains in global memory 

short* samples, // pointer to synthetic sample array in global memory 

int* noise  // pointer to noise array in global memory 

){ 

int index = blockIdx.x * blockDim.x + threadIdx.x ; 

int noiseL = 0, noiseR = 0; 

int halfInstrumentNum = N_INSTRUMENT/2; 

// halfInstrumentNum : 100/2 = 50 

 

for( int i = 0 ; i < halfInstrumentNum; i++ ) { 

 // left channel 

 noiseL += (int)((float) 

noise[ (index+FILTER_ORDER)*N_INSTRUMENT + i ] *  

d_g [ i ] / (float)halfInstrumentNum ) ; // d_g : filter gain 

 // right channel 

 noiseR += (int)((float) 

noise[ (index+FILTER_ORDER)*N_INSTRUMENT + i +  

halfInstrumentNum ] * 

d_g [ i + halfInstrumentNum ] / (float)halfInstrumentNum ) ; 

} 

// truncation of left channel  

if( noiseL > SHRT_MAX)  noiseL = SHRT_MAX; 

else if ( noiseL < SHRT_MIN) noiseL = SHRT_MIN; 

//add noise to the correspond sample value 

samples[ index*2 ] += (short) noiseL;  

 

// truncation of right channel 

if( noiseR > SHRT_MAX)  noiseR = SHRT_MAX; 

else if ( noiseR < SHRT_MIN) noiseR = SHRT_MIN; 

//add noise to the correspond sample value 

samples[ index*2+1 ] += (short)noiseR ;  

} 
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