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ABSTRACT

This paper describes the implementation of an innovative musi-

cal interface based on the sound localization capability of a mi-

crophone array. Our proposal is to allow a musician to plan and

conduct the expressivity of a performance, by controlling in real-

time an audio processing module through the spatial movement of

a sound source, i.e. voice, traditional musical instruments, sound-

ing mobile devices. The proposed interface is able to locate and

track the sound in a two-dimensional space with accuracy, so that

the x-y coordinates of the sound source can be used to control

the processing parameters. In particular, the paper is focused on

the localization and tracking of harmonic sound sources in real

moderate reverberant and noisy environment. To this purpose, we

designed a system based on adaptive parameterized Generalized

Cross-Correlation (GCC) and Phase Transform (PHAT) weighting

with Zero-Crossing Rate (ZCR) threshold, a Wiener filter to im-

prove the Signal to Noise Ratio (SNR) and a Kalman filter to make

the position estimation more robust and accurate. We developed a

Max/MSP external objects to test the system in a real scenario and

to validate its usability.

1. INTRODUCTION

Music interaction is an important and new area in the field of audio

based Human Computer Interaction (HCI) systems. The develop-

ment of new interfaces for musical applications has the potential to

change and enhance the experience of musical performance and in

particular to allow a performer the interaction with a computer for

real-time audio processing. The development of digital audio ef-

fects has always stimulated the design of interfaces for controlling

the processing parameters. A large number of musical interfaces

[1] has been implemented and tested with the goal of providing

tools for gestural interaction with digital sounds.

In [2], the author divides gestural controllers into four main

categories: gestural interfaces played by touching or holding the

instrument, interfaces with haptic feedback, interfaces worn on the

body and interfaces that may be played without any physical con-

tact. In this last category, the position of the body might be used

without the need for the performer to wear or touch any special de-

vices. Examples of such interfaces are: Gesture Wall [3], that uses

electric field sensors to measure the position and movement of the

player’s hands and body in front of a projection screen; Litefoot

[4], based on optical sensor; an interface based on video camera

that allows the performers to use their full-body for controlling

in real-time the generation of an expressive audio-visual feedback

[5].

Musical interfaces are often used to allow the performer to

enhance the expressive control on the sounds generated by their

acoustic instruments in a live electronics context. E.g., in Medea

by Adriano Guarnieri (2002) the movement of the bell of a trom-

bone is captured by a camera [6] and mapped into parameters for

sound spatialization; in fili bianco-velati (Guarnieri, 2005), the

movement of a violinist is followed by a motion capture system

based on infrared cameras.

In general, those kind of systems have considerable complex-

ity and in some situations some problems. In fact, the performer

has to wear sensors or devices which can be a hindrance to his/her

movements; besides, in the camera-based systems there could be

problems with the low and/or not always controllable lighting of

the concert hall.

This paper describes the implementation of an innovative mu-

sical interface based on the sound localization capability of a mi-

crophone array. The interface allows a musician to plan and con-

duct the expressivity of a performance, by controlling in real-time

an audio processing module through the spatial movement of a

sound source. In this way a musician, during the performance, is

able to interact with the live electronics system through the move-

ment of his/her own musical instrument with an immediate, in-

stinctive and gestural approach. The proposed interface is com-

pletely non-invasive (no need for markers, sensors or wires on the

musician) and requires no dedicated hardware.

The system uses an algorithm based on an estimate of the Time

Difference Of Arrival (TDOA) for sound source localization. Typ-

ically, these algorithms tend to reduce their performance in pres-

ence of competing sources, high reverberant environment, or low

signal to noise ratio. Moreover, in the context of live electronics

it is not always possible to have a controlled acoustic scene (there
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could be other sources or noise due to the return of audio monitor),

thus, we propose an innovative approach that combines an array

of supercardioid polar pattern microphones (instead of the classic

omnidirectional ones which are usually used in array processing)

and a localization process task based on adaptive parameterized

GCC-PHAT with ZCR threshold, a Wiener filter to improve the

SNR and a Kalman filter to make the position estimation more ro-

bust and accurate.

The paper is organized as follow: Section 2 presents the sys-

tem architecture, both the hardware and software aspects; the al-

gorithms for the sound source localization are detailed in Section

3; finally, Section 4 shows some preliminary results.

2. SYSTEM ARCHITECTURE

The interface consists of three main components: i) a microphone

array for signal acquisition; ii) signal processing algorithms for

robust sound localization; iii) a mapping strategy to control the

audio processing parameters.

The array is composed by three microphones arranged in an

uniform linear placement. In this way we can localize a sound

source in a plane (three microphones are the bare minimum). Sig-

nal processing algorithms estimate the the sound source position

in a horizontal plane by providing its Cartesian coordinates. The

last component implements the mapping strategy [7], so that the

x-y coordinates are associated with audio processing parameters.

For the purpose of testing, in this paper we have limited ourselves

to explore a one-to-one mapping strategy, by using the x-y values

to directly control two parameters of an audio effect, e.g. cutoff

frequency and resonance of a filter or amount and decay time of a

reverb. Of course, this task is closely related to user needs, and in

literature there are a lot of works proposing strategies to transform

from two-to-many parameters [8] [9] [10] [11] [12]. This paper is

mainly focused on the localization task.

Figure 1 summarizes the system architecture. Sound source

localization allows to extract information about the location of one

or more sources using microphone arrays and signal processing

techniques. A widely used approach to estimate the source posi-

tion consists of two steps: in the first step, a set of TDOAs are

estimated using measurements across various combinations of mi-

crophones; in the second step, knowing the position of sensors and

the velocity of sound, the source position is calculated by means

of geometric constraints and using approximation methods such as

least-square techniques [13]. The traditional technique to estimate

the TDOA between a pair of microphones is the GCC-PHAT [14].

It is highly effective in a moderately reverberant and noisy environ-

ment. Unfortunately, concerning musical sounds that are mainly

harmonics, the GCC-PHAT approach does not work, because the

PHAT filter normalizes the GCC according to the spectrum magni-

tude. Then, new considerations are required to estimate the TDOA

for pseudo-periodic signals. Our proposal is to use a parameterized

GCC-PHAT, that weights the contribution of the PHAT filtering,

depending on the threshold of the ZCR parameters.

A de-noise algorithm based on Wiener filter is used to improve

the SNR of the signals. When the maximum peak detection does

not observe any source, it is computed an average estimation of

noise (noise print), which will be subtracted in all three signals

before the TDOA estimation task.

Then, starting from the estimated TDOA between microphones

τ̂12 and τ̂23, it is possible to calculate the coordinates of the source

by means of geometric constraints. In a near-field environment we
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Figure 1: Block diagram of interface.

have

x̂ = r cos(θ) (1)

ŷ = r sin(θ) (2)

where the axis origin is placed in microphone 2, r is the distance

between the sound source and the microphone 2, and θ is the angle

between r and the x axis

θ = arccos
( c(τ̂12 + τ̂23)(τ̂12τ̂23c

2 − d2)

d(2d2 − c2(τ̂2
12 + τ̂2

23))

)
(3)

r =
τ̂2
12c

2 − d2

2(τ̂12c + d cos θ)
(4)

where c is speed of sound and d is the distance between micro-

phones.

Finally, a second filter provides a more accurate tracking of

the source position, by means of the Kalman theory. The Kalman

filter is able to provide an estimation of the position of the source,

also if the TDOA estimation task misses the target in some frame

of analysis.

3. SOUND SOURCE LOCALIZATION

3.1. TDOA estimation using GCC-PHAT

GCC [14] is the classic method to estimate the relative time delay

associated with the acoustic signals received by a pair of micro-

phones in a moderate reverberant and noisy environment. It basi-

cally consists of a cross-correlation followed by a filter that aims

at reducing the performance degradation due to additive noise and
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multi-path channel effects. The signals received at the two micro-

phones x1(t) and x2(t) may be modeled as

x1(t) = h1(t) ∗ s(t) + n1(t)

x2(t) = h2(t) ∗ s(t − τ) + n2(t)
(5)

where τ is the relative signal delay of interest, h1(t) and h2(t)
represent the impulse responses of the reverberant channels, s(t)
is the sound signal, n1(t) and n2(t) correspond to uncorrelated

noise, and * denotes linear convolution. The GCC in the frequency

domain is

Rx1x2(t) =

L−1∑

w=0

Ψ(w)Sx1x2(w)e
jwt
L (6)

where w is the frequency index, L is the number of samples of the

observation time, Ψ(w) is the frequency domain weighting func-

tion, and the cross-spectrum of the two signals is defined as

Sx1x2(w) = E{X1(w)X∗
2 (w)} (7)

where X1(w) and X2(w) are the Discrete Fourier Transform (DFT)

of the signals and * denotes the complex conjugate. GCC is used

for minimizing the influence of moderate uncorrelated noise and

moderate multipath interference, maximizing the peak in corre-

spondence of the time delay.

The relative time delay τ is obtained by an estimation of the

maximum peak detection in the filter cross-correlation function

τ̂ = argmin
t

Rx1x2(t). (8)

PHAT [14] weighting is the traditional and most used func-

tion. It places equal importance on each frequency by dividing

the spectrum by its magnitude. It was later shown that it is more

robust and reliable in realistic reverberant conditions than other

weighting functions designed to be statistically optimal under spe-

cific nonreverberant noise conditions [15]. The PHAT weighting

function normalizes the amplitude of the spectral density of the

two signals and uses only the phase information to compute the

GCC

ΨPHAT(w) =
1

|Sx1x2(w)| . (9)

It is widely acknowledged that GCC performance is dramat-

ically reduced in case of harmonic sound, or generally pseudo-

periodic sounds. In fact, the GCC have less capability to reduce

the deleterious effects of noise and reverberation, when it is ap-

plied to pseudo-periodic sound.

3.2. Adaptive parameterized GCC-PHAT with zero-crossing

rate threshold

The PHAT weighting can be generalized to parametrically con-

trol the level of influence from the magnitude spectrum [16]. This

transform will be referred to as the PHAT-β and defined as

ΨPHAT−β(w) =
1

|Sx1x2(w)|β (10)

where β varies between 0 and 1. When β = 1, equation (10)

becomes the conventional PHAT and the modulus of the Fourier

transform becomes 1 for all frequencies, when β = 0 the PHAT

has no effect on the original signal, and we have the cross-correlation

function.

Therefore, in case of harmonic sounds we can use an interme-

diate value of β so that we can detect the peak to estimate the time

delay between signals, and to have a system, at least in part, which

exploits the benefits of PHAT filtering to improve performance in

a moderately reverberant and noisy environments. To adapt the

value of β we use the ZCR to check if sound source is periodic or

not. ZCR is a very useful audio feature, and it is defined as the

number of times that the audio waveform crosses the zero axis

ZCR(t) =
1

2N

N∑

i=1

|sgn(x(t + i)) − sgn(x(t + i − 1))|.

(11)

where sgn(x) is the sign function.

Then, we can express the adaptive parametrized GCC-PHAT,

identifying by experimental tests a suitable threshold µ such as

{
β = 1, if ZCR ≥ µ

β < 1, if ZCR < µ
(12)

3.3. De-noise Wiener filter

Frequency domain methods, which are based on the Short Time

Spectral Attenuation (STSA) [17], require a little information to

carry out the filtering (a priori information): only an estimate of

the noise present is necessary (noise print), since it is assumed

to be stationary along the entire signal. Any further information

needed (a posteriori information) is automatically calculated by

the algorithm through the analysis of the characteristics of the sig-

nal. Since this method is easy to use and is generally applied to

different typologies of audio signals, they are employed in com-

mercial hardware and software systems.

These de-noise systems consist of two important components:

a noise estimation method and a suppression rule. These tech-

niques employ a signal analysis through the Short-Time Fourier

Transform (STFT) (which is calculated on windowed section of

the signal as it changes over time) and can be considered as a non-

stationary adaptation of the Wiener filter [18] in the frequency do-

main. In particular, Short Time Spectral Attenuation (STSA) con-

sists in applying the short-time spectrum of the noise to a time-

varying suppression and does not require the definition of a model

for the audio signal. Suppose considering the useful signal s(t)
as a stationary aleatory process to which some noise n(t) is added

(uncorrelated with x(t)) to produce the degraded signal x(t). The

relation that connects the respective power spectral densities is

therefore

Px(w) = Ps(w) + Pn(w). (13)

If we hypothesize to succeed in retrieving an adequate esti-

mate of Pn(w), during the silence intervals of the signal x(t), and

in the musical portions of Px(w), we can expect to obtain an es-

timate of the spectrum of s(t) by subtracting Pn(w) from Px(w);

the initial assumption of stationariness can be considered locally

satisfied since short temporal windows are employed. Note that

the use of a short-time signal analysis is equivalent to the use of

a filter bank. First each channel (that is, the output of each filter)

is appropriately attenuated and then it is possible to proceed with

the synthesis of the restored signal. The timevarying attenuation

applied to each channel is calculated through a determined sup-

pression rule, which has the purpose to produce an estimate (for

each channel) of the noise power. Each particular STSA technique

is characterized by the implementation of the filter bank and of the

suppression rule.
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If we denote the STFT of the x(t) noisy signal with X(t, wk),

where t represents the temporal index and wk the frequency index

(with k = 1...N , N represents the number of STFT channels), the

result of the suppressing rule application can be interpreted as the

application of a G(t, wk) gain to each value Y (t, wk) of the STFT

of the noisy signal. This gain corresponds to a signal attenuation

and is included between 0 and 1. In most of the suppression rules,

G(t, wk) only depends on the noisy signal power level (measured

at the same point) and on the estimate of the noisy power at the wk

frequency

P̂n(wk) = E{|N(t, wk)|2} (14)

(which does not depend on the temporal index t due to the pre-

sumed noise stationariness). At this point a relative signal can be

defined

Q(t, wk) =
|X(t, wk)|2

P̂n(wk)
(15)

which, starting from the hypothesis that the n(t) noise is not cor-

related to the x(t) signal, we deduce should be greater than 1

E{Q(t, wk)} = 1 +
E{|S(t, wk)|2}

P̂n(wk)
. (16)

A typical suppression rule is based on the Wiener filter [18]

and can be formulated as follows

G(t, wk) =
|X(t, wk)|2 − P̂n(wk)

|X(t, wk)|2 . (17)

3.4. Kalman filter

The Kalman filter [19] is the optimal recursive Bayesian filter for

linear systems observed in the presence of Gaussian noise. We

consider that the state of the sound localization could be summa-

rized by two position variables, x and y, and two velocities, vx and

vy . These four variables are the elements of the state vector xt

xt = [x, y, vx, vy]T . (18)

The process model relates the state at a previous time t − 1
with the current state at time t, so we can write

xt = Fxt−1 + wt−1 (19)

where F is the transfer matrix and wt−1 is the process noise asso-

ciated with random events or forces that directly affect the actual

state of the system. We assume that the components of wt−1 have

Gaussian distribution with zero mean normal distribution with co-

variance matrix Qt, wt−1 ∼ N(0,Qt). Considering the dynam-

ical motion, if we measured the system to be at position x with

some velocity v at time t, then at time t + dt we would expect the

system to be located at position x + v · dt, thus this suggests that

the correct form for F is

F =




1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 . (20)

At time t an observation zt of the true state xt is made accord-

ing to the measurement model

zt = Hxt + vt (21)

where H is the observation model which maps the true state space

into the observed space and vt is the observation noise which is

assumed to be zero mean Gaussian white noise with covariance

Rt,vt ∼ N(0,Rt). We only measure the position variables.

Hence, we have

zt =

[
x̂
ŷ

]
, (22)

and then we have

H =




1 0
0 1
0 0
0 0


 . (23)

The filter equations can be divided into a prediction and a cor-

rection step. The prediction step projects forward the current state

and covariance to obtain an a priori estimate. After that the correc-

tion step uses a new measurement to get an improved a posteriori

estimate. In predication step the time update equations are

x̂t|t−1 = Ftx̂t−1|t−1, (24)

Pt|t−1 = FtPt−1|t−1F
T + Qt−1, (25)

where Pt denotes the error covariance matrix. In the correction

step the measurement update equations are

x̂t|t = x̂t|t−1 + Kt(zt − Htx̂t|t−1), (26)

Pt|t = (I − KtH)Pt|t−1, (27)

where I is the identity matrix and so-called Kalman gain matrix is

Kt = Pt−1|t−1H
T (HtPt−1|t−1H

T + Rt)
−1. (28)

This formulation requires that the dynamic of the system is lin-

ear. However our specific problem is non-linear. To accommodate

non-linear state transition and observation models, the Extended

Kalman Filter (EKF) [20] implements a local linearization of the

models. Thus, we need to compute new values for F, at every time

step, based on the state x to approximate the real update.

1 2 3

Figure 2: The map of the considered control area.
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Figure 3: Comparison of parameterized PHAT-β TDOA estimation performance. All sound sources are approximately located in (0,50)

cm. a) White noise played on mobile device, β = 1. b) Flute, β = 1. c) Flute, β = 0.65. d) Flute, β = 0.65 and de-noise Wiener filter.

The variances of TDOA estimation are: a) σ2
a = 0.04; b) σ2

b = 80; c) σ2
c = 0.65; d) σ2

d = 0.5.

4. RESULTS

Some experimental results related to the localization performance

of the interface in a real scenario are presented. To verify and vali-

date our approach to the localization of pseudo-periodic sounds we

used and compared three types of sources: white noise played on

a mobile device, a flute played by a musician and a human voice.

The interface works with sampling rate of 96 kHz, a Hanning anal-

ysis window of 42 ms, a time window for the estimation of the

average noise (noise print) of 4.2 s. We used three microphones

with supercardioid pickup pattern, which are the most frequently

used microphones to acquire sound signals in electroacoustic mu-

sic. It is important to highlight that the classic microphone for

array processing is the omindirectional polar pattern, but its use is

not appropriate in this context because of possible interference of

the loudspeakers during the application in live performance. How-

ever, as we shall see, the use of directional microphones allows

the localization of an acoustic source in the small area of inter-

est (Figure 2). The distance between microphones is d = 15 cm.

The working area is included in a square of side 1 meter. The axis

origin coincides with microphone 2 (m2) position, and x axis can

vary between -50 cm and 50 cm and y axis between 0 and 100 cm

(Figure 2).

Experiments have been done in a rectangular room of 3.5×4.5
m, with a moderately reverberant and noisy environment. Figure 3

shows a comparison of parameterized PHAT-β TDOA estimation

performance. We made four tests with different parameters of in-

terface configuration. We consider the TDOA estimation between

microphone 2 and 3. All sound sources are approximately located

in the center of interested map, (a) (5,52) cm, (b) (4,51) cm, (c)

(5,53) cm, (d) (3,51) cm. In the first test (a), we played a contin-

uous white noise signal by a mobile device with β = 1 interface

configuration. In this way we checked the whole efficiency offered

by the PHAT filter to optimize the TDOA estimation, reducing the

degradation effects due to noise and reverberation. We can see

in Figure 3 how the maximum peak detection is clearly visible

(white line). We can also see the effects of multipath reverberation

represented by the other parallel gray lines. The value of TDOA

estimation is τ̂23 = 7 (sample). The variance of TDOA maximum

peak during the whole reproduction of sound is σ2
a = 0.04. The

TDOA estimation is extremely accurate. In test (b), is considered

a flute again with β = 1 parameter. As expected, the source is not

detected (σ2
b = 80). Subsequently, in test (c) we examined a flute

with β = 0.65 setting. The source is detected as shown in Figure

3. The mean value of TDOA estimation is τ̂23 = 7 (sample) and

it corresponds to the correct position of the source, the variance

results σ2
c = 0.65. In the last test (d), we considered once more

a flute with β = 0.65 and the de-noise Wiener filter task. The

mean value of TDOA estimation is τ̂23 = 5 (sample), the variance

results σ2
c = 0.5. Hence, in this case, a lower value of variance in-

dicates a less swinging of the TDOA than the average value, which

is the correct location of the source.

Therefore, the parameterized PHAT-β allows the TDOA esti-

mation of harmonic sounds, and de-noise component can improve

the accuracy. However, the comparison with test (a), whose robust

and well-defined result we aim to obtain, does not give yet satisfac-

DAFX-5

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-181



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Figure 6: The Max/MSP interface with the external object asl∼.

tory results. A parameterization of PHAT with value of β = 0.65,

in according to [16], is a good compromise between filtering and

detection.

Before considering the experiments with the Kalman filter, we

show the results of a test with a human voice, ranging from har-

monic to noise sounds, in order to verify the threshold value of

zero-crossing rate for the activation of PHAT-β. The human voice

source is located in (-20,70) cm. Figure 4 shows the results of

the ZCR and adaptive parameterized GCC-PHAT-β with thresh-

old value of µ = 0.03, β = 0.65 when ZCR < µ and de-noise

Wiener filter. We believe that this value µ is enough to achieve

an adequate adaptation of GCC. Still in Figure 4, we can note that

when the sound becomes harmonic, and then we have partially fil-

tered GCC with PHAT, the TDOA peak tends to widen, reducing

its robustness, but still allowing the estimation of source position.

Finally, the last test on the localization performance shows the

effectiveness of the Kalman filter to make the xy coordinates more

accurate and usable in the interface. Once again we used a flute

moving within the mapped area. The threshold value of ZCR is

µ = 0.03, β = 0.65, and de-noise task is active. As you can

see from Figure 5, the black lines, which represents the data after

the Kalman filtering, are reported in order to have less stability

problems due to reverberation. In fact, the estimated raw data (gray

lines) present very high swinging values, which would make the

interface inappropriate to control the processing parameters.

In conclusion, we implemented the system by developing a

Max/MSP external object, named asl∼, in order to validate the

interface in real-world music application. The object receives in-

coming audio signals acquired by the three microphones and, as

output, it gives the position of the sound source. The object per-

forms all the signal processing techniques described in the previ-

ous sections. Moreover, a simple Max/MSP patch (see Figure 6)

has been developed in order to control in real-time an audio pro-

cessor. As mentioned, xy values have been used to directly control

the parameters of an audio effect. We made use of different VST

plug-ins, such as reverb and delay effects, with encouraging re-

sults.

5. CONCLUSIONS

We described a digital interface that incorporates real-time sound

source localization for gestural control without any physical con-

tact, which can be used as audio HCI system to enhance the expe-

rience of a musical performance. In order to work with harmonic

sounds, we proposed a system consisting of adaptive parameter-

ized GCC-PHAT with zero-crossing rate threshold. We have seen

that this solution allows to locate sources such as musical instru-

ments, but it is less robust in moderate reverberation and noisy

environments, comparing to the standard GCC-PHAT. For this rea-

son, we included two filters. The first one has been set up using

the STSA with Wiener filter, before the TDOA estimation task, in

order to improve the SNR of signals. The second one has been for-

mulated using the Kalman filter theory, after the estimation of the

source position. In this way, we obtained an accurate localization

system. We used a linear array of three supercardioid polar pattern

microphones, and we have seen that we are able to locate the sound

source inside an area of one square meter. The usability of the in-

terface was validated by developing a Max/MSP external object,

so that we can map the xy position of the sound source (i.e. voice,

traditional musical instruments and sounding mobile devices) into

control parameters.

Future works include the test and use of the sound localization

based interface in real application of live performance to verify

how the system works with interfering sources from a sound rein-

forcement system and other instruments. In addition, we plan to

test other mapping strategies in order to obtain a more articulate,

complex and interesting system.
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