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ABSTRACT

Regression problems with mixed-norm priors on time-frequency
coefficients lead to structured, sparse representations of audio sig-
nals. In this contribution, a systematic formulation of thresholding
operators that allow for weighting in the time-frequency domain is
presented. The related iterative algorithms are then evaluated on
synthetic and real-life audio signals in the context of denoising and
multi-layer decomposition. Further, initial results on the influence
of the shape of the weighting masks are presented.

1. INTRODUCTION

Most audio signals of importance for humans, in particular speech
and music, are highly structured in time and frequency. Typically,
salient signal components are sparse in time (or frequency) and
persistent in frequency (or time). Sparsity in time is connected
to transient events, while sparsity in frequency is observed in har-
monic components. Processing sound signals with time-frequency
dictionaries is ubiquitous. The sparse structure usually seen can
be further enhanced by procedures such as basis pursuit [1] or £-
regression [2]. In the context of time-frequency dictionaries, a nat-
ural step beyond classical sparsity approaches is the introduction
of sparsity criteria which take into account the two-dimensionality
of the time-frequency representations used. Mixed norms on the
coefficient arrays make it possible to enforce sparsity in one do-
main and diversity and persistence in the other domain. Regression
with mixed-norm priors was first proposed in [3]. In the current
contribution, we consider a family of specific regression problems
with ¢! and £2 priors on the coefficients; the algorithms derived
thereof are refined by using local neighborhood-weighting. The
performance of the resulting different operators is systematically
evaluated for classical signal processing tasks like de-noising and
sparse multi-layer decomposition. Applications lead to quite sat-
isfactory results in terms of measured (SNR) and listening.

The presented results reflect a first step in the exploitation of struc-
tured shrinkage in the sense of informed analysis, i.e., using some
available prior knowledge about the signal under consideration.
The main contribution is the generalization and application of struc-
tured shrinkage operators [3] to representations of audio signals by
frames.

2. TECHNICAL TOOLS

We seek to expand a signal s € CL in the form

s(n) = cryor;(n) +r(n), n=1,...,L (1)
k,j
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where the ¢y, ; denote the atoms of a time-frequency dictionary @,
ck,; are the expansion coefficients and 7 is some residual. In order
to guarantee perfect and stable reconstruction of a signal from its
associated analysis coefficients cx,; = (s, pk,;), we assume that
the dictionary ® forms a frame [4]. We consider Gabor frames,
which are exhaustively used in music processing, be it under a
different name: in their simplest instantiation they correspond to
a sampled sliding window or short-time Fourier transform. Gabor
frames consist of a set of atoms ¢y, ; = Mp;Tkap, where T, and
M., denote the time- and frequency-shift-operator, resp., defined
by Txo(n) = o(n — x), Myp(n) = go(n)egm%, and p is a
standard window function. a and b are the time- and frequency
sampling constants, and j =0,...,J —1,k=0,... K —1, with
Ka=Jb=L.

We will even assume more, namely tightness of the frames in use,
which means that, up to a constant which may be set to 1, we have
$ = > 1 ;{8 ki) Pk,j, ie., synthesis is done with the analysis
window. Tight frames are easily calculated, see [5]. In the finite
discrete case, the frame’s atoms constitute the columns of a matrix
® which is of dimension L X p; for tight frames, we have ®-®*-s =
s. Since we are especially interested in the redundant case L < p,
the additional degrees of freedom are used to promote sparsity of
the coefficients.

2.1. Regression with mixed norms

Sparsity of coefficients may be enforced by £'-regression, also
known as the Lasso [2]. Given a noisy observation y = s + e
in C" it finds

o 1 >
¢=arg min o [ly — &cflz + A¥(c) ()

with penalty term W(-) = || - |1 and A > 0. Since the sequence
ck,; is ordered along two dimensions for Gabor frames, the £'-
prior W in (2) may be replaced by a two-dimensional mixed norm
£P>? which acts differently on groups (indexed by g in the sequel,
may be either time or frequency) and their members (indexed by
m):

1/q

a/p
V() = lellpa = | D (Z Icg,mlp) 3)
g m

Subsequently, the notation (g, m) will be used in reference to the
group-member structure, whereas (k, 7) refers to the time-frequency
indices of the Gabor-expansion. In terms of /7’9, we consider the
cases p = 2,q = 1l and p = 1,q = 2. The former is known as
Group-Lasso (GL) [6] (promoting sparsity in groups and diversity
in members) and the latter was termed Elitist-Lasso (EL) in [3]: the
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£12 constraint promotes sparsity in members, only the “strongest”
members (relative to an average) of each group are retained.
Landweber iterations, which solve (2) in the ¢! -case, [4], also yield
a solution to the generalized minimization problem induced by (3),
if standard soft thresholding is replaced by a generalized threshold-
ing operator Sx ¢ (2g,m) = zg,m(1 — £(2))". Here, & = &(g,m) 2
is a non-negative function dependent on the index (g, m) and .
The solution to (2) is then given by the iterative Landweber algo-
rithm: choosing arbitrary ¢°, set

=Sy e(¢" — B (y — Be)). “)
It was shown in [7], that the use of the thresholding operators Sy ¢,
defined via &, leads to convergence of the iterative sequence (4) to

the minimizer of (2):

A

p=1,g=1 :.fL(cg,m) = ﬁ (Lasso) 5)
g,m
A
p=2,q=1 :fGL(Cg,m) = W (GL) (6)
m 1~g,m 2
A
p=1,g=2:6"(com) = TF MoA :lccg||1| (EL) (T)
g |Cg,m

where ¢; = (g1, ¢y n1,) and {c s }m: denotes for each
group g the sequence of scalars |cg,m| in descendant order. M,
denotes some natural number depending on the magnitudes of co-
efficients in the group (cg.1, ..., cq.nr) .

2.2. Refining the algorithms

To exploit structures in audio signals, like persistence in time or
frequency, we refine the shrinkage operators introduced above for
application in audio analysis. The coefficient cg,,, (or groups
of them) undergo shrinkage according to the energy of a time-
frequency neighborhood. In contrast to the groups of GL and
EL, the neighborhoods can be modeled flexibly, e.g., using weight-
ing and overlap. Hence, we compose & with some neighborhood
weighting functional ny:

To an index v = (g, m) in a structured index set Z, we associate
a (weighted) neighborhood N(v) = {v¥ € T : wy(y') # 0}
with weights w-, defined on Z such that w~(y) > 0, wy(y’) > 0
forally’ € Zand 32,y () wy (7)) = 1. Then, with v (¢;) =

1/2
(ZW/GN(W) wy (Y2 ey |2> , we obtain the generalized shrink-

age operators by setting?

WGl — el onn (windowed GL (WGL)),
ePEE = ¢BL o ny (persistent EL (PEL)),
P9t = ¢SL oy (persistent GL (PGL))

in (5)-(7). These generalized shrinkage operators are not associ-
ated to a simple convex penalty functional, cp. [3]. Convergence
properties of their Landweber-iterations are currently under study,
and numerical experiments suggest convergence.

ICp. [7] for a more involved, but exact definition of the M, g in EL.

2[3] introduces WGL as generalization of GL while from a formal point
of view it would be more appropriate to call it windowed Lasso. Nonethe-
less, we stick to the former nomenclature.
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Figure 1: Sketch of different shapes of the parameterization of the
neighborhoods in a schematic time-frequency plane. Rectangular
and triangular ( “tent”-like) windows were implemented.

3. SIMULATIONS

The generalized shrinkage operators were implemented in MATLAB
with the following parameterization of the neighborhoods: For
each time-frequency-index (k, j) and a neighborhood size vector
o = (o1,...,04), the neighborhood N, is defined as the set of
indices No(k,7) = {(K',7') : k' € {k — 04,k + 02},j €
{j — 03,7 + o1}}. Neighborhoods of indices close to a border of
the time-frequency plane are obtained by mirroring the index set at
the respective border. Rectangular and triangular weighting of the
neighborhoods was implemented, with rectangular weighting only
in section 3.1 and 3.2. In the plots, an index after the operator’s
abbreviation specifies the group-label as time or frequency (not
needed for Lasso and WGL), e.g., PEL-t signifies that the group in
the respective elitist lasso is time. For the neighborhood-smoothed
operators WGL, PEL, and PGL the neighborhood-size vector ¢ is
given. To test the obtained variety of shrinkage operators, we used
a simulated “toy”-signal consisting of a stationary, a transient and
a noise part.> The stationary part consists of four harmonics with
fundamental frequency 440Hz and decreasing amplitudes. The ob-
tained harmonics were shaped by a linear envelope in attack and
decay. The transient part was simulated by 4 equidistant impulses
with similarly decaying amplitudes. Finally, Gaussian white noise
with SNR about 15 and 3dB was added.

Landweber iterations are known to converge very slowly and var-
ious methods of acceleration have been proposed [8]. As it was
out of the scope of this paper to elaborate on these ideas, we used
the basic iteration scheme (4). The iterations presented in the fol-
lowing were stopped after 100 steps. Then almost all of the final
relative iteration errors were below 0.3%.

3.1. Structured denoising

As a first experiment the standard de-noising problem with addi-
tive Gaussian white noise was considered. We use a tight Gabor-
frame with Hann window of length 1024 and hop size 256 (at
sampling rate 44100Hz). We measure the operator’s performance
in SNR: with the estimation’s approximate Landweber-limit ¢* of
(4) and 8 = ®c", the SNR is SNR(3, 5) = 20log,( (%)

For comparison, the SNR is then plotted against the number of
positive coefficients. Of the variety of possible operators, Fig-

3Corresponding sound files and more detailed visualizations are
presented at the conference and on the webpage http://homepage.
univie.ac.at/monika.doerfler/StrucAudio.
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ure 2 presents the SNR curves of the best basic operators and their
neighborhood smoothed counterparts (of which again the best of
each type were chosen for the figure) at two different noise levels.
It is obvious that for the lower noise level Lasso and WGL (with
neighborhoods in frequency) perform best, where the WGL still
outperforms the Lasso. Also, WGL with neighborhoods in time
outperforms Lasso for the higher noise level. Yielding high SNR
over a broad range of sparsity values, WGL thus seems to be a
good choice for the de-noising task (and we made the same obser-
vations for “real life”-audio signals). Compared to WGL, the other
operators GL, PGL, EL and PEL perform quite badly for the lower
noise level. While PGL is constantly worse than GL, PEL seems
to have some advantages over EL for higher sparsity levels. How-
ever, GL is surprisingly the second best operator for de-noising the
toy example at the high noise level. Experiments with longer and
more complex audio excerpts do not replicate this result, which is
not surprising, since the structure of GL naturally promotes simple
signal structures (which can be advantageous in some cases, see
3.2). Conclusively, the neighborhood smoothing seems to pay off
in the de-noising task with Gaussian white noise, where the per-
sistent operators WGL and PEL outperform their respective coun-
terparts Lasso and EL. An exception is made by PGL, which per-
forms in our experiments constantly worse than GL. Concerning
the perceptual quality of the de-noised audio-material, the neigh-
borhood smoothing of the modified operators promotes continuity
in the coefficients and thus reduces the probability of isolated high
energy coefficients and we observed less musical noise and higher
perceptual audio quality, especially under WGL.

3.2. Multilayer decomposition

We continue processing the toy-example by aiming to extract the
signal’s tonal and transient parts at the lower noise level (15dB
SNR). For estimating the tonal layer, we use a tight Gabor frame
with Hann window, window-length 4096 and hop size 1024. The
transients are estimated starting from the transient layer + noise
(which corresponds to the unrealistic but complexity reducing as-
sumption of perfect tonal estimation) using short windows (256
samples, hop size 64). Table 1 and 2 present the performance of a
sample of operators, again of each type a “basic” and neighborhood-
smoothed one. The tables show the maximum SNR value of the
estimation measured w.r.t. the “true” respective layer and the cor-
responding percentage of retained coefficients.

Concerning the tonal estimation displayed in Table 1, WGL with
neighborhoods expanding in time perform best for the extraction
of the tonal part in terms of SNR, while retaining relatively few
coefficients. GL, PGL and PEL exhibit comparable SNR, but only
with far more coefficients. As in the situation of de-noising above,
the neighborhood-smoothing is useful for the Lasso and the Elitist-
Lasso, but not for Group-Lasso.

As Table 2 shows clearly, GL with time as group-index performs
best in terms of SNR for the estimation of the transient layer. This
result is not very surprising since the example’s transient layer has
a simple structure which supports the performance of GL. How-
ever, GL-t should be a good choice for transient extraction in more
complex signals, since it yields broadband transients without ex-
tracting many horizontal (tonal) signal parts.

The next experiment addressed the decomposition of musical au-
dio without the presence of quasi-ground truth. For this “real-life”
application, the choice of sparsity level A is always a difficult task.
We chose the SNR-maximizing candidates from the simulations.
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Figure 2: Overview of de-noising behavior of (modified) shrink-
age operators (l is for Lasso). Performance measured in SNR
against the number of positive coefficients at two different noise
levels (15dB and 3dB).

This yielded WGL (with rectangularly weighted neighborhoods
extending 4 elements in each direction of time) as estimator of
the tonal layer with sparsity level A = 0.080, and GL (with the
time-index as group label) for the transient layer with A = 0.072.
We used a 5 seconds excerpt of a Jazz-record containing piano,
double-bass and drums. In the decomposition, the drums (and
some percussive elements of the bass) are well separated from
the harmonics of piano and bass. Using GL as transient estima-
tor works well in this example, it captures all of the soft 16th notes
drum-patterns. We observed a trade-off in the choice of the spar-
sity level: increasing sparsity in the tonal estimation improves the
separation of both layers but leads to increased damping of higher,
low-energy partials of the tonal part.

3.3. Shapes

As described at the beginning of this section, the neighborhoods’
shapes (constituted by size and weighting) were implemented and
parametrized in a straight-forward fashion, so far allowing for rect-
angular domains with either uniform (i.e. rectangular) or triangular
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Table 1: Comparison of the performance of different operators in
tonal estimation: maximum SNR values of estimation and “true”
layer and corresponding number of retained coefficients in per-
cent. * refers to neighborhoods (4,0, 4, 0) while ™ to (0, 4,0, 4).

Lasso | WGLT | GL-f | PGL-f* | EL-t | PEL-t*
Operator
max. SNR 28.7 31.2 30.5 30.7 26.2 30.6
%Coeffs 0.4 1.1 33 17.0 2.8 4.1

Table 2: Transient estimation: maximum SNR values of estima-
tion and “true” layer and corresponding number of retained co-
efficients in percent. As above: * means (4,0,4,0) and * means
(0,4,0,4).

H Lasso ‘ WGL* | GL-t ‘ PGL-t+ ‘ EL-f ‘ PEL-f* ‘
Operator

max. SNR 10.4 13.2 14.4 9.5 10.4 13.3
%Coeffs 1.0 2.9 2.2 38.9 1.4 3.7

(i.e. “tent”-like) weightings. These shapes do not necessarily have
to be symmetric at the origin, as the energy of most audio signals is
not symmetrically distributed around its peaks either. This fact can
be exploited to feature different parts of a signal under observa-
tion. Consider Figure 3, where the iterated WGL-shrinkage results
with four different neighborhood-shapes, each solely extending in
time, are compared (based on a Gabor-frame with window length
1024 and overlap of 4). It is obvious that the shapes yield different
(sparse) perspectives on the signal content. Whereas the symmet-
ric neighborhoods naturally captures parts before and after the at-
tacks (or rather time-points of maximum energy), the asymmetric
ones rather retain components before (resp. after) the attacks. The
orientation of the neighborhood therefore systematically promotes
the preservation of different temporal segments of the signal.

4. SUMMARY AND PERSPECTIVES

We presented first results on structured sparsity approaches for Ga-
bor frames to audio signals. Future work will focus on the conver-
gence of the algorithms, both in a theoretical and computational
setting. By taking into account methods as [9] the proposed algo-
rithms should be accelerated significantly. On the contrary, eval-
uations of the algorithms’ perceptual qualities will be considered.
Further, using various shapes for the weight, we aim at the extrac-
tion of more specific structures, in the sense of sound objects [10].
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