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ABSTRACT

In this paper, a model for the interaction of the strings with the
frets in a guitar or other fretted string instruments is introduced.

In the two-polarization representation of the string oscillations
it is observed that the string interacts with the fret in different ways.
While the vertical oscillation is governed by perfect or imperfect
clamping of the string on the fret, the horizontal oscillation is sub-
ject to friction of the string over the surface of the fret.

The proposed model allows, in particular, for the accurate eval-
uation of the elongation of the string in the two modes, which gives
rise to audible dynamic detuning. The realization of this model
into a structurally passive system for use in digital waveguide syn-
thesis is detailed.

By changing the friction parameters, the model can be em-
ployed in fretless instruments too, where the string directly inter-
acts with the neck surface.

1. INTRODUCTION

Accurate physically inspired synthesis of musical instrument re-
quire realistic models of all the parts of the instrument that sig-
nificantly contribute to the production of the characteristic timber
and its evolution, together with sufficiently general models of the
interaction of the player with the instrument [1].

This work is a piece of a broader project whose aim is to
closely emulate the playing of a guitar, with extension to other
instruments in the family of plucked strings. In previous papers,
the author, together with other researchers, introduced models for
the plucking of the string, both with finger and plectrum, for the
collisions of the string with the neck and other objects and for the
synthesis of harmonic or flageolet tones [2, 3, 4, 5, 6, 7]. The mod-
els were introduced for immediate application in digital waveguide
synthesis of the guitar, but they are also usable in other type of syn-
thesis techniques such as finite difference time domain (FDTD).

In this paper, the issue of modeling the fret-string interaction
is considered, which influences the sound produced by the synthe-
sis algorithm. Disregarding longitudinal modes, a guitar string is
represented by coupled wave equations, each pertaining to a po-
larization mode, i.e. to one of the orthogonal axes in the planes
transversal to the string. In a fretted instrument, when a player’s
finger pushes the string against the frets in order to produce the
desired tone, perfect or near perfect clamping only occurs in the
direction normal to the fret surface.

In the horizontal direction, i.e. in the direction parallel to fret
and tangent to this – in many electric guitars the fret is curved –
the string is free to move but subject to friction on the fret surface.
As a result, not only the two polarization modes show different
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Figure 1: Coordinate system aligned with the string rest position.

decay times but also their fundamental frequencies differ and vary
with time, due to the unequal elongation of the string. In fretless
instruments the dynamic is similar but the string is pushed directly
against the neck. As a result, clamping is less perfect in the vertical
direction and the string is still free to move but subject to friction
on the neck surface in the horizontal direction. Furthermore, the
direct contact with the finger of the player introduces a consid-
erable amount of damping and collisions with the neck are more
likely due to smaller string to neck distance.

A new model for the fret-string interaction is presented in this
paper, which is based on recent advances in modeling friction with
dynamic systems [8, 9]. From the equations governing the string
motion in the contact area with fret or neck we derive a structurally
passive junction to be included as a fret-string interaction module
in a pair of double rail digital waveguides, one for each polariza-
tion mode.

2. FRETBOARD FINGERING

In this paper we choose the coordinate system shown in Figure 1
where the x axis is directed from nut to bridge along the string
rest position. The y axis representing the horizontal direction is
parallel to the frets, while the z axis is orthogonal to the other two
axes and represents the vertical direction. In order to fix our ideas,
we assume that the instrument is designed for a right-hand player,
where strings are plucked with the right hand and the player pushes
fingers of the left hand on the strings against the fretboard.

In conventional fretted instrument, frets are spaced on the fin-
gerboard in order to achieve equally tempered tuning. This is
achieved by placing the active (topmost) edge of the fret at co-
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Figure 2: Side view of the vertical shape of the string when pressed
against frets by a player’s finger.

ordinates
xn = Ls

(
1 − 2−n/12

)
, (1)

where Ls is the length of the string and n the fret number counted
from nut to bridge [10].

Since the bridge is taller than the nut, the neck of the instru-
ment, which supports the fretboard, appears as slightly tilted with
respect to the string rest position. As a result, when the player
pushes the string against the fretboard, the string rests on two frets
(or one fret and the nut for the lowest fingered tone n = 1), as
shown in Figure 2. The leading fret is the one closest to the bridge
(rightmost) and is responsible for tuning by reducing the length of
the active portion of the string (from fret to bridge). The trailing
fret (leftmost) further blocks residual vibrations from reaching the
inactive portion of the string. Occasional collisions with other frets
may also occur if the string is vigorously plucked in the vertical di-
rection.

Fingering on the fretboard produces a deflection of the string
that slightly modifies the string length. Characteristics influencing
the intonation of fretted guitar tones are described in [11]. The
player does not need to push the finger all the way against the fin-
gerboard: in order to produce proper tones it suffices that the string
rests quite firmly on the leading fret. This is generally achieved
by placing the finger as close as possible to the leading fret. The
frequency of the tone slightly depends on how much the string is
pushed towards the fingerboard.

With respect to the vertical polarization mode, the string ap-
pears as clamped to the fret. In the horizontal direction, however,
the string is quite free to slip over the fret, as shown in Figure 3.
The motion is subject to friction force in the direction opposite to
velocity and to the restoring tensile forces of the string along the y
direction. The horizontal oscillations of the string are further cou-
pled to the finger behind the leading fret, which essentially acts as
an elasto-plastic spring damper. Residue oscillations further travel
toward the trailing fret, subject to further friction, and toward the
nut and back. However, the amplitude of oscillation in this trailing
path is negligible due to the damping and clamping introduced by
the finger pressing the string towards the neck.

3. FRICTION MODEL

In order to simulate the stick-slip motion of the string over the fret
in the horizontal polarization mode, a suitable model for the fric-
tion is necessary. A sufficiently general scheme is derived from
[8, 12], where the effect of friction is modeled as a dynamic sys-
tem, know as the Lu-Gre model, which generalizes the Coulomb
model of friction. In this model, the surfaces are thought of as
being randomly coated by elastic bristles, which deflect as two
contacting surfaces are set in relative motion.

An extension [12] of the bristle based model has been previ-
ously used in sound synthesis to capture the dynamics of the vio-
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Figure 3: Top view of the guitar fretboard showing string-fret fric-
tion force in the horizontal polarization mode of the string.

lin bow [13] or to model general friction interactions among rigid
bodies [14] with modal synthesis. Here we apply a similar model
to the string-fret interaction and provide a realization for use in
digital waveguide simulation of the string.

Although remarkable generalizations of the frictionmodel have
been introduced [9], which allow us to capture subtle phenomena
such as friction hysteresis, our aim is to obtain a simple system
capturing the main characteristics of the string-fret interaction at
reasonable computational costs. Unlike in friction driven sound,
the friction noise in the fret-string interaction is not a main audible
feature but friction does contribute to the dynamics of the string,
which is audible through modulation of the elongation and slow-
down of the string. Its inclusion contributes to a more naturally
sounding model.

3.1. Bristle-Based Friction Models

Following [12], the average deflection ξ of elasto-plastic bristles
can be modeled by the following first order differential equation:

dξ

dt
= vrel

(
1 − α(vrel, ξ)

ξ

ξss(vrel)

)
(2)

where vrel denotes the relative velocity of the contacting surfaces
(the string and the fret in our case). The function α(v, ξ) al-
lows us to capture the elasto-plastic behavior of the bristles for
large displacement. In a simplified model (Lu-Gre) one can let
α(vrel, ξ) = 1.

The function ξss(v) provides the limit value for the deflection
in steady state where the relative velocity v, instanciated by vrel

in (2), and the average bristle deflection are constant.
The friction force ff can be written in terms of bristle dis-

placement and relative velocity as follows:

ff (ξ, ξ̇, vrel) = σ0ξ + σ1
dξ

dt
+ σ2vrel (3)

where σ0 represents the stiffness of the bristles’ spring, σ1 is a
damping coefficient and σ2 is the viscous friction coefficient and
ξ̇ = dξ

dt
.

In the Lu-Gre parametrization one provides ξss(v) as follows:

ξss(v) =
sign(v)

σ0

(
fc + (fs − fc) e−(v/vs)2

)
(4)

where fc is the magnitude of Coulomb friction force, fs is the
magnitude of the static friction (stiction) force and vs is the Stribeck
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Figure 4: Typical steady state friction force versus velocity.

velocity, which controls the characteristics of the Stribeck effect
where friction continuously decreases as relative velocity increases
in the low velocity regime. A typical plot of the steady state fric-
tion force versus velocity is shown in Figure 4.

The bristle model is sufficiently general to capture most of
the phenomena associated to friction. In particular, due to the
dependency of the force on the relative velocity of the contact
surfaces, the model is able to produce stick-slip motion, continu-
ously switching from static to kinetic friction according to velocity
regimes.

4. DIGITAL WAVEGUIDE SIMULATION OF
FRET-STRING INTERACTION

In this section we consider the friction model reviewed in Section
3.1 to simulate the behavior of the string pressed against the fret
in the vertical z direction but free to move in the horizontal y di-
rection. We will first derive the continuous time system describing
the string-fret interaction and then provide a discrete version of
the model based on bilinear transform. Furthermore, we provide a
scheme to compute the solution of the nonlinear difference equa-
tion describing the string-fret node, which is based on the so-called
K-method [15].

4.1. Continuous Time String-Fret Node

Let us denote by uy(x, t) and uz(x, t), respectively, the value of
the string displacement at time t and position x along the string for
the y and z polarization modes.

Disregarding nonlinear [16] and dispersive effects [17, 18], the
wave equation holds for segments of the string not in contact with
other objects such as the plectrum or the player’s finger and the
fret. Assume that the only object in contact with the string is the
fret, touching the string on a segment of width ∆ and centered at
coordinate xf , then for a string of length Ls we have

c2 ∂2u

∂x2
=

∂2u

∂t2
; x ∈

]
0, xf − ∆

2

[
∪

]
xf + ∆

2
, Ls

[
, (5)

where u(x, t) denotes any of the two polarization displacement
uy(x, t) or uz(x, t), while c =

√
K0/µ is the propagation veloc-

ity,K0 is the tension of the string, and µ is the linear mass density,
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Figure 5: String segment subject to tensile forces f− and f+ and
friction ff against the fret. For the y polarization, the tensile
forces are projected along the y direction, obtaining f−

y and f+
y .

The resultant f = f−
y + f+

y of the projected tensile forces is con-
sidered as acting at the point xf .

and they are all assumed to be constant. Here we have disregarded
all propagation losses along the string, as these can be consolidated
at one of the extremities and embedded in the bridge model [19].

The solution of (5) can be written in D’Alembert form as a
superposition of a left-going u− and a right-going u+ wave:

u(x, t) = u−(x, t)+u+(x, t) = ul(t+x/c)+ur(t−x/c), (6)

where ul(x/c) = ur(x/c) = u(x, 0)/2 for a static initial dis-
placement condition.

For the vertical polarization mode uz the portion of the string
in contact with the fret can be largely assumed to be clamped
in normal playing conditions. In this case the left-going wave
u−

z is perfectly reflected at the fret back towards the bridge, i.e.,
u+

z (xf , t) ≈ −u−
z (xf , t). As already remarked, the same is not

true for the horizontal polarization mode uy . On the string-fret
contact segment, which we will also refer to as the fret zone shown
in Figure 5, the equilibrium equation of the string with the bristle
based dynamic system modeling friction (2) is enforced:

µ∆
∂2uy

∂t2
= f(t) − ff (ξ, ξ̇, vy)

x ∈
]
xf − ∆

2
, xf + ∆

2

[
,

(7)

where the force f(t) is the resultant of the transversal component
of the tensile force of the string acting at the extreme points of the
contact segment and ff (ξ, ξ̇, vy) is the friction force (3). The ve-
locity vy is the relative velocity of the string over the fret, which
coincides with string displacement velocity in the y-polarization
mode. It is therefore convenient to rewrite (7) all in terms of
vy(x, t) =

∂uy

∂t
:

µ∆
∂vy

∂t
= f(t) − ff (ξ, ξ̇, vy)

x ∈
]
xf − ∆

2
, xf + ∆

2

[
.

(8)

At small string displacements, for the tensile force we have:

f(t) = K0

(
∂uy

∂x

∣∣∣∣
x=xf+

∆
2

− ∂uy

∂x

∣∣∣∣
x=xf − ∆

2

)
. (9)
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Figure 6: Block diagram representing the friction node for the sim-
ulation of string-fret interaction.

Since from (6) we have

∂u

∂x
=

1

c

(
v−(x, t) − v+(x, t)

)
(10)

where
v−(x, t) = ∂u−

∂t

v+(x, t) = ∂u+

∂t

(11)

then (9) can be rewritten as follows:

f(t) =
K0

c

(
vin

y (t) − vout
y (t)

)
, (12)

where we have defined vin
y as the velocity wave entering the fret

zone and vout
y as the velocity wave leaving the fret zone, i.e,

vin
y (t) = v−

y (xf + ∆
2

, t) + v+
y (xf − ∆

2
, t)

vout
y (t) = v+

y (xf + ∆
2

, t) + v−
y (xf − ∆

2
, t).

(13)

Assimilating vy(xf , t) to vout
y (t), i.e., shrinking the system (8) to

a point, while retaining the finite mass µ∆, we obtain the string-
fret node equation:

µ∆
dvout

y

dt
=

K0

c

(
vin

y (t) − vout
y (t)

)
−σ0ξ−σ1

dξ

dt
−σ2v

out
y (t),

(14)
where we have substituted (3) and (12) in (7) after establishing that
vrel = vout

y . A block diagram of the string-fret interaction node is
shown in Figure 6.

The bristle displacement function ξ in (14) must satisfy equa-
tion (2). Defining a state vector

x =

[
vout

y

ξ

]
, (15)

equations (14) and (2) can be put in the form of a nonlinear state
space system:

{
ẋ = Ax + bvin

y + eφ
φ = ρ(x)

, (16)

where

A =
−1

µ∆

[
σ2 + K0

c
σ0

0 0

]

b =
K0

cµ∆

[
1
0

]

e =

[ − σ1
µ∆

1

]
(17)

and

ρ

([
vout

y

ξ

])
= vout

y

(
1 − α(vout

y , ξ)
ξ

ξss(vout
y )

)
(18)

is a scalar function of the state vector.
In the form (16) the system describing the string-fret node is

ready for suitable discretization required in digital simulations of
strings.

4.2. Discrete Time Computation of the String-Fret Node

In this section we carry out the discretization of the system (16)
using the bilinear transformation. This method has the advantage
of preserving passivity of the system, which prevents the introduc-
tion of instability due to numerical approximation of the deriva-
tives. We will also show how to handle the delay-free loops in the
computation.

The system in (16) is characterized by first order derivatives.
In Laplace transform a differentiator is equivalent to multiplication
by the Laplace variable s. By bilinear transformation, s is replaced
by 2(1−z−1)/T (1+z−1), where T is the sampling time interval.
Accordingly, a first order differential equation of the type

η̇(t) = f (η(t), t) (19)

is led by bilinear transformation to the recurrence

η(n) = η(n − 1) +
T

2
[f (η(n), n) + f (η(n − 1), n − 1)] ,

(20)
where we dropped the factor T in the arguments of the functions.

Using this rule, it is easy to discretize the system (16). The
discrete version of equation for the first state component expresses
the current value of the output velocity vout

y (n) in terms of past
values of vout

y , present and past values of the input velocity vin
y ,

present and past values of φ and present and past values of bristle
deflection ξ. The discrete version of the equation for the second
component of the state becomes the recurrence:

ξ(n) = ξ(n − 1) +
T

2
(φ(n) + φ(n − 1)). (21)

This recurrence can be substituted in the first state component re-
currence in order to remove the dependency from the present value
of ξ, obtaining

vout
y (n) = c1v

out
y (n − 1) + c2ξ (n − 1)

+c3

[
vin

y (n) + vin
y (n − 1)

]
+ c4 [φ(n) + φ(n − 1)]

(22)
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where
c1 =

2 µ ∆c − Tcσ2 − TK0

2 µ ∆c + Tcσ2 + TK0

c2 = − 2Tcσ0

2 µ ∆c + Tcσ2 + TK0

c3 =
TK0

2 µ ∆c + Tcσ2 + TK0

c4 = − Tc
(
σ1 + T

2
σ0

)

2 µ ∆c + Tcσ2 + TK0
.

(23)

We are then left with a recurrence for vout
y that depends on known

values, except for that of φ(n). Yet, the equation for φ requires the
value of vout

y (n) in order to be computed, which is a delay-free
loop of the system. This delay-free loop must be properly handled
in order to be able to find the solution, as described next.

Substituting the recurrence for vout
y (n) and that for ξ(n) in the

vector argument of the function ρ in (16), one obtains an equation
of the type

φ(n) = g(φ(n), n), (24)
where g is a known function, which is built from ρ by isolating
the dependency on φ and reducing all other dependencies to an
explicit dependency on time index n. This equation can be solved
by finding, at any sample index n, a local zero of the function

ζ − g(ζ, n), (25)

which can be achieved by means of Newton-Raphson root finding
method. Look-up tables for the roots can be precalculated in order
to ease real-time computation [15]. The root ζ of (25) is assigned
to φ(n) and all other quantities are known in order to compute
vout

y (n) and ξ(n), which describes how to handle the delay-free
loop in the computation.

4.3. Fret Junction in Digital Waveguides

The discrete time realization of the fret-string interaction block il-
lustrated in the previous section is directly usable as a block in
digital waveguides for the synthesis of strings based on velocity
waves. The block is only included in the waveguide simulating
the horizontal y-polarization mode. The input velocity vin

y is ob-
tained by summing the input velocities v+

in and v−
in from the two

rails of the waveguide. The output velocity vout
y obtained from

the fret-string system is equally fed to the two rails of the waveg-
uide. In order to force the output velocity at the fret contact point,
a scattering junction of the type

[
v−

out

v+
out

]
= Sc

[
v−

in

v+
in

]
+

vout
y

2

[
1
1

]
(26)

where
Sc =

1

2

[
+1 −1
−1 +1

]
(27)

is included, similar to what described in [6] in order to force after-
collision displacement.

As this paper is part of a larger project for the accurate simu-
lation of the guitar, and as in our system displacement waves are
preferred for their ease of use in the detection of string-neck or
string-fret collisions, differentiator and integrator blocks have to
be introduced in order to obtain the input velocity. These blocks
can be realized, respectively, by directly taking the first order dif-
ference of the incoming signal and by a discrete time leaky inte-
grator.

u(n,m)

mf

z−1

z−1

nu
t

z−1 z−1

z−1

z−1

z−1z−1

fret
junction

z−1
u+(m,n)

u−(m,n)

z−1

z−1

z−1

b
rid
ge

external
parameters

u− (n)inu−   (n)out

u+ (n)in u+   (n)out

Figure 7: Inclusion of a fret junction in a digital waveguides for
string displacement waves (horizontal polarization).

A valid alternative is to use a differentiator and an integrator
derived by applying the bilinear transformation to the analog dif-
ferentiator and integrator, similar to what described in Section 4.2.
The bilinear differentiator is given by the following recurrence:

v(n) = −v(n − 1) +
2

T
(u(n) − u(n − 1)) (28)

while the bilinear integrator is

u(n) = u(n − 1) +
T

2
(u(n) + u(n − 1)) (29)

as in (20). Bilinear integrator and differentiator also have the ad-
vantage of being inverse of each other.

The insertion of the fret junction in a displacement wave based
digital waveguide is shown in Figure 7.

The parameters of the underlying friction model are the mag-
nitudes fc of the Coulomb and fs of the stiction force, the Stribeck
velocity vs, together with bristles’ stiffness σ0, damping σ1 and
viscous friction coefficient σ2. Also, the elasto-plastic map func-
tion α(vrel, ξ) needs to be specified. In first approximation we
disregarded elasto-plastic phenomena and enforced a simplified
Lu-Gre model setting α(vrel, ξ) = 1.

The string-fret friction parameters can and should be measured
accurately from the string-fret friction characteristics. String-fret
friction measurement will be the object of further studies. A spe-
cial laboratory set up is required in which a free piece of guitar
string is pulled, at several constant velocities, over a single fret.
The friction force is measured by means of a miniature accelerom-
eter.

In our preliminary experiments we used reference values for
these parameters as follows. For the σ parameters we let σ0 = 105

N/m, σ1 = 300 Ns/m and σ2 = 10−3 Ns/m. For the stiction
force we used a 50% increment of the Coulomb force level, i.e.,
fs = 1.5 × fc, where forces are measured in Newtons N .

The Coulomb force can be estimated as the the friction co-
efficient for metal, about 0.5, times the normal force at the fret.
However, we found that the value of the friction coefficient for
metals is too high for the simulation of the string. This is due to
the fact that both string and fret are rounded and smooth surfaces,
more resembling ball bearing than flat surfaces in contact. Indeed
the string is also allowed to roll over the fret to some extent, gen-
erating torsional effects on the string. Large friction coefficients
tend to stop the string and / or introduce noise that is not typical of
this type of interaction.

The normal force at the fret can be estimated from the vertical
component of the tensile force due to the bending of the string at
the fret, given by the force F1,z as shown in Figure 8. This force
is essentially given by the slope of the string at the fret times the
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Figure 8: Components of the tensile force due to the bending of the
string by the player’s finger near the fret.

string tension K0. It consists of two components: a static compo-
nent due to the bending of the string by the finger and a dynamic
one due to string motion in the vertical z polarization. The dy-
namic component introduces non-linear coupling of the z and y
polarizations. However, in usual playing modes, all dynamic vari-
ations can be disregarded as they only provide a very minor varia-
tion of the normal force due to the largely bent string at the fret.

Finally, for the Stribeck velocity we used a reference value of
vs = 10−3 m/s.

The fret junction must be completed by a model of the player’s
finger placed next to the fret. An accurate model can be derived
from the damped spring-mass system presented in [7] for the finger
plucking where, in the case of the finger over the fret, the coordi-
nates of the fingers are static. However, the effect of the finger
behind the fret has no dramatical influence on the sound. Thus, a
simpler reflector with damping can be suitably employed in normal
playing conditions. A further completion of the model requires the
inclusion of a second fret junction corresponding to the trailing fret
on which the string is resting. However, this is quite unnecessary
provided that one suitably blocks the oscillations on the right por-
tion of the string to propagate to the left portion of the string with
respect to the fret.

The dynamic model of friction contributes to provide an ac-
curate simulation of the deflection of the string over the fret in
the horizontal polarization. The string simulation is completed by
a tension modulation module that allows us to obtain the pitch-
bending characteristic of plucked guitar tones, which is otherwise
absent in the wave equation as one assumes there that the tension is
constant. Alternate implementations of tension modulation meth-
ods can be found in [20, 21].

5. CONCLUSIONS

In this paper we have considered the sliding of the string over the
fret as a phenomenon to be modeled for the accurate synthesis of
fretted string instruments. We provided a discrete model derived
from bristle based models of friction. The continuous time model
is described by a nonlinear state-space system, which is discretized
by means of the bilinear transformation. The computation requires
the solution of a nonlinear equation, which can be achieved by
Newton-Raphson root finding method.

The acoustical results are very realistic and require very mod-
erate amount of friction, as controlled by the friction coefficient in
the Coulomb force, which is a parameter of the model. High fric-
tion coefficients tend otherwise to stop the string too early in the
vertical polarization and introduce unnatural noise.

Sound examples can be found at http://staffwww.itn.
liu.se/~giaev/soundexamples.html.

6. ACKNOWLEDGMENTS

The author wishes to thank Balázs Bank for suggesting the prob-
lem and for fruitful discussions.

7. REFERENCES

[1] J. Woodhouse, “On the synthesis of guitar plucks,” Acta
Acustica, vol. 90, pp. 928–944, 2004.

[2] F. Eckerholm and G. Evangelista, “The PluckSynth touch
string,” in Proc. of Digital Audio Effects Conf. (DAFx ‘08),
Helsinki, Finland, Sept. 2008, pp. 213–220.

[3] G. Evangelista, “Modified phase vocoder scheme for dy-
namic frequency warping,” in Proc. of IEEE 3rd Interna-
tional Symposium on Communications, Control and Signal
Processing (ISCCSP 2008), St. Julians, Malta, March 2008,
pp. 1291–1296.

[4] F. Germain and G. Evangelista, “Synthesis of guitar by dig-
ital waveguides: Modeling the plectrum in the physical in-
teraction of the player with the instrument,” in Proc. of the
IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA-09), 2009.

[5] G. Evangelista, “Physically inspired playable models of gui-
tar, a tutorial,” in Proc. 4th International Symposium on
Digital Communications, Control and Signal Processing (IS-
CCSP), 2010, pp. 1–4.

[6] G. Evangelista and F. Eckerholm, “Player-instrument in-
teraction models for digital waveguide synthesis of guitar:
Touch and collisions,” IEEE Trans. on Audio, Speech, and
Language Processing, vol. 18, no. 4, pp. 822–832, 2010,
Special issue on Virtual Analog Audio Effects and Musical
Instruments.

[7] G. Evangelista and J. O. Smith III, “Structurally Passive
Scattering Element for Modeling Guitar Pluck Action,” in
Proc. of Digital Audio Effect Conf. (DAFx’10), 2010, pp. 10–
17.

[8] C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischin-
sky, “A new model for control of systems with friction,”
IEEE Trans. Automat. Contr., vol. 40, no. 3, pp. 419–425,
1995.

[9] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo,
“An integrated friction model structure with improved pres-
liding behavior for accurate friction compensation,” IEEE
Trans. Automat. Contr., vol. 45, no. 4, pp. 675, Apr. 2000.

[10] Neville H. Fletcher and Thomas D. Rossing, The Physics
of Musical Instruments, Springer, New York, 2-nd edition,
1998.

[11] G. U. Varieschi and C. M. Gower, “Intonation and compen-
sation of fretted string instruments,” American Journal of
Physics, vol. 78, no. 1, pp. 47–55, January 2010.

[12] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Sin-
gle state elasto-plastic friction models,” IEEE Trans. Au-
tomat. Contr., vol. 47, no. 5, pp. 787–792, 2002.

[13] S. Serafin, F. Avanzini, and D. Rocchesso, “Bowed string
simulation using an elasto-plastic friction model,” in Proc.
Stockholm Music Acoustics Conf. (SMAC 2003), Stockholm,
Sweden, Aug. 2003, pp. 95–98.

DAFX-6

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-350



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

[14] F. Avanzini, S. Serafin, and D. Rocchesso, “Interactive sim-
ulation of rigid body interaction with friction induced sound
generation,” IEEE Trans. Speech and Audio Processing, vol.
13, no. 5, Part 2, pp. 1073–1081, Sept. 2005.

[15] G. Borin, G. De Poli, and D. Rocchesso, “Elimination of
delay-free loops in discrete-time models of nonlinear acous-
tic systems,” IEEE Trans. Speech and Audio Processing, vol.
8, no. 5, pp. 597–606, 2000.

[16] D. W. Oplinger, “Frequency response of a nonlinear
stretched string,” J. Acoust. Soc. Amer., vol. 32, pp. 1529–
1538, 1960.

[17] G. Evangelista and S. Cavaliere, “Real-time and efficient
algorithms for frequency warping based on local approxima-
tions of warping operators,” in Proc. of Digital Audio Effects
Conf. (DAFx ‘07), Bordeaux, France, Sept. 2007, pp. 269–
276.

[18] I. Testa, G. Evangelista, and S. Cavaliere, “Physically In-
spired Models for the Synthesis of Stiff Strings with Dis-
persive Waveguides,” EURASIP Journal on Applied Signal
Processing, vol. 2004, no. 7, pp. 964–977, July 2004, special
issue on Model-Based Sound Synthesis.

[19] J. O. Smith III, “Efficient synthesis of stringed musical in-
struments,” in Proc. of the International Computer Music
Conference, Tokyo, Japan, 1993, pp. 64–71.

[20] B. Bank, “Energy-based synthesis of tension modulation in
strings,” in Proceedings of the 12th International Conference
on Digital Audio Effects (DAFx-09), Como, Italy, Sept. 2009,
pp. 365–372.

[21] T. Tolonen, V. Välimäki, and M. Karjalainen, “Modeling
of tension modulation nonlinearity in plucked strings,” IEEE
Trans. Speech and Audio Process., vol. 8, no. 3, pp. 300–310,
May 2000.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-351


