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ABSTRACT

Noise-based nonlinear system identification techniques using Ham-
merstein and Wiener forms have found wide application in biolog-
ical system modeling, and been applied to modeling nonlinear au-
dio processors such as the ring modulator. These methods apply
noise to the system, and project the system output onto a set of or-
thogonal polynomials to reveal parameters of the model. Though
Gaussian sequences are invariably used to drive the unknownsys-
tem, it seems clear that the statistics of the input will affect the
model estimate. Motivated by the limited input and output ranges
supported by analog systems, in this work, the use of an inputnoise
sequence having a uniform distribution is explored. In addition, an
error measure indicating harmonic distortion modeling accuracy
is introduced. Simulation results identifying Hammerstein and
Wiener systems show that the uniform and Gaussian distributions
perform differently, with the uniform distribution generally pro-
ducing more accurate harmonic responses. Finally, uniformnoise
and Gaussian noise are used to model a saturating low-pass circuit
similar to that of the Tube Screamer, with the uniform distribution
providing a modest improvement in noise response error.

1. INTRODUCTION

The identification of nonlinear systems is a current focus onaudio
research, in particular modeling of vintage analog audio effects
has received a lot of recent attention [1]. A general nonlinear sys-
tem can be modeled by a Volterra series, introduced by Volterra
in 1887; however its use is made problematic by its large number
of parameters. Simplified models such as the block-based models
were later introduced to reduce the number of parameters neces-
sary to characterize the system [2].

An efficient noise-based method for extracting the different
parameters of the Volterra series was first introduced by Lee[3],
with an algorithm using stationary white Gaussian noise to extract
the model parameters through correlation. Algorithms based on
iterative structures and least-squares estimation were then devel-
oped [4, 5] to improve the convergence of the estimation and ex-
tend the technique to non-ideal noise signals.

This class of methods competes with other techniques based
on excitation signals such as maximum-length sequences [6]or
chirp signals [7]. The limitation of the noise-based estimation
compared to these techniques is that longer test signals areneeded

for correlation estimate to converge. This drawback is compen-
sated for by the fact that this technique is theoretically capable of
estimating parameters of a large set of nonlinear model structures,
while techniques such as chirp-based identification are limited to
a particular nonlinear model [2].

The noise-based identification allows the estimation of linear
parameters of any combination of static nonlinear blocks and dy-
namic linear blocks (e.g., Wiener-Hammerstein, Wiener, Hammer-
stein) and on the Volterra kernels. It is also the only methodavail-
able to estimate nonlinear parameters in multi-input nonlinear sys-
tems (e.g., ring modulators) [8].

In the case of analog audio effect processors, there is a limited
input and output amplitude range. Hence, the use of a different
distribution such as the uniform distribution would be moreappro-
priate as it will scan the amplitude range of the effect in a balanced
manner. In this paper, we investigate use of this alternative distri-
bution.

Modeling error in noise-based identification is usually assessed
via the output error variance. This choice may be less relevant
for the purpose of audio applications since we are more interested
in an accurate reconstruction of the distortion of the systems for
harmonic inputs such as sinusoids. In this paper, we introduce
an alternative error measurement of the estimation error based on
harmonic response reconstruction.

We first describe the mathematics of our model and of the
related noise-based identification method. We then comparethe
performance of estimators based on uniform and Gaussian noise
sequences applied to synthetic Hammerstein and Wiener systems
and then to a discrete-time analog circuit model.

2. NONLINEAR MODELS

The most general nonlinear model is the Volterra series, which
describes an expansion of analytic functionals (functionsof func-
tions) [8]. However, this complex model is often avoided since the
description of a single-input system with a memory ofT samples
and distortions at orderM requires the estimation ofTM parame-
ters. In this paper, we use simplified models, the polynomialHam-
merstein model [2] and the Wiener model [5]. The input-output
relationship of the two models can be described using the follow-
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ing form:

y[n] = F (x)[n] =
M
∑

m=0

Fm(x)[n] (1)

whereFm(x) corresponds to a nonlinearity of orderm.

2.1. Polynomial Hammerstein model

We consider the polynomial Hammerstein model (Fig. 1) whichis
a parallel combination of simplified Hammerstein models, cascade
of a static nonlinearity and a linear filter. Each nonlinear block is
usually associated with a particular order of distortion. In this case,
Fm(x) is represented by the filtered polynomialxm such that

F0(x) = g0, Fm(x)[n] =

T−1
∑

τ=0

gm[τ ]xm[n− τ ], (2)

wheregm is the impulse response of lengthT of filtersGm. We
see that the number of parameters is reduced toMT .

Figure 1: Polynomial Hammerstein model

2.2. Wiener model

We consider the simplified Wiener model (Fig. 2), cascade of a
single linear filter and a static nonlinearity. In this case,Fm(x) is
represented by the filtered polynomialxm, such that:

F0(x) = a0, Fm(x)[n] = am

(

T−1
∑

τ=0

g[τ ]x[n− τ ]

)m

(3)

whereg is the impulse response of lengthT of a filterG, andam

is a set of coefficients weighing the different orders of the polyno-
mial expansion ofF (x). We see that the number of parameters is
reduced toM + T .

Figure 2: Simplified Wiener model

3. NONLINEAR IDENTIFICATION

3.1. Excitation signals

Noise-based identification [2, 3, 4] invariably uses a whiteGaus-
sian noise excitation signal. However, the parameter estimation
algorithm usually assumes only whiteness of the excitation.

If we take the formulation of the general extraction algorithm
as given in [5], we see that noise-based algorithms are actually
least-squares approximations of the parameters of the model on
the system in the two-dimensional space of signal amplitude(time

domain) and signal spectrum (frequency domain). The choice
of the noise distribution and its temporal correlation modifies the
way the energy of the input signal is statistically distributed in the
amplitude-frequency plane.

Previous research [2] has proven that modifying the Gaussian
noise distribution parameters can modify the convergence of the
parameter estimation in a given amplitude area around its aver-
ageµ, followed by a piecewise reconstruction to cover the whole
amplitude domain. Our goal here is to test if the use of a non-
Gaussian noise distribution can affect positively the performance
of the algorithm.

3.1.1. Noise distributions

The centered Gaussian noise has a probability density function
pG(x) = N (µ, σ2) for a meanµ and a varianceσ2. So the sys-
tem will be mainly excited in the domainµ ± 2σ. In the usual
setup whereµ = 0, we see that most of the energy is concentrated
in the region around zero, where most systems are quasi-linear
area. Also, we notice that this distribution theoreticallyexplores
the whole amplitude domain[−∞,∞].

Instead of taking multiple measurements with very different
Gaussian noise distribution parametersµ andσ2 as suggested in
[2], we consider spreading of the energy of our excitation inthe
amplitude-frequency plane by performing the parameter estima-
tion with a uniform noise distribution. In this way, only onemea-
surement is needed. Its probability density function ispU (x) =
1[−b,b]/(2b) for an amplitude range limited to[−b, b].

3.1.2. Orthogonal polynomials

Noise-based identification methods are based on least-squares fit-
ting and as such, it is desirable to perform a linear transformation
on the nonlinear distortionsxm to go to polynomial familyP (m)

such that for an excitation noise of probability density function
w(x), we get:

∫ ∞

−∞

P (m)(x)P (n)(x)w(x)dx = αmδm,n (4)

which means that the polynomial family is orthogonal respectively
to the noise distribution.

In the cases of a unitary Gaussian noise (µ = 0, σ = 1) and
a unitary uniform noise (b = 1), the orthogonal polynomial fam-
ilies are respectively the Hermite polynomialsH(m) [5] and the
Legendre polynomialsL(m) [9]. In the case of non-unitary noise
distributions, the polynomials are normalized to remain orthogonal

H
(m)
N

(x) = σm
H

(m)
(x

σ

)

andL(m)
N

(x) = bmL
(m)
(x

b

)

. (5)

3.2. Identification method

As demonstrated in [8], the parameter estimation problem ofthe
polynomial Hammerstein model and the simplified Wiener model
can be written as a least-squares problem. In the case of the Lee-
Schetzen algorithm [3], the problem is simplified as we assume
that the noise excitation is ideal and so that the orthogonalpoly-
nomials are actually orthogonal in the experiments. Under this
hypothesis, the parameters can be estimated through

φP (m)(x),P (m)(x) ∗ gm = φy,P (m)(x), (6)

DAFX-2



Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

whereφx1,x2 is the cross-correlation between the signalsx1 and
x2, andP (m) is the orthogonal polynomial family corresponding
to the chosen noise distribution.

The deconvolution ofGm is usually performed in the fre-
quency domain via

Ĝm(f) =
Sy,P (m)(x)(f)

SP (m)(x),P (m)(x)(f)
, (7)

whereSx1,x2 represents the cross-spectral density between the
signalsx1 andx2.

In the case of the simplified Wiener model, only one filterG
needs to be estimated. Typically, equation (7) is used with the
linear polynomialP (1)(x). The parametersam are then estimated
through regression of the outputy on the signalsP (m)(ĝ ∗ x).

More advanced techniques [5] have been designed to solve
the least-squares problem explicitly or using iterative algorithms.
These methods do not assume that the polynomialsP (m)(x) are
perfectly orthogonal to each other, but use this property toensure
better conditioning of the matrices in the least-squares problem.
For the purpose of performance comparison, we limit ourselves to
the Lee-Schetzen approach which requires less computationtime
than these refined techniques.

4. NUMERICAL COMPARATIVE STUDY

4.1. Systems

For this study, we look at three different systems at a sampling fre-
quency of 100kHz . The first one is an ideal polynomial Hammer-
stein system, the second an ideal simplified Wiener model, and the
third a discrete-time emulation of a Tube Screamer audio effect.

We study a polynomial Hammerstein system of order 3. There
are 4 FIR filtersGm(z) of length 4. Interfering independent white
Gaussian noise sequences at a power of -30dB are added to the
input signal and the output signal.

Next, we study a Wiener system of order 3. The filterG(z)
is a lowpass FIR filter of length 4. Interfering independent white
Gaussian noises at a power of -20dB are added to the input and the
output signals.

Finally, we consider a Tube Screamer circuit [10] shown in
Fig. 3. The circuit architecture suggests a lowpass filter followed
by a saturating nonlinearity. As a result, a Wiener model wasse-
lected, in this case using order 9 and 2048-tap filters. Noisesignals
with a standard deviation of 2V were used to probe the system,so
as to generate noticeable distortion.

Figure 3: Tube screamer circuit

4.2. Error measurement

Estimating the performance of the algorithm requires the definition
of an error measure. Noise-based identification performance is
usually evaluated through variance-based measures, but here, we

want to explore an alternative measure that would better account
for the harmonic distortion reconstruction.

4.2.1. Noise response error measure

For a model parametrized with a noise excitation, it is usualto
consider the error measure as the variance of the residual between
the output of the actual systemy[n] and that of the modelz[n] in
response to noise, normalized by the variance of the output of the
system [5]

ǫnoise =
Var(y[n]− z[n])

Var(y[n])
(8)

4.2.2. Harmonic response error measure

In the case of an audio system, we are more interested in testing the
accurate reconstruction of the system response to periodicsignals
such as sinusoids. The error measureǫnoise is not well suited for
this purpose since the noise present in the filter estimationand the
polynomial coefficients can influence on the harmonic response of
the model in ways not suggested by the noise response error.

To evaluate the error in the harmonic response of the model,
we send a sine sweep to both the system and the model. The
recorded outputs are denotedy[n] and z[n]. We then measure
the mean square of the enveloperenv[n] of the residualr[n] =
y[n]− z[n] normalized by the mean square of the envelope of the
system outputyenv[n] and use it as a measure of the error in the
harmonic distortion reconstruction in the model

ǫharm =

∑

n
renv[n]2

∑

n yenv[n]2
(9)

In the experiments, we use a sweep with an amplitude equal to
the identification noise standard deviation, which means 2Vin the
case of the Tube Screamer.

4.3. Results

For the three systems, we plotted the harmonic response error of
the model estimation as a function of the noise response error for a
noise excitation with a uniform distribution, compared to the usual
Gaussian distribution. The uniform and Gaussian noises were nor-
malized to have the same energy, and the harmonic response error
was measured with a sweep having an amplitude equal to the stan-
dard deviation of the noises, which means in the amplitude range
described by the two distributions. Recording durations of1, 10
and 100 seconds were tested. The algorithms were run a num-
ber of times to get statistical information about the behavior of the
estimation errors.

The results for the ideal polynomial Hammerstein system (Fig. 4)
show that the error behavior for a uniform noise is differentfrom
the Gaussian noise. The noise response error decreases faster with
noise sequence length for the Gaussian noise, while the harmonic
response error is always lower with the uniform noise. For long se-
quences, the improvement of the harmonic response error is roughly
5dB.

The results for the ideal Wiener system (Fig. 5) show the same
tendencies observed on the previous system, which suggeststhat
the performance of the uniform distribution for harmonic distor-
tion reconstruction is better than that of the Gaussian distribution
in the amplitude range of interest of the system. For long se-
quences, the improvement of the harmonic response error is roughly
3dB.
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Figure 4: Error measurements for a polynomial Hammerstein sys-
tem probed with a uniform (+) and a Gaussian noise (x) — shorter
noise sequence durations are plotted darker
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Figure 5: Error measurements for a Wiener system probed with
a uniform (+) and a Gaussian noise (x) — shorter noise sequence
durations are plotted darker

The results for the Tube Screamer emulation (Fig. 6) differ
from the two previous ones. We observe that the two errors mea-
sures converge to a rather high value, suggesting that the Wiener
model is not sufficiently complex to describe the behavior ofthe
system. However, we can see that here again, the choice of the
distribution has a clear influence on the model fitting convergence.
For long sequences, the improvement of variance-based error is
roughly 2dB.

5. CONCLUSION

In this paper, we studied the hypothesis that the choice of noise dis-
tribution for the purpose of nonlinear model identificationwould
influence the convergence of the model estimation. A new error
measure based on the reconstruction of the harmonic distortion of
the emulated model was introduced.

Though preliminary, the results of the experiment indicatea
clear influence of the choice of the noise distribution on theer-
ror of the estimated model. On ideal models, the use of the uni-
form distribution improved the measured harmonic responseerror,
while the variance-based error was higher.

These observations suggest that the design of customized noise,
both in the amplitude domain (probability distribution) and the fre-
quency domain (auto-correlation) would allow improvementin the
estimated model. However, changing these parameters requires
adapting the algorithm accordingly, since the orthogonal polyno-
mial family and the deconvolution process depends on them. Fu-
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Figure 6: Error measurements for an ideal Wiener system probed
with a uniform (+) and a Gaussian noise (x) — shorter noise se-
quence durations are plotted darker

ture work on the topic involves the extension of the tests on alarger
set of models (e.g., Wiener-Hammerstein model, Volterra series)
and additional least-squares fitting methods.
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