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ABSTRACT

Noise-based nonlinear system identification techniquieg) titam-
merstein and Wiener forms have found wide application itogio
ical system modeling, and been applied to modeling nonlinaa
dio processors such as the ring modulator. These methodis app
noise to the system, and project the system output onto d eet o
thogonal polynomials to reveal parameters of the model.ugho
Gaussian sequences are invariably used to drive the unksygsvn
tem, it seems clear that the statistics of the input will effine
model estimate. Motivated by the limited input and outpuiges
supported by analog systems, in this work, the use of an imgigée
sequence having a uniform distribution is explored. In tddj an
error measure indicating harmonic distortion modelinguaacy
is introduced. Simulation results identifying Hammenstand
Wiener systems show that the uniform and Gaussian diswitmit
perform differently, with the uniform distribution gendyapro-
ducing more accurate harmonic responses. Finally, uniforize
and Gaussian noise are used to model a saturating low-pasg ci
similar to that of the Tube Screamer, with the uniform disttion
providing a modest improvement in noise response error.

1. INTRODUCTION

The identification of nonlinear systems is a current focusdio
research, in particular modeling of vintage analog audieces
has received a lot of recent attention [1]. A general noalirsys-
tem can be modeled by a Volterra series, introduced by Valter
in 1887; however its use is made problematic by its large rermb
of parameters. Simplified models such as the block-basea@lsiod
were later introduced to reduce the number of parametessnec
sary to characterize the system [2].

An efficient noise-based method for extracting the differen
parameters of the \olterra series was first introduced by[BEe
with an algorithm using stationary white Gaussian noisextcaet
the model parameters through correlation. Algorithms thase
iterative structures and least-squares estimation were dievel-
oped [4[5] to improve the convergence of the estimation and e
tend the technique to non-ideal noise signals.
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for correlation estimate to converge. This drawback is camap
sated for by the fact that this technique is theoreticallyatde of
estimating parameters of a large set of nonlinear modettstres,
while techniques such as chirp-based identification arédiirto
a particular nonlinear modell[2].

The noise-based identification allows the estimation afdin
parameters of any combination of static nonlinear blocld dyr
namic linear blocks (e.g., Wiener-Hammerstein, Wienemheer-
stein) and on the \Volterra kernels. It is also the only metéawall-
able to estimate nonlinear parameters in multi-input maar sys-
tems (e.g., ring modulators)![8].

In the case of analog audio effect processors, there is gelimi
input and output amplitude range. Hence, the use of a differe
distribution such as the uniform distribution would be mappro-
priate as it will scan the amplitude range of the effect inlaheed
manner. In this paper, we investigate use of this altereatistri-
bution.

Modeling error in noise-based identification is usuallyeased
via the output error variance. This choice may be less rateva
for the purpose of audio applications since we are moredsted
in an accurate reconstruction of the distortion of the systéor
harmonic inputs such as sinusoids. In this paper, we int®du
an alternative error measurement of the estimation errsedan
harmonic response reconstruction.

We first describe the mathematics of our model and of the
related noise-based identification method. We then comibare
performance of estimators based on uniform and Gaussia® noi
sequences applied to synthetic Hammerstein and Wienersgst
and then to a discrete-time analog circuit model.

2. NONLINEAR MODELS

The most general nonlinear model is the \olterra serieschvhi
describes an expansion of analytic functionals (functimifsinc-
tions) [8]. However, this complex model is often avoidectsithe
description of a single-input system with a memorylo$amples

This class of methods competes with other techniques basedand distortions at orde¥/ requires the estimation @t parame-

on excitation signals such as maximum-length sequeidesr[6]
chirp signals[[7]. The limitation of the noise-based estiora
compared to these techniques is that longer test signateaded

ters. In this paper, we use simplified models, the polynomah-
merstein model[2] and the Wiener modgl [5]. The input-otitpu
relationship of the two models can be described using theviel

DAFX-1


https://ccrma.stanford.edu
mailto:fgermain@stanford.edu
https://ccrma.stanford.edu
mailto:abel@ccrma.stanford.edu
http://www.music.mcgill.ca/musictech/spcl
file:www.cirmmt.mcgill.ca
mailto:depalle@music.mcgill.ca
http://www.music.mcgill.ca/musictech/spcl
file:www.cirmmt.mcgill.ca
mailto:marcelo.wanderley@mcgill.ca 

Proc. of the 18 Int. Conference on Digital Audio Effects (DAFx-12), Yorlk USeptember 17-21, 2012

ing form:

y[n] = F(z)[n] = ZF )[n] 1)

whereF;, (z) corresponds to a nonllnearlty of order.

2.1. Polynomial Hammerstein model

We consider the polynomial Hammerstein model (Elg. 1) wiigch
a parallel combination of simplified Hammerstein modelsceaae
of a static nonlinearity and a linear filter. Each nonlinelach is
usually associated with a particular order of distortionthiis case,
F,.(x) is represented by the filtered polynomidl such that

Z g 7]

whereg,, is the impulse response of lendthof filters G,,,. We
see that the number of parameters is reduced .

Fo(z) = go, z)[n] = (2)

"n— 7],

Figure 1: Polynomial Hammerstein model

2.2. Wiener model

We consider the simplified Wiener model (Fig. 2), cascade of a
single linear filter and a static nonlinearity. In this caBg,(x) is
represented by the filtered polynomidl’, such that:

zwm—m,ﬂwmm—w<ihMMnTQ @)

whereg is the impulse response of lendthof a filter G, anda.,
is a set of coefficients weighing the different orders of thl/po-
mial expansion of'(xz). We see that the number of parameters is

reduced taVf + T'.
i a2

Figure 2: Simplified Wiener model

3. NONLINEAR IDENTIFICATION

3.1. Excitation signals

Noise-based identificationl[2] B} 4] invariably uses a wid&aus-
sian noise excitation signal. However, the parameter esim
algorithm usually assumes only whiteness of the excitation

If we take the formulation of the general extraction aldarit
as given in[[5], we see that noise-based algorithms are lgctua
least-squares approximations of the parameters of the Inoode
the system in the two-dimensional space of signal amplitioe
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domain) and signal spectrum (frequency domain). The choice
of the noise distribution and its temporal correlation nfiedi the
way the energy of the input signal is statistically disttéuliin the
amplitude-frequency plane.

Previous researchl[2] has proven that modifying the Ganssia
noise distribution parameters can modify the convergerfideeo
parameter estimation in a given amplitude area around &g av
agep, followed by a piecewise reconstruction to cover the whole
amplitude domain. Our goal here is to test if the use of a non-
Gaussian noise distribution can affect positively the grenfince
of the algorithm.

3.1.1. Noise distributions

The centered Gaussian noise has a probability densityifumct
pa(x) = N (i, 0?) for a meary: and a variance”. So the sys-
tem will be mainly excited in the domaip + 20. In the usual
setup wherg. = 0, we see that most of the energy is concentrated
in the region around zero, where most systems are quasirline
area. Also, we notice that this distribution theoreticakplores
the whole amplitude domai-oo, co].

Instead of taking multiple measurements with very différen
Gaussian noise distribution parametgrando? as suggested in
[2], we consider spreading of the energy of our excitatiomhig
amplitude-frequency plane by performing the parametemest
tion with a uniform noise distribution. In this way, only oneea-
surement is needed. Its probability density functiopigz) =
1(_4.4)/(2b) for an amplitude range limited fo-b, b].

3.1.2. Orthogonal polynomials

Noise-based identification methods are based on leastexfit
ting and as such, it is desirable to perform a linear transéion
on the nonlinear distortions™ to go to polynomial familyP ™
such that for an excitation noise of probability density dtion
w(z), we get:

/oo P“”)(x)P(”)(m)w(ﬂU)dw = amOm,n (4)

which means that the polynomial family is orthogonal resipely
to the noise distribution.

In the cases of a unitary Gaussian noige< 0, c = 1) and
a unitary uniform noise( = 1), the orthogonal polynomial fam-
ilies are respectively the Hermite polynomigi&™ [5] and the
Legendre polynomial« ™ [9]. In the case of non-unitary noise
distributions, the polynomials are normalized to remathagonal

M () = o1 (2) andefP (@) = v (3). 9)

3.2. ldentification method

As demonstrated i [8], the parameter estimation probletihef
polynomial Hammerstein model and the simplified Wiener nhode
can be written as a least-squares problem. In the case ofetire L
Schetzen algorithni[3], the problem is simplified as we agsum
that the noise excitation is ideal and so that the orthogpaob/}-
nomials are actually orthogonal in the experiments. Under t
hypothesis, the parameters can be estimated through

(6)

Pp(m) (2), P(m) (z) * m = Py p(m) (2)s
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where¢., ., is the cross-correlation between the signalsand
x2, and P("™ is the orthogonal polynomial family corresponding
to the chosen noise distribution.

The deconvolution ofG,, is usually performed in the fre-
quency domain via

N Sy P(m)(z)(f)
m = : ) 7
Gm(f) Spm) (2, pm) (2 (f) @

want to explore an alternative measure that would betteyiattc
for the harmonic distortion reconstruction.

4.2.1. Noise response error measure

For a model parametrized with a noise excitation, it is usaal
consider the error measure as the variance of the residivabée
the output of the actual systegin]| and that of the moded[n] in
response to noise, normalized by the variance of the oufihieo

where S, ., represents the cross-spectral density between thesystem|[5]

signalsz; andz:.

In the case of the simplified Wiener model, only one filtér
needs to be estimated. Typically, equatidd (7) is used vhigh t
linear polynomialP) (). The parameters,,, are then estimated
through regression of the outpyion the signals® (™ (§  z).

More advanced techniquels| [5] have been designed to solve

the least-squares problem explicitly or using iterativgogathms.
These methods do not assume that the polynoniaf® (z) are
perfectly orthogonal to each other, but use this propergnisure
better conditioning of the matrices in the least-squareblpm.
For the purpose of performance comparison, we limit oueseto
the Lee-Schetzen approach which requires less computtien
than these refined techniques.

4. NUMERICAL COMPARATIVE STUDY

4.1. Systems

For this study, we look at three different systems at a sarg|fitie-

quency of 100kHz . The first one is an ideal polynomial Hammer-

stein system, the second an ideal simplified Wiener moddlttza
third a discrete-time emulation of a Tube Screamer audeceff

_ Varlyln] ~ 2l
“retee = " Varty) @

4.2.2. Harmonic response error measure

In the case of an audio system, we are more interested indetk
accurate reconstruction of the system response to peisaghels
such as sinusoids. The error meast{gse is not well suited for
this purpose since the noise present in the filter estimatiahthe
polynomial coefficients can influence on the harmonic respari
the model in ways not suggested by the noise response error.

To evaluate the error in the harmonic response of the model,
we send a sine sweep to both the system and the model. The
recorded outputs are denote¢h] and z[n]. We then measure
the mean square of the envelopenyn| of the residual[n] =
y[n] — z[n] normalized by the mean square of the envelope of the
system outpuyenvin] and use it as a measure of the error in the
harmonic distortion reconstruction in the model

>, renvn]?

6 arm —
g >, venv[n]?

In the experiments, we use a sweep with an amplitude equal to

9)

We study a polynomial Hammerstein system of order 3. There the identification noise standard deviation, which meangitie

are 4 FIR filtersa,,, () of length 4. Interfering independent white

case of the Tube Screamer.

Gaussian noise sequences at a power of -30dB are added to the

input signal and the output signal.
Next, we study a Wiener system of order 3. The filf&z)
is a lowpass FIR filter of length 4. Interfering independehites

Gaussian noises at a power of -20dB are added to the inpuband t

output signals.

Finally, we consider a Tube Screamer circ(iit/[10] shown in

Fig.[3. The circuit architecture suggests a lowpass filtboked
by a saturating nonlinearity. As a result, a Wiener model s&s
lected, in this case using order 9 and 2048-tap filters. Nogg®ls
with a standard deviation of 2V were used to probe the system,
as to generate noticeable distortion.

(e,

2.2kQ

10nE]

Figure 3: Tube screamer circuit

4.2. Error measurement

Estimating the performance of the algorithm requires thimii®n
of an error measure. Noise-based identification performasc
usually evaluated through variance-based measures, itvie

4.3. Results

For the three systems, we plotted the harmonic responseadrro
the model estimation as a function of the noise responseferra
noise excitation with a uniform distribution, comparedhe tisual
Gaussian distribution. The uniform and Gaussian noises ne-
malized to have the same energy, and the harmonic respawse er
was measured with a sweep having an amplitude equal to the sta
dard deviation of the noises, which means in the amplitudgea
described by the two distributions. Recording durationg,of0
and 100 seconds were tested. The algorithms were run a num-
ber of times to get statistical information about the bebagf the
estimation errors.

The results for the ideal polynomial Hammerstein system. @i
show that the error behavior for a uniform noise is differeom
the Gaussian noise. The noise response error decreasrsifiist
noise sequence length for the Gaussian noise, while thedmacm
response error is always lower with the uniform noise. Foglse-
guences, the improvement of the harmonic response erarghly
5dB.

The results for the ideal Wiener system (fElg. 5) show the same
tendencies observed on the previous system, which sugtyests
the performance of the uniform distribution for harmonistdi-
tion reconstruction is better than that of the Gaussiamibigton
in the amplitude range of interest of the system. For long se-
guences, the improvement of the harmonic response erarghly
3dB.
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Figure 4: Error measurements for a polynomial Hammerstein s
tem probed with a uniform (+) and a Gaussian noise (x) — shorte

noise sequence durations are plotted darker
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Figure 5: Error measurements for a Wiener system probed with
a uniform (+) and a Gaussian noise (x) — shorter noise seguenc

durations are plotted darker

The results for the Tube Screamer emulation (Elg. 6) differ
from the two previous ones. We observe that the two errors mea
sures converge to a rather high value, suggesting that teeéWi

model is not sufficiently complex to describe the behaviothef
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Figure 6: Error measurements for an ideal Wiener systemegrob
with a uniform (+) and a Gaussian noise (x) — shorter noise se-
guence durations are plotted darker

ture work on the topic involves the extension of the tests langger
set of models (e.g., Wiener-Hammerstein model, \olterraeske
and additional least-squares fitting methods.
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