
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

SHIFTED NMF WITH GROUP SPARSITY FOR CLUSTERING NMF BASIS FUNCTIONS

Rajesh Jaiswal,

Audio Research Group
Department of Electrical Engineering

Dublin Institute of Technology
Dublin, Ireland

rajesh.enc@gmail.com

Derry Fitzgerald,

Audio Research Group
Department of Electrical Engineering

Dublin Institute of Technology
Dublin, Ireland

derry.fitzgerald@dit.ie

Eugene Coyle,

Audio Research Group
Department of Electrical Engineering

Dublin Institute of Technology
Dublin, Ireland

Scott Rickard,

Department of Electronic Engineering
University College Dublin

Dublin, Ireland

ABSTRACT

Recently, Non-negative Matrix Factorisation (NMF) has found ap-
plication in separation of individual sound sources. NMF decom-
poses the spectrogram of an audio mixture into an additive parts
based representation where the parts typically correspond to in-
dividual notes or chords. However, there is a need to cluster the
NMF basis functions to their sources. Although, many attempts
have been made to improve the clustering of the basis functions
to sources, much research is still required in this area. Recently,
Shifted Non-negative Matrix Factorisation (SNMF) was used to
cluster these basis functions. To this end, we propose that the
incorporation of group sparsity to the Shifted NMF based meth-
ods may benefit the clustering algorithms. We have tested this on
SNMF algorithms with improved separation quality. Results show
that this gives improved clustering of pitched basis functions over
previous methods.

1. INTRODUCTION

The process of estimation of individual sound sources from a mix-
ture of single channel audio mixture is known as Monaural sound
source separation (SSS). This is a difficult problem due to the
complex overlapping of audio signals, produced by sources, in
time and frequency. SSS would help in many audio applications
which requires analysis, manipulation and re-localisation of audio
data like music transcription, pitch modification and conversion of
monophonic sound to 5.1 surround system.

Recently, NMF [1] based algorithms have been widely used
in separating individual sound sources from a single channel au-
dio mixture. NMF decomposes time-frequency representations
such as the magnitude spectrogram of an audio signal into addi-
tive parts-based basis functions. NMF approximately decomposes
the magnitude spectrogram X of size n × m into multiplicative
factors A and B such that

X ≈ X̂ = AB (1)

where A is n×r matrix and B is r×m matrix. The number of ba-
sis functions i.e. r is chosen such as r < m,n. Matrix A contains
r frequency basis functions and the corresponding time activation
functions are stored in matrix B. The cost function of the form
D(X||X̂) is minimised to obtain frequency basis functions.

A commonly used cost function for NMF is the generalised
Kullback-Leibler (KL) divergence DKL(X||X̂) is used as shown
in equation 2:

DKL(X||X̂) =
∑
i,j

(Xij log
Xij

X̂ij

−Xij + X̂ij) (2)

NMF basis functions typically corresponds to individual notes or
chords played by the instruments in the music mixture. Thus, the
spectral envelop of each NMF basis function along with the time
activation function can be used to re-synthesis the original note.
However, there will usually be many more notes than sources.
Thus, clustering of these NMF basis functions to their respective
sources is required to determine the individual sound sources in
a given piece of music. Much research have been done to clus-
ter these basis functions into active sources. Supervised clustering
methods have been discussed in [2] to map the separated signals
into sources. Unsupervised clustering of separated basis functions
by mapping the basis functions to the Mel frequency cepstral do-
main has been implemented in [3]. Recently, we have proposed
a clustering method [4] which uses Shifted Non-negative Matrix
Factorisation (SNMF). The basic principle used in this paper is
covered in [5], we will go through the details in section 4.1.

A property of NMF is that it typically generates a sparse rep-
resentation of the given data. This makes the frequency basis func-
tion sparse in nature. However, the sparse is random and does not
give any spatial or temporal information of the data. Additional
constraints on NMF basis functions can be imposed to control the
degree of sparseness to improve clustering. One such constraint is
group sparsity (GS). GS assumes that each instrument is turned on
(played) for as little a time as possible and that an individual in-
strument activation is much sparser than that of a mixture of instru-
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ments. Such a constraint has been proposed by [6] that generates
the NMF basis functions which benefits sparsity at group level.
Thus, each basis function in A belongs to a group corresponding
to an instrument in the mixture. Hence, GS reduces the overlap-
ping of basis functions in time. In [6], GS is incorporated in NMF
with the hypothesis that the local amplitudes of the sources are in-
dependent and may be derived as a marginal distribution for the
activation function B. Further, they used Itakura-Saito (IS) diver-
gence as the cost function. This is done to exploit the equivalence
between IS-NMF method and maximum-likelihood estimation of
(A,B) when power spectrum density (PSD) of the input signal is
used to calculate frequency basis functions. However, many recent
works in audio have used the NMF of magnitude spectra instead
of power spectra with better sound separation quality.

To this end, we propose that this incorporation of GS in NMF
of magnitude spectra can improve the clustering in recently pro-
posed SNMF-based algorithm [4]. Here, we use the relation be-
tween Kl-NMF and ML problem of estimating A and B using
Poisson distribution [7] as explained in section 3. We also propose
that GS constraint can further be integrated in SNMF algorithm for
better separation of the individual sources. This can be explained
as follows. Let the number of groups to be defined in SNMF al-
gorithm be equal to the number of sources. Again, the sparseness
in NMF basis functions can be controlled by giving information
about the groups upon activation of SNMF. Then, GS in SNMF
would enable the given frequency basis functions to iterate towards
the source it belongs and thus improve the quality of separation.

The structure of the paper is as follows: Section 2 outlines the
working of statistical model and signal flow of the proposed algo-
rithm. Section 3 illustrates the penalized ML estimation method
for GS in KL-NMF. Section 4 gives a overview of the SNMF al-
gorithm and gives the update equations for the proposed SNMF
algorithm. A comparison of various SNMF algorithms is done in
section 5. Finally, the results of the proposed SNMF algorithm are
compared against a previously proposed algorithm in section 6.

2. OVERVIEW OF STATISTICAL MODEL

Figure 1 shows the statistical model for the algorithm proposed.
The spectrogram of the input signal is obtained by using the short-
time Fourier transform (STFT). Then, the NMF basis functions
are obtained from the magnitude spectrogram of a given mixture.
Thereafter, the NMF basis functions are then converted into con-
stant Q domain using CQT [8] to exploit the shift-invariant prop-
erty of the SNMF algorithm. Then, the activation of the SNMF
model results in determining the instrument basis functions Ar

for the respective sources. The individual source spectrograms are
obtained from Ar using SNMF masking as explain in section 4.4.

We have incorporated group sparsity at two stages of the pro-
posed algorithm. First of the two stages is calculating the NMF
basis functions and second stage is the activation SNMF algorithm
to determine the instrument basis functions. However, it can be
noted that no knowledge of GS at first stage is used to model
the SNMF at second stage and vice versa. We have also tested
the performance of IS divergence with and without group sparsity
in SNMF algorithms. The prefix g has been used in subscript of
SNMF to indicate the use of GS in the given SNMF algorithm. In
other words, gkl represents KL divergence with GS and kl refers
to KL divergence without GS. For example, SNMFgis−gis repre-
sents two stages of SNMF algorithm with group sparsity at both
the stages with IS divergence. - in the subscript divides the two

Figure 1: Signal flowchart of the System model

stages where the left side refers to the first stage and the right side
represents the second stage. However, NMFkl denotes standard
NMF method with KL divergence for calculating frequency basis
functions and SNMFgkl represents the 2nd stage of the SNMF al-
gorithm with KL divergence incorporated with group sparsity. We
will use these notations for rest of the paper. In the following sec-
tion we will explain the NMF method with GS to determine NMF
basis functions.

3. GROUP SPARSITY WITH KL-NMF

3.1. Equivalence between KL-NMF and ML estimation

The minimising of the cost function in equation 2 to determine
A and B can be derived from a probabilistic model described in
[7]. This can be illustrated as follows. Given the magnitude spec-
trogram X of the input signal x, we assume that at every time-
frequency interval, the sum of the magnitude of individual source
signals xr

m,n is the total magnitude of the observed signal xm,n,
such that:

xm,n =

R∑
r

xr
m,n (3)

where xr
m,n represents the time-frequency atom in the instrument

spectrogram xr produced by the rth source. R is the number
sources in the mixture. Also, we make the hypothesis that signals
in xr

m,n follows the Poisson distribution. Thus, the magnitude of
each xr

m,n can be represented as:

xr
m,n ∼ P≀(xr

m,n;Am,rBr,n) (4)

PO(k;λ) = λke−λ

Γ(k + 1)!
(5)
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where Br,n is the activation gain for the basis function Am,r .
Equation 5 defines the Poisson distribution. It can be noted that the
summation of the statistically independent Poisson random vari-
able is also a Poisson random variable. Further, as mentioned in
[7] the determination of basis functions can be modelled as

p(X|A,B) = PO(X;AB) (6)

Alternatively, it can be written as:

p(X|A,B) =
∏ e−AB [AB]X

Γ(X + 1)!
(7)

The ML solution can be given by taking log and solving which is
as follows:

(A,B) = argmax
A,B

log p(X|A,B)

=
∑
−[AB] +X log([AB])− log(Γ(X + 1)

≡ −DKL(X||AB)

(8)

Thus, we derived a ML estimation of the basis vectors using the
probability model in equation 8. We find that this objective is same
as minimising the cost function DKL(X||X̂) defined in equation
2. In the next section we will incorporate group sparsity with the
ML estimation that would favour NMF using KL divergence.

3.2. ML with Group Sparsity

Given r basis functions, we need to group them into g groups,
where each of these non-overlapping groups contains all the basis
functions corresponds to a particular source. The sparsity con-
straint have been previously applied on both A and B or either A
or B for many SSS algorithms but until the introduction of group
sparsity, this was done on individual basis functions. However,
we want to make a given source active for as little time as pos-
sible. Therefore, following the principle used in [6], for a given
time-frequency frame n, if a source (group) is not on, then the cor-
responding activation gain Bg,n should be set to zero. Here, Bg,n

is a vector of basis functions ri such that ri is a member of a given
group g ( ri ∈ g where 1 ≤ i ≤ m). Let Bg

n be defined as a time
envelop of the given source for a given time frame n such as

Bg
n = ||Bg,n||1 (9)

where ||.||1 is L1 norm function. Furthermore, it is assumed that
the activation gain Bg

n for all the individual sources are statisti-
cally independent inverse gamma random variables. Thereafter,
by using the conditional probability on the activation function B
at frame n for r basis functions, the activation gains Br,n can be
factorized into groups to determine respective sources. This can
be denoted as:

p(Bn|Bg
n) =

∏
g

∏
r∈g

p(Br,n|Bg
n) (10)

The prior of the activation functions Bn can be calculated us-
ing the marginal distribution as follows:

p(Bn) =
∏ Γ(g + β)

Γ(β)

αβ

(α+Bg
n)(β+g)

(11)

where α is the scaling factor and the parameter β defines the
shape of the gamma distribution. The ML estimation of basis func-
tions A and gains B is done using the prior and the term defined in

equation 8. This introduction of the penalized term, i.e. the prior
information, for the ML estimation is known as MAP (maximum
a posterior) estimation. Therefore, the MAP estimation technique
can be formulated as:

(A,B) = min
A,B≥0

DKL(X||AB) + λΦ(B) (12)

where the 2nd term Φ(B) is an optimisation term and is used to
uniquely define the grouping pattern. The regularisaition term λ ∈
[0, 1) tunes the quality of factorisation obtained and can be set to
zero to obtain standard KL-NMF solution.

The update equation for the activation function A and B are
follows:

B ← B ~
(

AT (X ~ X̂−δ)

AT (X̂−(δ−1)) + λΦ′(Bg
n)

)
(13)

where
Φ(z) = log(α+ z) (14)

A← A~
(

(X ~ X̂−δ)BT

(X̂−(δ−1))BT + λ
∑

n Br,nΦ
′(Bg

n))

)
(15)

were δ is set to 1 for KL divergence. ~ indicates elementwise
matrix multiplication. The derivation of update equations can be
found in [6] where δ was set to 2 for IS divergence. All opera-
tions in equations 13 and 15 are done elementwise. Using these
equations the basis functions with GS constraints can be obtained.
The obtained frequency basis functions need to be clustered to
respective sources for SSS. Recently, an SNMF based algorithm
(SNMFkl−kl) was proposed to segregate these basis functions to
their sources [4]. We argue that further incorporating GS in SNMF
will better the quality of separated sources as it would guide the
basis function obtained using NMFgkl towards the sources. In
section 5, it is shown that for a choice of NMF basis functions,
SNMFgkl gives a better clustering than SNMFkl. Also, we men-
tion that we are not using GS grouping at first stage to guide SNMF
algorithm.

Here, we will explain the significance of the two stage pro-
cess. In [6], it is mentioned that, in general, clustering of the
basis functions using group sparsity close to that of ideal can be
achieved for temporal overlapping of sources up to 66%. There-
fore, it can be concluded that the GS in the first stage alone did
not give good clustering for the basis functions due to 100% over-
lapping of sources in time, as in the case of the test set used in
this paper. Recently, the second stage alone has been implemented
[9], i.e. SNMF decomposition, to segregate the frequency basis
functions obtained by CQT of the magnitude spectrogram. After
testing, we did not get any improvement on the application of GS
on the SNMF algorithm discussed in [9]. However, GS did appear
to reduce the amount of temporal overlapping in the separated ba-
sis functions. The SNMF clustering stage was designed to remove
the overlapping in basis functions and group them into sources.
Hence, GS assists the SNMF clustering algorithms discussed in
this paper and the two stage process was necessary for improving
the quality of separation. Next, we will discuss the implementation
of GS in KL-SNMF.

4. GROUP SPARSITY WITH KL-SNMF

Having obtained the basis functions using group sparsity in KL-
NMF, a knowledge of groups and there sparseness can be intro-
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duced in SNMF when clustering these basis functions. This en-
forcing of basis function towards their respective groups will fur-
ther improve the clustering and hence improving the separation
quality of the individual sources. This can be done in the same
way as explained in section 3. Here we will first explain the prin-
ciple and technique used in SNMF.

4.1. SNMF algorithm

The SNMF algorithm assumes that the timbre of a note produced
by a particular instrument does not change for entire range of pitches
present in music. Therefore, an instrument in a music mixture
can be uniquely defined by the timbre of the note (frequency basis
function) play by the particular instrument. Also, a single basis
function can be translated to approximate the spectra of all notes
played by the instrument in consideration. This can be explained
as follows. According to the even tempered chromatic [10] scale,
the fundamental frequency of the adjacent notes are geometrically
spaced by a constant factor of 12

√
2. As a result, by translating the

frequency basis function up or down in frequency as required, the
frequency basis function of one note can be used to approximate
that of another note for a particular instrument. A log-frequency
spectrogram is required to exploit this shift-invariant property. The
log frequency resolution of the frequency basis functions is ob-
tained by the constant Q transform. As SNMF makes use of ten-
sors, we now define the notation used for the tensor parameters in
the SNMF model.

We will follow the notations and parameter definitions de-
scribed in [11] for the SNMF model [5]. Calligraphic upper-case
letters (R) denotes tensors of any given dimension. The contracted
product of the two tensors of finite dimension results in a tensor.
This can be explained as follows.Let a tensor R be of dimension
I1 × · · · × IS × L1 × · · · × LP and a tensor D be of dimen-
sion I1 × · · · × IS × J1 × · · · × JN . Then, the contracted tensor
multiplication along the first S modes ofR and D can be denoted
as:

⟨RD⟩{1,...,S;1,...,S} =

I1∑
i1=1

· · ·
I1∑

i1=1

R×D = Z (16)

The dimensions along which the tensors R and D are to be
multiplied are specified in curly brackets. The resultant tensor Z
will be of dimension L1 × · · · × LP × J1 × · · · × JN . Indexing
of a given tensor is done using lower case letters, such as i and is
denoted byR(i, j).

4.2. Shifted NMF

To incorporate shift-invariant property, the Constant Q spectro-
gram C is obtained by multiplying a transform matrix T with ma-
trix A. Here matrix A that contains the frequency basis function
is considered as a spectrogram and transform matrix T acts as a
warping function which translates linear frequency in A into Con-
stant Q domain.

C = TA (17)

The spectrogram C is then factorised using SNMF model to
approximately determine the instrument basis function as shown
in equation 18 :
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Figure 2: NMF basis function of input mixture in constant Q do-
main.

C ≈ ⟨⟨RD⟩{3,1}H⟩{2:3,1:2} (18)

Here, R is a translation tensor of dimension n × k × n for k
possible translations. R translates the instrument basis functions
inD up or down to approximately cover all the notes played by the
required instrument. The tensor D of size n × r contains instru-
ment basis functions for each source.TensorH of size k×r×m is
a time activation function such thatH(i , j , :) represents the time
envelope for the ith translation of the jth source, which indicates
when a given note is played by a particular instrument. The cost
function used to obtain tensors D andH is same as used for NMF.

Therefore, the equivalence between ML estimation of tensors
D andH and minimising the KL divergence between tensors C and
D H can be exploited. The cost function for the decomposition
described in equation 18 can be defined as:

DKL(C||⟨PH⟩{2:3,1:2})

≈
∑
i,j

(Cij log
Cij

⟨PH⟩{2:3,1:2}
− Cij + ⟨PH⟩{2:3,1:2}) (19)

where

P = ⟨RD⟩{3,1} (20)

where tensor P contains the translated instrument basis functions.
The basis functions in D are translated using the translation

tensor P as shown in equation 20.

4.3. Update equations forH and D with Group Sparsity

Assuming that the number of groups is equal to the number of
sources, we can get the required clustering of frequency basis func-
tions. The GS in SNMF can be incorporated by applying the group
sparsity constraint on H and determining the priors using gamma
distribution as done in equation 10 and 11. For a given time-
frequency frame, let the activation gain Hg,k in SNMF model be
the summation of all the components defined by H(k, : , : ) for a
particular g. This can be expressed as:

Hg,k =
∑
k

H(k, g, :) (21)

where k is the number of frequency shifts. Further, with the knowl-
edge of priors of the activation functionH, the SNMF problem can
be reduced to the ML estimation of the tensors D and H. The pe-
nalised ML solution for the KL-SNMF problem can be defined as:
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Figure 3: Clustering of NMFkl basis function using SNMFgkl

⟨P,H⟩ = min
P,H≥0

DKL(C||⟨PH⟩{2:3,1:2}) + λΦ(H) (22)

The optimisation term Φ(H) is again used to define the group
sparsity constraint. The interactive multiplicative update equations
for P andH can be derived in a manner similar to [5]. This can be
formulated as follows:

H ← H ~
(

⟨⟨RD⟩{3,1}Y⟩{3,1}
⟨⟨RD⟩{3,1}O⟩{1,1} + λΦ′(Hg,k)

)
(23)

where
Y =

C
⟨PH⟩{2:3,1:2}

(24)

and O is a tensor of all ones. The multiplicative updates for the
translated basis functions in D can be by using following equa-
tions:

W = ⟨RO⟩{1,1} (25)

D ← D ~
(

⟨ZH⟩{1:3,1:3}
⟨WH⟩{1:3,1:3} + λ

∑
nHr,nΦ

′(Hg,k)

)
(26)

where

Z = ⟨RY⟩{1,1}
where function Φ(z) is same as stated in equation 14. The mul-
tiplicative updates and the positive (random numbers) initializa-
tion for D and H ensures the positive tensor factorisation. The
number of translations k in R is chosen such that the translated
(frequency-shifted) instrument basis functions cover all the notes
or chords corresponding to basis functions in the mixture. Thus,
by using Constant Q spectrogram C as an input, the SNMF with
group sparsity helps in separating the instrument basis functions.

4.4. Signal reconstruction

Individual source spectrograms Cr are reconstructed by using the
slices of tensors, D(:, r) and H(:, r, :), corresponding to the rth

source.

Cr = C(:, :, r) = ⟨⟨RD(:, r)⟩{3,1}H(:, r, :)⟩{2:3,1:2} (27)

A limitation of using SNMF algorithm is that there is no true
inverse of CQT which results in lower separation quality of sep-
arated sources. Therefore, in the absence of inverse CQT, the re-
covered individual source spectrograms Cr are mapped back to
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Figure 4: Clustering of NMFkl basis function using SNMFkl .

the linear domain to obtain Ar. This can be done as follows. An
approximate inverse of T (see equation 17) is multiplied with in-
dividual source spectrograms Cr to recover corresponding Ar as
shown in equation:

Ar = T
′
Cr (28)

Having obtained source frequency basis functions Ar , indi-
vidual sound sources can be reconstructed, thus achieving the source
separation. The details of the synthesis of the sources can be found
in [4].

Figure 2 shows the log-frequency spectra of the NMFgkl ba-
sis functions of a test mixture of two sources. The x-axis shows
the frequency basis functions for all the notes played by the in-
struments present in mixture .The application of SNMF algorithm
separates the basis functions into two groups corresponding to the
individual sources. The separated basis functions of source 1 and
source 2 respectively can be seen in figure 4. SNMFkl was used
to generate the figure 4. The separated source spectrograms us-
ing SNMFgkl can also be seen in figure 3. The separated basis
functions are more visible for respective sources for SNMFgkl as
compared against SNMFkl. Thus, by inspecting the figures 4 and
3, we can conclude that SNMFgkl works better than SNMFkl to
separate basis functions. The results show distinct groupings of
basis functions and can further be used to separate sources in the
mixture. Hence, SNMF with GS constraint can be used to cluster
basis functions in monaural mixtures.

5. EXPERIMENTS

A dataset of 25 monaural test mixtures were used to test the perfor-
mance of all the SNMF algorithms discussed in this paper. The 25
test signals were the mixtures of 2 instruments and were generated
by using a huge library of orchestral samples of notes and chords
produced by a total of 15 different orchestral instruments [12]. The
sampling rate of the input mixtures were 44.1 kHz and were of 4
to 8 seconds in length. The test mixtures contains overlapping har-
monics and notes played by different instruments in the mixture.
This ensures the capability of SNMF-based algorithm to separate
notes played simultaneously by harmonic instruments. The details
of the dataset can be found in [13]

The widely used quality measures [14] signal-to-distortion ra-
tio (SDR), the signal-to-interference ratio (SIR), and the signal-
to-artefacts ratio (SAR) were used for evaluation of audio outputs
from various algorithms. SDR calculates the amount of distortion
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Figure 5: Performance evaluation of SNMFkl(blue solid line), SNMFis(red dotted line), SNMFgkl(black dash-dot line) and SNMFgis(green
dashed line) to group basis functions generated by NMFkl(1st column), NMFgkl(2nd column) and NMFgis(3rd column) for different number
of frequency shifts

present in the reconstructed signal, SIR determines the interference
of other sound sources in the separated signal and SAR measures
the artefacts present in the separated signal as a result of data pro-
cessing and reconstruction. The details of definition of the quality
measures can be found in [14]. These algorithms were tested for
the same set of input mixtures of 2 instruments. The magnitude
spectra and not the power spectra of the input signal were used to
calculate frequency basis functions as it gave better results for the
test mixtures. The magnitude spectrogram of the time-domain sig-
nal were obtained using the STFT with a 75% overlapping Hann
window, 4096 samples in length. The number of basis functions
were set to 13 to cover all the notes played in the mixture.

Matrices A and B in equation 1 were initialised with random
positive numbers and NMF was run for 300 iterations. 24 fre-
quency bins per octave ranging from 55Hz to 22.05kHz were
used for CQT. The number of sources in the SNMF algorithm was
set to 2. The SNMF algorithm ran for 50 iterations. A num-
ber of different tests were conducted to efficiently determine the
frequency basis functions using NMF and to determine the effect
of the number of different translations ’k’ in frequency on vari-
ous SNMF algorithms. We were hoping that the frequency shifts

would give some insights to the clustering obtained and would give
a clear comparison of the various SNMF methods. Number of fre-
quency shifts were ranged from 5 to 12. The number of groups in
GS was limited to 2 for the given tests.

A summary of the results for all the SNMF algorithms are
shown in figure 5. The scores for all the quality measures were
calculated and graphed against the allowable frequency shifts k.
The results were determined by finding the average of the quality
measures obtained for each separated source for each input mix-
ture. Each set of quality measure, say SDR in figures (a), (d) and
(g), illustrates the comparison of all the listed SNMF algorithms
for NMFkl, NMFgkl and NMFgis basis functions respectively. Al-
though, the GS constraint in SNMFgis helps in enhance the clus-
tering of NMFgkl basis functions as compared against SNMFis

but it fails to improve the grouping of for NMFgis basis func-
tions than that of SNMFis. Also, the results of SNMFkl−gis were
not good and were not included. Through visual inspection it can
be seen that SNMF algorithms with KL divergence (SNMFkl and
SNMFgkl) completely outperforms SNMF model with IS diver-
gence (SNMFis and SNMFgis). As a result, we will elaborate
more on SNMF algorithms based on KL divergence in section 6.
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Figure 6: The figure shows (a) the original test signal, (b) the orig-
inal source 1, (c) the separated source 1, (d) the original source 2,
(e) the separated source 2 in time domain.

Figure 6 shows the audio waveforms in the time domain of
an input mixture signal of two sources. The corresponding origi-
nal separated sources and synthetic sources are also shown. This
waveforms are obtained by using SNMFgkl−gkl method. It can
be seen from the various waveforms that the original sound source
and reconstructed sound signals closely match with each other and
after listening to the separated sources it was found that the notes
and the melodies played by the sources in mixture have separated
well. Thus, the proposed SNMF algorithm with GS can be used to
separate sound source signals in a monaural mixture.

6. RESULTS

In this section, we will compare the result of the proposed SNMF
model with GS constraint against a recently proposed SNMF clus-
tering algorithm (SNMFmask) [4]. It is important to note that
the SNMFmask algorithm is same as SNMFkl−kl as denoted in
this paper. As discussed in section 5 that the SNMF algorithms
with KL divergence works better for clustering the basis functions
as compared against the SNMF algorithms with IS divergence.
Therefore, we will discuss more on SNMF algorithms with KL di-
vergence. It can be concluded from the figure 5 that for NMFkl ba-
sis functions, SNMFgkl improves the grouping of basis functions
as compared to SNMFkl. Also, SNMFgkl is marginally better than
SNMFkl to group the NMFkl basis functions. However, both the
SNMF algorithms, SNMFgkl−gkl and SNMFgkl−kl scores low as
the frequency shifts increases.

To compare the results listed in [4], the highest scores of the
quality measures for the separated sound sources for each mixture

SNMF algorithm SDR SIR SAR
SNMFkl−kl 10.81 26.75 11.50
SNMFkl−gkl 11.79 27.09 12.38
SNMFgkl−kl 10.83 26.04 11.43
SNMFgkl−gkl 10.98 25.81 11.64

Table 1: Mean SDR, SIR and SAR for separated sound sources
using SNMF algorithm

were hand-picked for the given range of frequency shifts such that

SDR = max
k

SDRk, k ∈ K (29)

where K is the number of frequency shifts. The results were then
calculated by averaging the metrics (SDR, SIR and SAR) over
each of the separated sources for all the test mixtures. Thereafter,
the mean SDR, SIR and SAR were obtained by finding the average
over each of the input mixture. The mean of the quality measures
shown in table 1 are in DB. It can be seen from the table each
of the SNMF algorithm with group sparsity performs better than
SNMFkl−kl. We can also see that SNMFgkl performs better clus-
tering for basis functions generated by NMFkl and is marginally
better for NMFgkl. Hence, the GS in SNMF improves clustering
for NMF basis functions.

7. CONCLUSIONS

We have presented a Shifted NMF based clustering technique to
cluster the frequency basis functions. We have incorporated group
sparsity at two stages of the SNMF algorithm. We have explained
how the incorporation of group sparsity at first stage can improve
the clustering of frequency basis functions by reducing the over-
lapping of basis functions. Subsequently, at the second stage, the
group sparsity would guide the basis functions to their respected
groups corresponding to sources. A probabilistic model is used to
exploit the equivalence between ML problem and minimising KL
divergence cost function to estimate of frequency basis functions.
Group sparsity was incorporated in the activation gain functions
B andH respectively for the first and second stages of the SNMF
algorithm. An optimisation term was used to tune the grouping
criteria. Results show that incorporating GS improves the cluster-
ing of frequency basis function in SNMF model, thus improving
the separation quality. The presented algorithm can be potentially
used to separate multiple sources in a monaural mixture.
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