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ABSTRACT

The paper presents a variant of the segmentwise wavelet transform
(blockwise DWT, online DWT or SegDWT) algorithm adapted to
real-time audio processing. The implementation of the algorithm
as a VST plugin is presented as well.

The main problem of segmentwise wavelet coefficient pro-
cessing is the handling of the segment borders. The common bor-
der extension methods result in “false” coefficients, which in turn
result in border distortion (block-end effects) after particular types
of coefficient processing. In contrast, the SegDWT algorithm em-
ploys a segment extension technique to prevent this inconvenience
and produce exactly the same coefficients as the wavelet transform
of the whole signal would do.

In this paper we remove some of the shortcomings of the orig-
inal SegDWT algorithm; for example the need for the “right” seg-
ment extension is canceled. The VST plugin module created is
described from the viewpoints of both the user and the program-
mer; the latter can easily add their own method for processing the
coefficients.

1. INTRODUCTION

In the past years, many algorithms appeared that were dedicated to
“online” processing of signals by means of the wavelet transform.
The necessity of producing transform coefficients in “real time”
is natural in many applications, with the field of audio processing
being the first of them. Algorithms that have been developed are
usually tailored to specific types of application [1, 2, 3, 4, 5], and
thus are not general enough and transferable.

We limit ourselves only to methods which produce the ex-
act wavelet coefficients of the signal, i.e., as if the signal was
known in advance. To mention the main drawbacks of the state-
of-the-art methods, many of them are based on the assumption
that the length of each segment is a power of two—this is in con-
tradiction, for example, to the possibility of having segments of
length s = 96 6= 2n in ASIO (Audio Stream Input/Output) [6, 7].
The difference between 1024 and 2048 can be in some cases in-
admissibly big. Fairly general algorithms can be come across
[8, 9, 10], but most of them are quickly found to be limited to
the forward transform only. And, several methods were designed
to work with a fixed wavelet filter—this is mostly the case of image
processing where, for example, the JPEG2000 file format utilizes
the “CDF 9/7” biorthogonal wavelet for lossy image compression
[11, 12].
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As far as we know, the problem of computing exact transform
coefficients when the signal comes in the form of consecutive seg-
ments has been first addressed in a general form in the Ph.D. thesis
of the first author [13]. A version of the forward part (i.e., analy-
sis) for audio signals was presented at DAFx 07 [14], and as such
it was utilized in one of the Queen Mary Vamp Plugins [15], which
are actually not of the VST-type.

Since that time several modifications have been published, for
example those involving the lifting scheme in the real-time com-
putation [16], and also a generalization to image processing, which
allows for wavelet-type processing of arbitrarily sized image blocks
in parallel [17]. And, of course, the inverse segmentwise wavelet
transform is possible.

The highlighted generality of the SegDWT approach relies on
the following facts:
• the wavelet filter(s) can be arbitrary with finite impulse re-

sponse, including the biorthogonal ones,
• the transform depth can be arbitrary,
• the lengths of individual segments can be chosen arbitrarily

(and they can even vary).

1.1. Alternatives

1.1.1. Usual windowing

At first glance, one can doubt if the task could be done by simpler
means, via the usual signal “windowing” technique, as is related to
the short-time Fourier transform or Gabor transform [18, 19, 20]
and to signal analysis via reading the spectrogram. However, one
finds out that if the generality were to be preserved, the problems
must be solved such as
• it is not clear how to synchronize the wavelet coefficients

which would come from the respective window time-shifts
(this is due the downsampling, see below),

• if non-linear processing is introduced (denoising by means
of thresholding, for example), this would certainly intro-
duce errors.

The algorithm solving such problems would be of the same com-
plexity as the one to be described in this paper. Article [4] copes
with the first problem utilizing specific tricks but is limited to lin-
ear processing only.

1.1.2. Segments computed and processed separately

Another, even simpler approach would be to compute the wavelet
coefficients from each input segment via DWT with no respect to
the other segments. One can see this as a special case of window-
ing when rectangular window and no overlap is used. In DWT
(see Section 2) the samples beyond the signal borders have to be
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Figure 1: Artifacts appearing when individual segments are pro-
cessed regardless of their neighbours. A sinusoid was processed
non-linearly (hard thresholding) both at one time and segment-
wise, respectively. The error of the results is depicted in the bottom
graph. Segment length was s = 128, wavelet Daubechies 2 with
m = 4 was used and the boundary treatment was simply zero-
padding to ensure substantial differences.

extrapolated. For this reason, in this approach one introduces er-
rors in the coefficients which are “located near the boundaries of
the segments”, see Fig. 1. This is called “block-end effects” or
“border artifacts”.

It is worth noting that the “wrong” coefficients might remain
“undiscovered” when they are not subject to any processing. In
other words, the “wrong” coefficients provide good recovery! It is
simply because DWT is fully invertible. However, if one looks at
the values of the coefficients, they are revealed immediately. Per-
fect recovery occurs even if “pointwise” linear processing is per-
formed (i.e., each coefficient is modified linearly with no respect
to the values of the others). But as one starts to use, for example,
linear filtering in the wavelet domain (which combines the values
of the coefficients, see an example in [4]) or even non-linear pro-
cessing (e.g. denoising or quantization), substantial errors are in-
troduced in the output signal. The greater the decomposition depth
J , the larger the range of the border artifacts [21].

1.2. This paper

This paper presents an algorithm which is derived from the general
one, and as such it does not suffer from any of the above draw-
backs; it contains both the forward and inverse counterparts, and
is particularly modified and optimized for real-time audio process-
ing. The description of the implementation in the form of a VST
(Virtual Studio Technology) [22] plug-in module is also given.

The concept of the developed system corresponds to the usual
processing strategy: Signal decomposition (forward DWT)→Mod-
ification of the coefficients→ Signal synthesis (inverse DWT).

Some of the properties of the general SegDWT algorithm will
remain unused for the purposes of this paper. In particular, the seg-
ment length will be arbitrarily chosen but will remain fixed for all
the segments. In addition, the VST host does not indicate that the

“last” segment has to be processed, so there is no need to correctly
finish the computation at the right border of the signal.

The paper is organized as follows: First, the “classical” dicrete
wavelet transform is summarized in Section 2. The description
is brief and serves as the basis for emphasizing the modifications
made in the segmentwise algorithm, which is theoretically intro-
duced in Section 3. Section 4 then discusses the main issues of the
implementation as a VST plug-in module. Section 5 describes the
user interface of the product and its functionality, while Section 6
serves as instructions for programmers who would like to either
modify the algorithm or include their own code for processing the
wavelet coefficients.

2. DISCRETE WAVELET TRANSFORM (DWT)

It was first discovered by Mallat [23] that the wavelet decomposi-
tion of signals is equivalent to the recursive filtering process. Mal-
lat’s algorithm will be recapitulated in this section.

In contrast to the usual wavelet processing practice, we do not
assume the periodicity of the signal, and we do not suppose its
whole length is a power of two. This has the following implica-
tions:
• We have to decide what kind of “boundary handling” is to

be used during the computation; that is, how do we “guess”
samples beyond the signal boundary; see [24, 25],

• we will automatically obtain slightly more coefficients than
is the number of input samples [21].

One of the main operations in the DWT is downsampling (dec-
imation). This means that in each decomposition step (see below),
only every other sample is kept, the rest is neglected. One has to
specify, however, if the even-indexed or the odd-indexed samples
have to be kept. We assume even downsampling, i.e., samples 1,
3, 5 etc. are kept (the indexing assumed to begin with “0”).

Algorithm 1 (DWT, classical). Let x be a discrete input signal,
the two wavelet decomposition filters of lengthm are defined, high-
pass g and lowpass h, J is a positive integer denoting the decom-
position depth. The type of boundary treatment has been specified.

1. Denote the input signal x by a(0) and set j = 0.
2. A single decomposition step:

(a) Extending the boundaries. Extend a(j) from both the
left and the right sides by (m−1) samples, according
to the specified type of boundary treatment.

(b) Filtering. Convolve the extended signal with filter g.
(c) Cropping. Take the central part from the result, so

that the remaining “tails” on both the left and the
right sides have the same length of m− 1 samples.

(d) Decimation. Downsample the resultant vector.
Denote the resulting vector by d(j+1) and store it. Repeat
items (b) to (d), now using filter h, denoting and storing the
result as a(j+1).

3. Increase j by one. If it now holds j < J , return to item 2,
otherwise the algorithm ends.

The desired wavelet coefficients are stored in J + 1 vectors (of
different length) a(J),d(J),d(J−1), . . . ,d(1).

The inverse wavelet transform (IDWT) is performed in the reverse
manner: first, the vectors of coefficients are upsampled, then fil-
tered with a pair of filters, added up to one vector, which is finally
cropped from both sides to obtain a result of the correct length.
This is done J times until the time-domain signal is reached.
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Figure 2: Segmentation of the signal x and the principle of bor-
der extensions. Note that the lengths of the extensions differ from
segment to segment.

3. SEGMENTED WAVELET TRANSFORM (SEGDWT)

This section forms the theoretical core of the article. First, the
most important principles of SegDWT are presented, and then the
algorithm(s) are introduced in more detail. The statements below
are proved/derived in [13].

Signal segments are given and they are to be processed con-
secutively. As can be seen in Fig. 2, the method extends each indi-
vidual segment prior to further processing. Several signal samples
taken from the (n − 1)th segment (denoted n−1x) are appended
to the nth segment, nx, from its left side; their number will be de-
noted L(n). In a similar way, the number of samples appended
from the right will be represented by R(n). It can be shown that it
must hold

R(n) + L(n+ 1) = r(J) (1)

where
r(J) = (2J − 1)(m− 1). (2)

To put it in words, r(J) is the necessary number of signal samples
that must be “shared” between two consecutive segments. Natu-
rally, R(·) ≥ 0 and L(·) ≥ 0. The purpose of the left extension is
to provide enough samples from the preceding segment(s) to fully
calculate the wavelet coefficients at the top-most level of decom-
position. The purpose of the right extension is to align the end of
each segment to be an integer multiple of 2J, which results in the
correct alignment of the resultant vectors of coefficients.

Although this denotation is simple, it is more effective to switch
to a slightly more complicated one: Let Sn denote the index of
the left-most sample within the nth segment (in the global point
of view, prior to the extension). The very first signal sample is
assumed to be located at the index S1 = 0. The r(J) sam-
ples can be split into the left extension L(Sn) of the nth seg-
ment and the right extension R(Sn) of the (n − 1)th segment,
L(Sn) + R(Sn) = r(J). The following formulas for the exten-
sion lengths can be derived:

R(Sn) = 2J
⌈
Sn

2J

⌉
− Sn, (3)

L(Sn) = r(J)−R(Sn). (4)

Fig. 2 shows a situation where all segments are of equal length,
which is typical in real-time audio processing. In such a case
Sn+1 = Sn + s naturally holds, where s is the length of each seg-
ment. It is clear that in the just described way, the lengths of the
extensions can vary from segment to segment (see again Fig. 2),
and that the respective overlap lengths are thus induced, in contrast
to the above-mentioned windowing, where the overlap is fixed.

Returning back to Eq. (3), if Sn is an integer multiple of 2J ,
then R(Sn) is clearly zero. In other words, choosing the segment

borders in such a way would lead to the case when left-side exten-
sions only are used; such a situation would be convenient because
it simplifies both the algorithm and the implementation. However,
as long as s is usually given by the user/host/system, the above
requirement cannot be guaranteed to be fulfilled. In general, one
can tackle this problem for the price of introducing an additional
delay (equal to s samples) in the processing, which can be seen
as waiting for loading samples from the “next” segment and then
“resegmenting” to meet the above condition. Section 3.2 will cope
with this problem in an alternative way to completely remove it.

3.1. Algorithms of Forward and Inverse SegDWT

The forward and inverse parts of the SegDWT algorithm are pre-
sented now. They are described separately, although they are de-
signed to work in conjunction for real-time processing purposes.
The forward part produces J + 1 vectors of wavelet coefficients
(one for the coarse coefficients and additional J vectors containing
the details) from each segment, which naturally serve as the input
of the inverse SegDWT. If these sets of vectors were appended to-
gether (level-by-level), the same coefficients would be obtained as
if the classical (offline) DWT were performed on the whole signal.

It is worth mentioning that using these segmentwise, partial
wavelet coefficients the inverse SegDWT algorithm does not re-
construct the processed segment fully. The reconstructed segment’s
first and last r(J) samples form an overlap to the neighboring re-
constructed segments and these must be added up; it is obviously
caused by the convolution applied to finite-duration vectors; see
Fig. 3. As a consequence, the input-output delay cannot be less
than r(J) samples.

Both the forward and inverse parts are described for an arbi-
trary intermediate segment, meaning that there are enough samples
preceding and following the currently processed segment. The first
(and the last) segment must be handled a little differently; we re-
fer the reader to the sources cited above. The simple zero-padding
used at the signal boundaries is natural in audio, where the sound
is supposed to rise “from silence”.

3.1.1. Forward SegDWT

The forward SegDWT is in principle similar to the well-known
“overlap-save” method used in segmentwise convolution. The sim-
ilarity lies in reusing the previous samples and discarding the un-
necessary coefficients when the partial computation is finished.
The resulting wavelet coefficients are then ready to be processed.

Algorithm 2 (Forward SegDWT). Given the depth J , a pair of
wavelet filters h,g, where m denotes their length:

1. Extending. Load the nth segment (starting at index Sn)
and determine its left L(Sn) and rightR(Sn+1) extensions
using formulas (2), (3) and (4) Extend the segment properly.

2. Transforming. Calculate the wavelet coefficients up to depth
J using the classical algorithm (Alg. 1), but omit step 2a.
The cropping step 2c, however, applies and thus the seg-
ment is shorter bym−1 samples prior to the downsampling
step in each iteration.

3. Discarding. Discard first r(J−j) coefficients of each detail
coefficient vector at level j; these coefficients were calcu-
lated redundantly—they are already a part of the previous
segment’s detail coefficient vectors.

4. Storing. Store the resultant coefficient vectors.
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3.1.2. Inverse SegDWT

The inverse SegDWT follows the “overlap-add” principle. The
length of a reconstructed segment depends on the lengths of right
extensions and it can be calculated by

srec(Sn) = s+R(Sn+1)−R(Sn) + r(J). (5)

Algorithm 3 (Inverse SegDWT).

1. Extending. Append r(J − j) zero coefficients to the begin-
ning of each detail coefficient vector at level j.

2. Inverse transforming. Calculate the signal values using the
classical inverse algorithm (in the original form). The re-
constructed segment’s length is srec(Sn).

3. Adding overlap. Add the overlap from the previous segment
to the first r(J) samples of the current segment. Save the
last r(J) samples of the current reconstruction, which will
serve as the overlap for the subsequent segment.

A diagram of the complete forward-inverse “workflow” in a
concrete case is depicted in Figure 3. The processing of the coef-
ficients is not illustrated but could happen within the rectangular
boxes, which contain the respective vectors of coefficients.

3.2. Modifications

As was stated above, for the wavelet transform (of the whole sig-
nal), the even type of up-/downsampling is considered. In practice
this means discarding the very first sample after each single con-
volution has been performed. In our segmentwise approach, the
left extensions have to be long enough to allow discarding the first
sample at each level after the convolution, which clearly sounds
like a waste of computational resources. Switching from the even
to the odd type of up-/down-sampling, the necessary length of the
left extension can be reduced by 2J − 1 samples. (This mod-
ification is made just internally and the even type of up-/down-
sampling is mimicked globally.) Since the length of the right ex-
tension is not affected by such a change, this reduction cuts r(J)
down to

rmin(J) = (2J − 1)(m− 2). (6)

So the algorithm remains the same except that r(J) is substituted
by rmin(J). This reduction reflects in the number of discarded co-
efficients after the forward transform, in the number of zero coef-
ficients that are appended back prior to the inverse transform, and
also in the lengths of overlaps during the reconstruction.

As entire segments are being loaded and as the possibly non-
zero right extension violates causality, the processing has to be
delayed by the length of the segment; but this additional delay
might be sometimes unacceptable! There are two “workarounds”
how to avoid it:

1. Restricting the segment lengths to achieve (Sn mod 2J) =
0 and thus R(Sn) = 0. (This contradicts generality.)

2. Employing “negative” right extensions in the sense that the
right border of the segment would be aligned with the lesser
multiple of 2J , and the samples that remain would be en-
compassed to the left extension of the following segment.
I.e., (1) would still hold but R(·) could fall below zero.

A general solution to the problem requires revising the al-
gorithm so that neither such a 2J-alignment or right extension is

needed and therefore the segment borders of the input and the re-
constructed signal match in time. Then Lnoright(Sn) and rnoright(J)
coincide:

rnoright(J) = Lnoright(Sn) = rmin(J) + (Sn mod 2J), (7)

and the number of redundant detail coefficients at level j that have
to be discarded from the beginning of the respective coefficient
vector after the forward transform is

rmin(J − j) +
⌊
(Sn mod 2J)

2j

⌋
. (8)

3.3. Properties and limitations of SegDWT

The segment length must comply with

s ≥ 2J . (9)

This relation could be theoretically withdrawn, but at the cost of
making the algorithm more complicated.

The length of the right extension always satisfies

R(Sn) < 2J . (10)

The number of shared samples, r(J), can be even greater than
s, the segment length! This feature is newly included in the algo-
rithm (and implementation), and although this makes the algorithm
more complex, it allows for demanding combinations of parame-
ters (long filters, short segments, deep level of decomposition).

4. IMPLEMENTATION

The implementation started from the template by J. Schimmel, which
is accessible from URL [26]. The template is designed for creat-
ing VST plugin modules compatible with VST 2.4 specification.
(Section 6 contains details for potential programmers who would
like to modify the code/add their own wavelet processor.)

The VST plugin uses “SegDWT” library which was separately
created the in C++ language. The library consists of the SegDWT.h
and SegDWT.lib files, whose source codes are available at [27].
The library is processing single precision data types only. Both
the forward and inverse transforms are implemented in the class
FloatSegDWT. Wavelet filters and wavelet coefficient processor
are injected into the class by means of the FloatWfilter and
IWaveletCoeffProcessor type objects, respectively. The
main public functions of the class are summarized in Listing 1.

The class instance can be created using two constructors. The
object containing the (four) wavelet filters can be either supplied
directly by a pointer or created in the constructor according to the
enumeration data type FloatWfilter::Type value. Function
forwardOLS takes the input array in and calculates wavelet
coefficient arrays, which have to be allocated beforehand. Value
Sn identifies the index of the first sample from the global index-
ing point of view. Function inverseOLA is complementary to
forwardOLS. The function process initially calls forwardOLS,
then processes the function of the IWaveletCoeffProcess-
or object and, lastly, the inverseOLA.

The storage of the “previous” samples and the samples of the
overlap is handled internally. Routines for allocating memory for
arrays of wavelet coefficients are included as well.
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Figure 3: SegDWT algorithm(s) example. Input signal x is processed by segments of length s = 92. The length of the wavelet filters is
m = 4 and the depth of decomposition is J = 3. This setup leads to r(J) = 21, which is divided between L(Sn) and R(Sn). Note
that the reconstructed signal y is delayed by these r(J) samples; the first r(J) samples of the reconstructed signal can be viewed as the
“reconstruction warmup” and should be set to zero. The values in the boxes represent wavelet coefficient vectors (from top to bottom, the
detail coefficients vectors for j = 1, 2, 3 and one approximation coefficients vector for j = 3) belonging to the respective segments. The
highlighted coefficients in levels j = 1, 2 are discarded according to step 3 in Alg. 2, and in the inversion they are appended back as zeros
according to step 1 in Alg. 3.

Listing 1: Important functions from FloatSegDWT class.

class FloatSegDWT{
...
public:
FloatSegDWT(FloatWfilter::Type waveletType,

int newJ=1);
FloatSegDWT(FloatWfilter* newWavelet,

int newJ=1);

void forwardOLS(float* in,int inLen,
float* out[],int outLen[],
unsigned long Sn=0);

void inverseOLA(float* in[], int inLen[],
float* out, int outLen,
unsigned long Sn=0);

void process(float* in, float* out,
int inLen,
unsigned long Sn=0);

void setWaveletProcessor(
IWaveletCoeffProcessor* procesor_);

...
};

4.1. Convolution and down/upsampling

The convolution and down/upsampling are realized in the time do-
main. The standard two-direction cyclic buffer is exploited and the
convolution and downsampling are done together in a single step,
for both the filters simultaneously, according to the formulas

aj+1[n] =

m−1∑
k=0

aj [2n− k +m− 1]h[k], (11)

dj+1[n] =

m−1∑
k=0

aj [2n− k +m− 1]g[k], (12)

for n = 0, . . . ,
⌊
Sn+s
2j

⌋
−
⌊
Sn
2j

⌋
+ r(J − j). Here j stands for the

currently processed depth of decomposition (increasing from zero
to J−1), aj [·] represents the individual approximation coefficients
from vector a(j), dj [·] represents the detail coefficients from d(j),
h[·] and g[·] are the wavelet filters’ samples. The formulas have
to be modified a bit for the first and the last segments—they have
to be treated slightly differently. However, the last segment cannot
be identified properly in the VST live streaming audio setup.

The described process is equivalent to the “full” linear con-
volution followed by cropping m − 1 samples from both sides,
followed by the odd downsampling. This way, half the operations
are saved.
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In a similar manner, the upsampling and convolution in the
inverse DWT are done together in a single step, for both the filters
simultaneously, according to the formulas

aj [n] =

⌊
m−1+(n mod 2)

2

⌋∑
k=0

aj+1

[⌊n
2

⌋
− k
]
h̃ [2k + (n mod 2)]

+

⌊
m−1+(n mod 2)

2

⌋∑
k=0

dj+1

[⌊n
2

⌋
− k
]
g̃ [2k + (n mod 2)]

(13)

n = 0, . . . ,
⌊
Sn+s
2j

⌋
−
⌊
Sn
2j

⌋
+ r(J − j) and j = J − 1, . . . , 0.

Here h̃[·] and g̃[·] are the samples of the reconstructing wavelet
filters. Again, the number of operations is reduced in comparison
to the equivalent calculation consisting of upsampling both aj+1

and dj+1, followed by the linear convolution and the sum of the
outcomes.

4.2. Fast convolution+downsampling via FFT is not faster

Although it may seem tempting to perform convolution and re-
sampling directly in the frequency domain using FFT, so far our
tests have shown that this approach brings only a negligible per-
formance increase and just in some extreme situations. In the rest
of cases, the FFT approach performs worse. Moreover, the fre-
quency domain filtering and resampling bring, apart from segment
size constrictions, complications with implementation, and require
considerable revision of the SegDWT algorithm. The fact that the
FFT approach does not perform so well in such situations is caused
mainly by the short length of filters the wavelet filter bank com-
prises (i.e. m ≤ 20) and by the relatively short segments, even
after they have been extended sext = rnoright(J) + sbuf .

We compared our implementation of DWT analysis (forward
transform only) in time domain with frequency domain implemen-
tation using FFTW [28] 3.3.1 default 32bit dll binary distribution
using Intel C++ compiler 12.0.1 with \03 optimization parameter.
The tests were run 101 times and the median of the elapsed time
was taken as the result, which is plotted in Fig. 4. Standard win-
dows high resolution counter (QueryPerformanceCounter)
was used as a timer. The FFTW plans were created beforehand.
The testing machine was running Windows 7 Professional 64bit
on Intel(R) Core(TM) i7 CPU 960 3.2GHz. We can conclude that
the FFT implementation starts being beneficial for J ≥ 10 and
m ≥ 17, since the segment length after (maximal) extension is
dependent on J exponentially and on m linearly, and it will be
sext = 16368 + sbuf .

5. USER’S GUIDE

The compiled VST plugin module is accessible through URL [27]
in the ready-to-use form of a DLL file (∼1.2 MB). It suffices to
copy the file to the plugin directory of your VST host software
before the host is run.

The graphical user interface (GUI) is a simple, minimal one
and consists of two parts, see Fig. 5.

The left part of the plugin appears always the same. It allows
the user to set the global gain after the signal synthesis — Gain,
choosing the wavelet filter — Wavelet, the depth of decomposi-
tion — Depth, and the method of processing the wavelet coeffi-
cients — Process. Wavelet filter names and filters were adopted

10 20 30 40
50

100

150

200

m→

t[
µ
s]

sext = 4096

time domain frequency domain

10 20 30 40
100

200

300

400

m→

t[
µ
s]

sext = 8192

10 20 30 40
200
400
600
800

m→

t[
µ
s]

sext = 16384

Figure 4: Comparison between time domain an frequency domain
forward DWT implementations for different sequence lengths.
Since the relative differences were not affected by the choice of
the depth of decomposition, J = 6 was used.

from the Matlab Wavelet toolbox. The depth of decomposition J
is limited by the size of the input buffer sbuf (which is controlled
by the host application) such that 2J ≤ sbuf , and at the same time,
its maximum was set to J = 10.

The right part of the GUI depends on the selected Process.
There are wavelet coefficient processors bundled with the plugin
by default, however they serve mainly to “prove” the proposed
algorithm. (Of course, if no modification was done to the coeffi-
cients, the output signal would be equal to the input signal up to
numerical errors!) The controls at the right hand side allow setting
parameters for the respective processors. The bundled processors
are:
• Default — simply copies the wavelet coefficients and leaves

them intact. This is incorporated to verify the perfect recon-
struction.

• Filter — allows multiplication of wavelet coefficients by
the specified values. Each decomposition level has its own
value.

• Hard Thr — hard-thresholds each subband by a specified
value, i.e., the coefficients in absolute values smaller than
the threshold are set to zero.

• Random — each coefficient in each subband is randomly
perturbed. The amout of the scattering is controlled by the
specified parameters.

The number of sliders is J + 1 in all these cases, each of them
linked to the respective decomposition depth. The depths go from
the highest-frequency details to the approximation coefficients when
taken from the top to the bottom.
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Figure 5: VST plugin GUI when “Filter” is selected for processing
the coefficients.

The delay of the output in comparison to the input is always
equal to r(J) regardless of the buffer size.

However, the limit of the CPU performance can be reached on
some computers when a demanding combination of parameters is
set. For example, J = 10, wavelet db10 (Daubechies 10 with
m = 20), which leads to r(J) = 19456 samples of the left exten-
sion which have to be processed in addition to the actual segment
samples, whose minimal length is restricted to sbuf ≥ 1024.

We used two hosts for the (succesful) testing of the created
plugin module. The first one was DSOUND GT-Player (EDU) Ex-
press, version 2.6 Feb 17 2006. This host is simple enough and
great for debugging, etc. It is no longer supported, but it is down-
loadable from the archive [26]. The second host was Cubase 4
(EDU), version 4.5.2 Build 274.

6. PROGRAMMER’S GUIDE

This section clarifies how to add your own real-time wavelet coef-
ficient processor into the VST (2.4) plugin, to extend and adapt it
to your specific needs.

The custom processor can be inserted into the plugin (or, more
precisely, into the SegDWT library) by means of the Template pat-
tern paradigm. To do this, create a class inherited from the in-
terface called IWaveletCoeffProcessor and which imple-
ments all its virtual functions, see Listing 2. In the setUser-
Variables function in vst_temp.cpp file, dynamically cre-
ate the instance of your processor, create the instance of the struc-
ture ProcessorInfo and fill the respective variables. Then ap-
pend the structure object to the processorList vector.

Listing 2: Structure of IWaveletCoeffProcessor interface.

class IWaveletCoeffProcessor{
public:

virtual void process(float** in,
float** out,
int* coefLens,
int J)=0;

virtual void setParams(float* params,
int paramLen) = 0;

virtual void getParams(float* params,
int paramLen) = 0;

};

Listing 3: Demonstration of accessing wavelet coefficients

void DefaultProcessor::process(float** in,
float** out,
int* coefLens,
int J){

// temporary vaiables
float* inSubband;
float* outSubband;
int jTemp = 0;
int coefLen = 0;

for(int j=1;j<=J;j++){
/* initiation of temporary variables for

j-level detail coefficients */
jTemp = j-1;
coefLen = coefLens[jTemp];
inSubband = in[jTemp];
outSubband = out[jTemp];

// iteration over j-level detail coeff.
for(int i =0;i<coefLen;i++){
/****PLACE FOR j-th level i-th DETAIL
****COEFFICIENT PROCESSING*****/
outSubband[i] = inSubband[i];

/****************END************/
}

}
/* initiation of temporary variables for

J-level approximation coefficients */
jTemp = J;
coefLen = coefLens[J];
inSubband = in[J];
outSubband = out[J];

for(int i =0;i<coefLen;i++){
/****PLACE FOR i-th APPROXIMATION****

****COEFFICIENT PROCESSING*****/
outSubband[i] = inSubband[i];
/*********END********************/

}
}

After compiling and running the plugin in a host application,
your processor should be accessible by means of the Process
slider, at a position corresponding to its index in the processor-
List vector. To demonstrate how to access the individual wavelet
coefficients, we display DefaultProcessor process func-
tion implementation in Listing 3.

7. CONCLUSION

The paper presents the theory and VST plugin realization of seg-
mented wavelet transform allowing performing audio effects in the
wavelet domain in real-time, with the property of having no border
artifacts. This is achieved by means of the (modified) SegDWT al-
gorithm. In contrast to the original version, the extension lengths
are reduced and the necessity of the right segment extension is re-
moved, while preserving the features of SegDWT. The segment
length restriction is alleviated from s ≥ r(J) to s ≥ 2J , which
also means that the dependency on filter length m is dropped.

Since the SegDWT algorithm is derived to operate with any
filters (just the lengths of their impulse responses affect the algo-
rithm), the usage of the algorithm is not limited to the discrete
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wavelet transform only. It is also utilizable for other transforms
following the iterated filter bank structure with down-/up-sampling,
e.g. wavelet packets, framelets [29].

We encourage the interested reader to create their custom wavelet
coefficient processing routine and kindly provide us with the feed-
back.
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