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ABSTRACT

Nonnegative Matrix Factorization is a popular tool for the analysis
of audio spectrograms. It is usually initialized with random data,
after which it iteratively converges to a local optimum. In this
paper we show that N-FINDR and NNLS, popular techniques for
dictionary and activation matrix learning in remote sensing, prove
useful to create a better starting point for NMF. This reduces the
number of iterations necessary to come to a decomposition of simi-
lar quality. Adapting algorithms from the hyperspectral image un-
mixing and remote sensing communities, provides an interesting
direction for future research in audio spectrogram factorization.

1. INTRODUCTION

1.1. NMF

Nonnegative matrix factorization (NMF) has seen lots of popular
use since the publication of multiplicative update algorithms in [1].
It was first used on audio spectrograms in [2]. Many variations of
the algorithm exist, depending on the cost function or minimiza-
tion approach used. An overview can be found in [3].

Given a matrix Vm×n and a strictly positive integer p, NMF
seeks an approximate decomposition of V into two matricesWm×p
and Hp×n, such that WH ≈ V . This is accomplished through it-
erative minimization of a norm ||WH−V ||. Multiplicative update
rules derived from a gradient descent or expectation-maximization
approach are often used. Consider as norm e.g. the β-divergence,
which encompasses the Itakura-Saito divergence (β = 0), the gen-
eralized Kullback-Leibler divergence (β = 1) and the Euclidian
distance (β = 2). Given these, [4] formulates generic update
rules, for which they also prove convergence, as follows (◦ denotes
element-wise matrix multiplication):

W ←W ◦
(
(V ◦ (WH)β−2)HT

(WH)β−1HT

)φ(β)
(1)

H ← H ◦
(
WT (V ◦ (WH)β−2)

WT (WH)β−1

)φ(β)
(2)

with φ(β) chosen as:

φ(β) =


1

2−β if β < 1

1 if 1 ≤ β ≤ 2
1

β−1
if β > 2

(3)
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NMF is generally initialized randomly, and converges to a lo-
cal optimum. The result is a decomposition of V in a dictionary
matrix W and an activation matrix H . Applied to a magnitude
or power audio spectrogram, W is composed of p spectra and H
indicates their weights at a given time. Note that here we use an
example (from [2]) where the resulting W and H are also musi-
cally meaningful, but that is certainly not generally guaranteed.

1.2. Hyperspectral Image Unmixing

Finding a sparse approximate decomposition of spectral data is a
problem that also arises in remote sensing [5, 6]. As an example,
an earth surveying satellite produces hyperspectral images cover-
ing a wide range of the electromagnetic spectrum. Each pixel in
such an image is considered a linear combination of different ele-
ments that each have their own spectral signature: water, vegeta-
tion, copper and other minerals, ... These constituting elements are
called endmembers, and upon plotting the contribution of a single
endmember to the entire image, we obtain an abundance map.

Hyperspectral image data is nonnegative by nature. The un-
mixing problem is usually split up in 2 subproblems that are treated
separately:
• Endmember Extraction: find the endmembers W that are

present in the image,
• Abundance Estimation: compute the contribution of each

endmember in every pixel (H).
NMF computes solutions to both problems simultaneously through
iterative updates. Having 2 independent subproblems makes it eas-
ier to develop algorithms that iterate over the datapoints, instead of
requiring the entire dataset to be in memory as with NMF. As very
large datasets are common in that field, this approach is usually
preferred over NMF in hyperspectral image unmixing.

One key difference is that many hyperspectral image unmixing
methods enforce that all abundancies should sum to one (assuming
that an observed pixel cannot contain any “nothingness”), whereas
a frame in an audio spectrogram can contain silence. When ap-
plying image unmixing methods to audio spectrograms, we can
circumvent this by adding an all-zero shadow endmember to the
dictionary before the abundance estimation process, acting as a
component representing silence. [6] mentions that it is unclear
whether this sum-to-one constraint significantly influences unmix-
ing results.

An accessible tutorial text on hyperspectral image unmixing
is provided by [5], while [6] contains an extensive overview of the
developments over the last decade.
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1.3. A geometric view of unmixing

Hyperspectral image unmixing is often tackled from a geometric
perspective. Each datapoint is considered to be lying within a sim-
plex, with the vertices formed by the endmember spectra. Sim-
plices have the following properties, which can be easily verified
for the 2-simplex in the toy example provided in figure 1:

• Every n-simplex has n+ 1 vertices and n+ 1 edges,

• Every point within the space defined by the vertices has
n+ 1 barycentric coordinates, e.g. M = ( 1

3
, 1
3
, 1
3
),

• Normalized, the barycentric coordinates of every point sum
to 1,

• If a point has all positive coordinates, it lies within the con-
vex hull formed by the vertices.

• Every point within a simplex can be expressed as a nonneg-
ative linear combination of the vertices, e.g. M = 1

3
A +

1
3
B + 1

3
C.

•

A(1,0,0) B(0,1,0)

C(0,0,1)

M

Figure 1: The standard 2-simplex (a.k.a. triangle) and its centroid.

All hyperspectral pixels (or spectrogram frames) are datapoints
within a space that has a dimensionality equal to the number of fre-
quency bins. Now assume that all datapoints can be written as a
linear combination of only a few spectra. Then all our datapoints
lie on a hyperplane within this space, bounded by these few spec-
tra. The problem of finding a sparse decomposition then translates
to: find a low-dimensional simplex within our dataspace that en-
compasses as much of the data as possible with minimal error.
Figure 2 gives an impression of such configuration, where data in
a 3D space is well-approximated within a lower-dimensional plane
(in this case 2D).

Figure 2: Finding a simplex covering the datacloud in a higher-
dimensional space.

The link between unmixing, with possible audio applications,
and this geometric simplex interpretation, has been observed be-
fore [7, 8, 9]. Notably, [10] proposes a method based on Single-
Class Support Vector Machines to solve the related problem of
finding a conic hull around the data. Here, we employ methods
that manipulate simplices, and show how sparse spectrogram de-
compositions can be obtained when combining these with NMF.

2. INITIALIZING NMF WITH N-FINDR

2.1. N-FINDR

Algorithms that search for a low-dimensional simplex within the
data can be roughly subdivided into 2 classes:

• Find a maximum volume simplex inscribed in the data.

• Find a minimum volume simplex encompassing the data.

N-FINDR [11] is an algorithm of the maximum volume in-
scribed category. It therefore assumes that the endmembers are
present in the data, or otherwise formulated: the obtained dictio-
nary elements that we wish that explain the data, must be present
in the data themselves. For audio, this translates to the assump-
tion that there are frames present within the spectrogram that only
contain a single component, not mixed with any other components.

Suppose we wish to find p extreme datapoints and use them as
endmembers. N-FINDR selects them as follows:

• Reduce dimensionality to p− 1 using PCA or similar

• Select p random points

• For all other datapoints:

– Try out the datapoint as replacement for each of the
selected p

– Calculate the simplex volume: Cayley-Menger deter-
minant, or simpler: 1

(p−1)!
|det

(
1...1
p

)
|

– Keep the set of points resulting in maximum simplex
volume.

This algorithm inflates a simplex within the datacloud. Both
the final results and the runtime of N-FINDR depend on the ini-
tial set of endmembers and the order in which the datapoints are
evaluated. To increase the likelihood of growing the simplex fast,
we can e.g. avoid spatial correlation in neighbouring pixels in
images (or temporal correlation in neighbouring frames in audio
spectrograms) by randomizing datapoint evaluation. This and sev-
eral other possible optimizations are described in [12].

2.2. Abundance estimation

After obtaining the simplex, we add an all-0 component to account
for possible silence. By doing this, we can use abundance estima-
tion methods that rely on the sum-to-one constraint. A range of lit-
erature is available that covers the abundance estimation by solving
the Fully Constrained Least Squares Unmixing (FCLSU) problem
[13]. For our purpose, we keep it simple and use the traditional
Lawson-Hanson Nonnegative Least Squares (NNLS) algorithm. It
is implemented in MATLAB as the lsqnonneg function.
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3. RESULTS

As example data, we use a 5-note solo piano excerpt originally
coming from [2]. There are 4 distinct pitches present in the signal,
so we first try to find 4 different components. A second test signal
is created by overlapping the first one several times with itself at
different positions. This highly mixed scenario has several notes
being struck at the same time in most frames.

We choose to compute amplitude spectrograms and minimize
the generalized Kullback-Leibler divergence as NMF method, with
W andH initialized either randomly or with values obtained through
N-FINDR and NNLS. Extracting 4 components, the convergence
behaviour is shown in figure 3. All curves depict mean data, com-
puted over 100 runs of the algorithm. The x-axis shows the num-
ber of iterations, on the y-axis the residual norm is plotted. N-
FINDR+NNLS initialized NMF delivers better results when the
number of iterations is kept low. Given the solo data, it also stays
better, but with more mixed data, the randomly initialized NMF
takes and keeps a slight lead after about the 25th iteration.
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Figure 3: Mean convergence of NMF initialized randomly on solo
data (squares) and mixed data (triangles), and initialized with N-
FINDR and NNLS on solo data (bullets) and mixed data (crosses).
Extracting 4 components, 50 iterations.

When we don’t know the dimensionality of the data, we can
overestimate the number of components as this keeps at least the
reconstruction error down. We run the same examples, but now
try to find 40 components in the data where only 4 are enough to
explain most of it. In the solo data, most of the additional compo-
nents will only be low energy as a result. In the mixed data, some
additional components are likely to explain not only single pitches
but also entire chords separately.

The effect is shown in figure 4. N-FINDR and NNLS pro-
vide an excellent starting point to begin with, up to the point that
subsequent NMF seems hardly necessary. On the other hand, the
randomly initialized NMF takes more time to converge, but even-
tually overtakes the other after a while. This happens at about the
26th iteration for the solo data, and slightly earlier at around the
22nd iteration for the mixed data.
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Figure 4: Mean convergence of NMF initialized randomly on solo
data (squares) and mixed data (triangles), and initialized with N-
FINDR and NNLS on solo data (bullets) and mixed data (crosses).
Extracting 40 components, 50 iterations.

The difference is better visible when computing the Signal to
Distortion Ratio (SDR) of the reconstructed signal, as defined in
the BSS_EVAL toolkit [14], in function of the number of itera-
tions. Figure 5 shows results for the mixed data, with both 4 and
40 components computed. Given 4 components, N-FINDR and
NNLS provide an initialization that already boasts a good SDR,
which can be slightly improved upon when followed by up to 8
NMF iterations. After that there is a minimal decay, but the SDR
remains better than wat can be obtained with random initialization.
When the number of components is increased to 40, N-FINDR and
NNLS obtain a good result that is hardly improved by subsequent
NMF, while random-initialized NMF eventually gets better when
run for enough iterations.

With p components and n datapoints, N-FINDR calculates
np times a p × p determinant, resulting in a time complexity of
O(p4n) when a naive implementation is used. It is only really ben-
eficial with a small number of components: on our machine finding
4 components took 0.12 seconds and finding 40 took 5.5 seconds.
NNLS computes their abundancies in respectively 0.30 and 0.97
seconds. NMF’s multiplicative updates have an O(mnpi) com-
plexity where i is the number of iterations. NMF with 50 iterations
with 4 components took 2.0 seconds on our machine.

4. CONCLUSIONS AND FUTURE DIRECTIONS

We began by pointing out the equivalence between the problems
of nonnegative audio spectrogram factorization and hyperspectral
image unmixing. Whereas the former has until now been mostly
tackled with Nonnegative Matrix Factorization, literature about the
latter has concentrated on Simplex Decompositions.

Using N-FINDR and NNLS, two proven traditional methods
used in hyperspectral image unmixing, we showed that we can
obtain dictionary and activation matrices that can serve as good
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Figure 5: Reconstruction Signal-to-Distortion ratio in function of
the number of iterations of a highly mixed signal extracting 4 com-
ponents: initialized randomly (squares) or with N-FINDR+NNLS
(triangles); and extracting 40 components: initialized randomly
(bullets) or with N-FINDR+NNLS (crosses).

initialization for NMF. This results in less iterations necessary to
come to similar results as randomly-initialized NMF would. If the
number of components or iterations is large, the latter still catches
up. This may be related to the particular minimization approach
employed in the implementation of NMF. More specifically, when
starting from a good starting position, where the gradient is small,
other algorithms than the rescaled gradient descent from [1] may
be better able to escape from a possible bad path. This is an inter-
esting direction for future work.

Similarly, more methods from the field of remote sensing can
be readily added to the toolset for audio spectrogram analysis.
Vertex Component Analysis [15] comes to mind as alternative to
N-FINDR with better time complexity. Of particular interest are
methods that do not assume dictionary elements to be present in
the data [16], e.g. SISAL [17]. Finally, emerging topics in the re-
mote sensing literature that are also of interest to the audio commu-
nity are sparsity, on-line or real-time algorithms, data dimension-
ality estimation, correlations between datapoints, etc. Care needs
to be taken regaring the specific properties of audio data though,
as there are the presence of silence and the dynamic range.

5. REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Neural Information Processing Sys-
tems (NIPS), Denver, USA, 2000, pp. 556–562.

[2] P. Smaragdis and J.C. Brown, “Non-negative matrix factor-
ization for polyphonic music transcription,” in IEEE Work-
shop on Applications of Signal Processing to Audio and
Acoustics, oct. 2003, pp. 177 – 180.

[3] A. Cichocki, R. Zdunek, and S.-i. Amari, “Nonnegative ma-
trix and tensor factorization [lecture notes],” Signal Process-
ing Magazine, IEEE, vol. 25, no. 1, pp. 142 –145, 2008.

[4] M. Nakano, H. Kameoka, J. Le Roux, Yu. Kitano, N. Ono,
and S. Sagayama, “Convergence-guaranteed multiplica-
tive algorithms for nonnegative matrix factorization with β-
divergence,” in IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), sept 2010, pp. 283
–288.

[5] N. Keshava and J.F. Mustard, “Spectral unmixing,” Signal
Processing Magazine, IEEE, vol. 19, no. 1, pp. 44 –57, jan
2002.

[6] J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,
Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmix-
ing overview: Geometrical, statistical and sparse regression-
based approaches,” IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, , no. 2, pp.
354–379, 2012.

[7] M. Shashanka, B. Raj, and P. Smaragdis, “Probabilistic la-
tent variable models as nonnegative factorizations,” Compu-
tational Intelligence and Neuroscience, 2008.

[8] P. Smaragdis, M. Shashanka, and B. Raj, “A sparse non-
parametric approach for single channel separation of known
sounds,” in Neural Information Processing Systems, Vancou-
ver, Canada, dec. 2009, pp. 722–730.

[9] M. Shashanka, “Simplex decompositions for real-valued
datasets,” in IEEE Int. Workshop on Machine Learning for
Signal Processing (MLSP), sept. 2009, pp. 1 –6.

[10] Slim Essid, “A single-class svm based algorithm for comput-
ing an identifiable nmf,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Kyoto,
Japan, march 2012.

[11] M.E. Winter, “N-findr: an algorithm for fast autonomous
spectral end-member determination in hyperspectral data,”
Image Spectrometry V, Proc. SPIE, vol. 3753, pp. 266–277,
1999.

[12] M. Zortea and A. Plaza, “A quantitative and comparative
analysis of different implementations of n-findr: A fast end-
member extraction algorithm,” IEEE Geoscience and Re-
mote Sensing Letters, vol. 6, no. 4, pp. 787 –791, oct. 2009.

[13] R. Heylen, D. Burazerovic, and P. Scheunders, “Fully con-
strained least squares spectral unmixing by simplex projec-
tion,” IEEE Trans. Geoscience and Remote Sensing, vol. 49,
no. 11, pp. 4112 –4122, nov. 2011.

[14] E. Vincent, C. Févotte, and R. Gribonval, “Performance mea-
surement in blind audio source separation,” IEEE Trans. Au-
dio, Speech and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[15] J.M.P. Nascimento and J.M. Bioucas-Dias, “Vertex compo-
nent analysis: a fast algorithm to unmix hyperspectral data,”
IEEE Trans. Geoscience and Remote Sensing, vol. 43, no. 4,
pp. 898 – 910, april 2005.

[16] J. Plaza, E.M.T. Hendrix, I. Garcia, G. Martin, and A. Plaza,
“On endmember identification in hyperspectral images with-
out pure pixels: A comparison of algorithms,” J. Mathe-
matical Imaging and Vision, vol. 42, no. 2-3, pp. 163–175,
february 2012.

[17] J.M. Bioucas-Dias, “A variable splitting augmented la-
grangian approach to linear spectral unmixing,” in 1st Work-
shop on Hyperspectral Image and Signal Processing: Evolu-
tion in Remote Sensing (WHISPERS), aug. 2009, pp. 1 –4.

DAFX-4


	1  Introduction
	1.1  NMF
	1.2  Hyperspectral Image Unmixing
	1.3  A geometric view of unmixing

	2  Initializing NMF with N-FINDR
	2.1  N-FINDR
	2.2  Abundance estimation

	3  results
	4  Conclusions and Future directions
	5  References

