
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-1

 A SCALABLE ARCHITECTURE FOR GENERAL REAL-TIME ARRAY-BASED DSP ON
FPGAS WITH APPLICATION TO THE WAVE EQUATION

TEMPLATES FOR DAFX-08, FINLAND, FRANCE

Ross P. Kirk, Jeremy J. Wells,

Audio Lab, Department of Electronics,

University of York

Music Research Centre, Department of Music,

University of York

York, UK York, UK
 jez.wells@york.ac.uk

ABSTRACT

This paper describes a scheme for parallel execution on FPGAs

of DSP tasks which rely heavily on MAC operations. Multiple

operations are assigned to a single ‘processing node’ such that

each node can operate just in real-time. Where the number of

MACs required exceeds the capability of a single processing

node additional nodes are added until the capacity of the FPGA

is exhausted. Additional requirements beyond the capability of a

single FPGA are accommodated by extension across multiple

devices, offering significant scalability. Resource usage, perfor-

mance results for an example acoustic modelling application on a

modest single FPGA and development system are presented.

1. INTRODUCTION

DSP algorithms often require numerically intensive, hard dead-

line, real-time processing. A typical algorithm, as seen in FFT,

convolution and digital filter systems, is based on the classic

‘sum of products’ calculation:

0

,,

i

i n k n l

n

y a x k l
 (1)

This is supported by multiply-accumulate (MAC) architectures in

many DSP devices.

As is well known, the conventional Von Neumann processor

structure, consisting of a single arithmetic processing unit and a

single memory unit interconnected over a system bus, is not well

suited to this task. Limitations in performance arise through the

need to share the single processing unit over many algorithmic

nodes in the calculation (such as the individual product terms in

(1) above) and through the finite bandwidth of the system bus

carrying data transfers between the two units.

Many architectural innovations have passed into common us-

age over the years in an attempt to mitigate these problems. For

example, the ‘Harvard’ architecture approaches the bus band-

width problem by separating instruction and data flows over ded-

icated buses. DSP devices now commonly have pipelined multi-

ple arithmetic and register units to provide increased processor

performance and on-board cache memory is used in an attempt to

limit processor-memory traffic. However, given that there may

be a very large number of product terms in (1) such innovations

will ultimately be compromised in a similar way to the basic Von

Neumann structure, for the simple reason that they are variants of

that structure.

Modern gate array devices provide opportunities to address

the processing of algorithmic nodes in a radically different way,

independent of the Von Neumann architecture. They have

enough hardware resource to provide many multiply-accumulate

(MAC) structures and many independent memory units which

may be associated directly with the algorithmic nodes. A dense

interconnect medium is provided within the device whose point-

to-point connectivity means that the bandwidth bottleneck of a

‘system bus’ can be avoided.

The origin of the work described here lies in an attempt to

quantify any architectural advantage which Field Programmable

Gate Arrays (FPGAs) can provide in adopting this approach. Of

course, graphical processing units (GPUs) possess an architecture

which is well-suited to DSP problems such as MAC since they

consist of multiple processors enabling algorithmic nodes to be

distributed, at least partly, in parallel. There has been considera-

ble interest in GPU implementations of such tasks, for example

in room acoustic modelling. However there is still a limitation

since the parallel processors use monolithic rather than distribut-

ed memory [1]. Massively parallel MAC operations have been

considered before (e.g. [8]) but the architecture presented here

offers a spatial paradigm for parallel processing, with address

generation enabling adjacent processors to remain in time and

location synchronisation with each other. Distributed memory

offers genuinely localised processing without the bandwidth re-

quired to transfer data from central memory to local processing

nodes. This paradigm is particularly appropriate for solving the

2D and 3D wave equations.

2. SCALABLE ARCHITECTURE FOR MAC-BASED

PROCESSING

This paper describes the application of an FPGA-based parallel

architecture for solving the 2D wave equation in real-time. There

is existing work describing the use of FPGAs specifically for this

problem [2]. However, the use of the MAC as the fundamental

processing unit in the study described here means that the result-

ing architecture is quite generic, so that the approach can be ap-

plied to a wide variety of signal processing tasks, including banks

of digital filters, correlators, FFT/convolution engines as well as

finite element models, cellular automata and similar algorithms.

The centralised address generation that is used enables the scal-

ing of networks of MAC processors across a variety of algorith-

mic architectures and multiple FPGAs.

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-2

Figure 1: Node processor operation in the proposed scheme

The 2D wave equation enables the modelling of the propaga-

tion of travelling waves in a two-dimensional acoustic medium

and their reflection from boundaries surrounding and within the

space. The advantage of this approach over, for example, ray-

tracing methods is that wave behaviour, such as diffraction, is

inherent in the model [3]. The free-space propagation of these

waves can be described by the equation

1

, 0 1 , 1 , , 1 , 1

1

1 , ,

n n n n n

x y x y x y x y x y

n n

x y x y

p k p p p p

k p p

 (2)

where
1

,

n

x y
p describes the air pressure of a cell at point x,y in a

2D rectangular mesh at time update instant n+1, in terms of the

air pressure values of the cell at the present and previous update

instants, together with the present pressure values of adjacent

cells in the mesh. k0 and k1 are constants. A simple extension is

available which deals with 3D spaces and which is straightfor-

wardly compatible with the architecture described here. There is

a specific case of (2) where k1 = 0, which both simplifies the cal-

culation and offers the possibility of ‘sub-gridding’ which reduc-

es the required memory by 50% as only one mesh is required,

rather than two [4].

It would often be profligate to assign one MAC unit to each

of the processing nodes in (1), given that it may be possible to

use one MAC to process many nodes within a typical sampling

interval in a DSP system. In these cases it makes sense to multi-

plex the processing of a group of nodes through one MAC unit,

up to a limit M defined by:

0

s
M

m
 (3)

where τs is the sampling interval, τ0 is the cycle time of the

MAC and m is the number of MAC cycles required to complete

one sample calculation (often determined by the number of oper-

ands in the calculation).

For the system described in this paper Fig. 1 shows the archi-

tecture used to support such a group of nodes for the acoustic

mesh application defined by (2). The mesh memory contains two

sample (co-ordinate) planes, one of which accommodates the

samples of the present sample interval (n) which contribute to the

calculation of the next pressure value (n+1) of the node under

consideration. The other plane (n-1) accommodates the samples

from the previous sample interval. As these ‘previous’ pressure

values are consumed by the application of equation (2), they are

replaced by the newly calculated n+1 values so that the n-1 plane

gradually becomes the n+1 plane. In the next sample interval the

two planes are swapped so that n becomes n-1 and n+1 becomes

n and so on. The address generator preloads the n values into

pipeline registers for the operand multiplexer.

For this audio application, a sample rate of 44.1 kHz is cho-

sen. (However it should be noted that, due to dispersion error

which increases with increasing frequency, a higher sampling

rate may be required for best quality results [5].) A MAC cycle

time of 10 nS is easily attainable using standard automated opti-

misation techniques provided by the FPGA synthesis tools used

(Xilinx ISE v10.1) and the number of MAC cycles required by

the architecture is 7 for each sample (taking into account internal

‘n’ co-ordinate plane

‘n-1’ co-ordinate plane

address
gen.

mesh
memory

x-1 x x+1

- these are the values which contribute

to the present calculation

operand
mux

coeffi-
cient
mux

K0 K1 -1

mult

add

accumulate

MAC

y+1

y

y-1

‘n’ values

node registers

(pipelined)

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-3

pipeline latencies in the MAC and the total number of operands).

Equation (3) therefore gives the number of nodes supported by

the node processor M as 323 in each plane. 32 bit integer arith-

metic and saturated overflow are used.

Figure 2: Node processing for two successive node steps at

coordinates {2,3} (top) and {3,3} (bottom)

The architecture is scaled so that multiple node processors

can be used within one gate array device, and with suitable inter-

device interfaces, across many devices. The acoustic node space

is divided into clusters containing M nodes, addressed in a

row/column manner by a master row/column generator fed to all

node processors. The node processors are all driven in common

by this row/column generator and they therefore operate in lock-

step synchronisation.

Fig. 2 shows this arrangement for a portion of the processor

array for two successive steps in the cluster space in a simplified

system with a cluster space M=16. (Each processor supports 16

nodes in this example.) Node processing increments by row

number, and then by column number. The next node to be pro-

cessed in each processor following the step shown in the lower

figure would therefore be {row,col}={0,0}.

When the address generator detects that its processor is oper-

ating at the boundary of its jurisdiction it exchanges data with the

adjacent processor(s) which are also operating at the same point

in their boundary because of the lock-step. This exchanged data

is sent to the operand multiplexer in the place of local node

memory data. A form of superscalar operation is thus attained by

having the multiple node processors operate with true concurren-

cy. The lock-step synchronisation mechanism can be preserved

across multiple FPGAs using either using high speed serial links

or simple point to point between I/O on the devices. Address

generation for all devices would remain on one single master de-

vice.

The cluster space is segmented so that the address generator

can track the boundaries and also so that different segments can

operate with different propagational characteristics, for example

by feeding different coefficients to the MAC’s coefficient multi-

plexer. This is implemented with a ‘segment RAM’ associated

with each address generator. This is a dual-port device, loadable

from a controller processor, thus providing a dynamic configura-

tion capability. The content of the segment RAM may be unique

to each node processor, meaning that node processors are not

constrained to have the same configuration. The address algo-

rithm run by the address generators mean that precious RAM re-

source need not be allocated to row-column addresses lying out-

side the node space.

Parameters exist in the parameter RAM to tell relevant node

processors that they are operating at the boundaries of the entire

acoustic space. In the simple demonstration implementation here,

this causes total in-phase reflection (pressure doubling) at the

boundaries, although this can be replaced with a more flexible

strategy based on the use of boundary digital filters, such as those

described in [6]. These would integrate well with the node pro-

cessor/MAC structures described in this paper. Further detail and

illustrative examples are available from the on line resource

which accompanies this paper [7].

Every node has a multiplexer which routes data into the

MAC. This may be data from adjacent nodes (including reflect-

ed data from boundaries, as determined by boundary reflection

coefficients) or from the local node where the data relates to

propagation values from earlier update cycles. Another source of

data is that which corresponds to direct external acoustic excita-

tion of the node (again see the online resource for more infor-

mation [7]). This data can be transferred into the node's multi-

plexer input using a chain of shift registers driven from a control

processor embedded in the FPGA. Data input appears externally

as a single input port which is acquired via a handshake protocol.

Similarly output data from any node is acquired by parallel load-

ing the shift register chain from the node array and clocking it

serially out of the chain.

3. EXAMPLE IMPLEMENTATION

The question remains as to how many such node processors

can be fitted into one commonly available device. We scaled the

design up and targeted the result to a Xilinx Virtex 5 vsx95t de-

vice. The Xilinx ISE design tool reported that it could fit 90

node processors into the device for a MAC cycle time of 10nS.

A Windows XP machine fitted with 3 GB of RAM was used.

The node capacity (M) was successfully increased to 680 loca-

tions per memory plane, even though the maximum useable was

323 for real-time operation, as explained above.

ISE reported that 92% of the device’s BlockRAM , 56% of

DSP48Es (essentially MACs) and 75% of primary logic units

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-4

(LUTs) were used. Attempts were made to further decrease the

MAC cycle time so that the greater node capacity could be used,

but these attempts failed on timing constraints. Additional pro-

gress might be made, for example by increasing the use of pipe-

lining in the design, but this would require significant redesign of

the processor, for possibly marginal results.

An attempt to increase total node space by increasing the

number of processors to 100 failed on place and route in ISE

synthesis because of memory capacity limitations in the XP

Windows machine (i.e. the task became intractable on the design

system, rather than un-implementable on the FPGA itself). Larg-

er FPGA devices (e.g. the vsx240t device) could not be used for

the same reason. The 90 processor/10nS/680 node design was

therefore taken as the largest implementation attainable with this

design under Windows XP. Nevertheless the scale of the logic

implemented within this limitation remains impressive. It is im-

portant to realise that the memory capacity of the development

PC is an important constraint with large FPGA designs (as is the

time for the synthesis - runs of 36 and 48 hours were not un-

common).

4. CONCLUSION

This paper, and the detailed online resources that accompany

it, has described an architecture for real-time implementation of

highly parallel, distributed DSP algorithms. The specific case

used to illustrate this architecture has been the solution in real-

time of the 2D wave equation using a rectilinear finite-difference

time-domain (FDTD) mesh. This has demonstrated that modern

FPGAs can accommodate useful scaled DSP algorithms at sam-

ple rates which would be challenging for conventional processor

designs. The design takes advantage of localised memory and the

bus bandwidth limitation between node processors has therefore

largely been eliminated. Whilst useful DSP capability and per-

formance can be achieved with this design, the memory available

in the development PC is a significant constraint. However this

constraint will be eased as systems are developed over time, al-

lowing more capacious devices to be used as they are produced

by gate array manufacturers. This means that the use of FPGA

devices for array-based DSP algorithms is a technology with val-

uable potential. Of course, the suitability of this approach to a

particular problem, is determined by the extent to which it is

characterised by MAC operations and amenable to parallelisa-

tion. However, simulations of wave propagation (and other phe-

nomena that are comprised of a large number of local processes

distributed in space and occurring over time) are particularly

well-matched in this regard.

5. REFERENCES

[1] Savioja, L., “Real-Time 3D Finite-Difference Time-Domain

Simulation of Low- and Mid-Frequency Room Acoustics”,

Proceedings of the 13th International Conference on Digi-

tal Audio Effects(DAFx-10), Graz, Austria, September 2010,

pp. 43–50.

[2] Motuk, E., et al, “Design Methodology for Real-Time

FPGA-Based Sound Synthesis”, IEEE Transactions on Sig-

nal Processing, vol. 55, no. 12, Dec. 2007, pp. 5833-5845

[3] Murphy, D. and Beeson, M., “Modelling Spatial Sound Oc-

clusion and Diffraction Effects Using the Digital Waveguide

Mesh”, 24th International Conference of the Audio Engi-

neering Society, Banf, Canada, June 2003, pp. 207-216.

[4] Bilbao, S., Wave and Scattering Methods for Numerical

Simulation, Wiley-Blackwell, 2004.

[5] van Walstijn, M. and Kowalczyk, K., “On the numerical

solution of the 2D wave equation with compact FDTD

schemes”, Proceedings of the 11th International Confer-

ence on Digital Audio Effects(DAFx-08), Espoo, Finland,

September 2008, pp. 205-212.

[6] Kowalczyk, K. and Walstijn, M., “Modelling Frequency-

Dependent Boundaries as Digital Impedance Filters in

FDTD and K-DWM Room Acoustics Simulations”, Journal

of the Audio Engineering Society, vol. 56, no. 7/8, July

2008, pp.569-583.

[7] http://www.jezwells.org/Kirk_Wells_DAFx13_support_files

.zip

[8] Cadambi, S. et al, “A Massively Parallel FPGA-based Co-

processor for Support Vector Machines”, 17th IEEE Sym-

posium on Field Programmable Custom Computing Ma-

chines, pp.115-122

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

