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ABSTRACT 

 

This paper presents a new methodology for determining chords 

of a music piece without using training data. Specifically, we 

introduce: 1) a wavelet-based audio denoising component to 

enhance a chroma-based feature extraction framework, 2) an 

unsupervised key recognition component to extract a bag of local 

keys, 3) a chord recognizer using estimated local keys to adjust 

the chromagram based on a set of well-known tonal profiles to 

recognize chords on a frame-by-frame basis. We aim to 

recognize 5 classes of chords (major, minor, diminished, 

augmented, suspended) and 1 N (no chord or silence). We 

demonstrate the performance of the proposed approach using 175 

Beatles’ songs which we achieved 75% in F-measure for 

estimating a bag of local keys and at least 68.2% accuracy on 

chords without discarding any audio segments or the use of other 

musical elements. The experimental results also show that the 

wavelet-based denoiser improves the chord recognition rate by 

approximately 4% over that of other chroma features. 

1. INTRODUCTION 

 

The ability to extract local keys and chords from audio signals is 

an important step toward music transcription and segmentation 

using machines. Transcription of music typically requires the 

understanding of scale degrees used in a music piece as well as 

the analysis of harmony which correspond nicely to local keys 

and chords, respectively. On the other hand, music segmentation 

is the process of partitioning the target music signals into 

multiple sections so that each section is homogeneous within its 

boundary but distinct from its neighboring sections; it usually 

serves as an intermediate step to solve a larger problem such as 

content-based information retrieval. In [1], six types of 

segmentation cues - cadence patterns, key schemes, text, 

instrumentation, rhythm, and harmony - were discussed; using 

extracted local keys and chords, a multi-dimensional harmonic 

rhythm can be constructed for segmenting rock or popular music. 

However, the interpretation of keys and chords are often 

subjective [2]. For keys, the presence and exact locations of key 

modulations are often interpreted differently by musicians. For 

chords, when power chords are played, are they major or minor 

triads? Should a chord be extended to the 7th? Due to such 

uncertainties, in this paper, we present a probabilistic approach 

to estimate, from audio signals, a “bag of local” (BOL) keys and 

use the extracted keys to recognize chords. Our previous work 

[3] adopted similar unsupervised approach in estimating keys 

and chords of symbolic music (MIDI); in this paper, we extend 

our previous approach to wave audio signals. 

 

2. RELATED WORK 

In this section, we review recent work that extracts keys and 

chords simultaneously from wave audio signals with 

concentration on those that utilized the unsupervised approach. 

To analyze keys or chords from audio signals, the most common 

front end is to transform sound waves into the frequency domain 

which is subsequently mapped into a chromagram to represent 

the energy level of the 12 pitch classes, pioneered by [4].   

 Most recent unsupervised estimation of local keys and 

chords uses a probabilistic framework [5, 6, 7] by modeling the 

acoustic likelihood p(X|K,C) to find the best K and C using 

dynamic programming search technique in  24 keys × 48 chords 

space. Specifically in [7], a key-chord model and state transition 

probabilities comprising three sub models (duration, key, and 

chord) was proposed using the same search space in [5]. Cosine 

similarity was computed between key template, proposed by [8] 

enhanced from the pioneering profiles [9], and observed data. 

The chord model determines the likelihood of observation given 

a chord being played. The best key-chord sequence is determined 

by search using the Viterbi algorithm as proposed in [6]. In [10], 

a probabilistic framework was also used, where the overall chord 

probabilities were estimated directly from the music piece using 

the EM algorithm. The likelihood of each chroma frame given 

chord templates was modeled as a mixture where the estimated 

overall chord probabilities are the mixing proportion. The 

likelihood function is treated as the similarity measure between 

the chroma vector and chord templates. They achieved 71% 

overlap accuracy for 3 types of chords (maj, min, and 7). 

 The majority of recent supervised approach involves 

Hidden Markov Models (HMM) which requires labeled training 

data and is capable of incorporating other facet of musical 

elements such as beats or bass line information. In [11], constant 

tempo, 4/4 time beat pattern, and one global key were assumed; 

bass pitches from melody lines were incorporated into a 

probabilistic-based key/chord recognition system. Chroma 

features were modeled using Gaussian mixture model (GMM) 

whose parameters were estimated using the EM algorithm and 

number of Gaussian components were preset to 1, 2 4, 8, and 16. 

For 150 Beatles’ songs, they achieved 73.7% recognition rate for 

two classes of chords (maj & min). In [12], a six-layer dynamic 

Bayesian network was used to simultaneously estimate chord 

sequence, bass notes, metric positions of chords and keys in four 

layers while the other two observed layers model low-level bass 

and treble audio features. They achieved 71% accuracy on 176 

audio tracks from the MIREX 2008 Chord Detection Task.  
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3. SYSTEM DESCRIPTION 

Figure 1 depicts the high-level components and flow of our 

system. Our main contributions to the system are in stages 1, 3, 

and 4. Though the concept of undecimated wavelet transform 

(UWT) and infinite Gaussian mixture models (IGMM) are not 

new, to the best of the authors’ knowledge, this is the first time 

that they are applied to denoise audio signals in the context of 

key/chord estimation as well as using well-known tonal profiles 

to improve chord recognition directly from a chromagram. 

 

1 Apply UWT on WAV audio 

2 Extract chroma features from wavelet approximation 

3 Extract a BOL keys from chromagram using IGMM 

4 Adjust chromagram based on Stage 3 using KK tonal profiles 

Figure 1: System components and flow 

3.1. Audio Wavelet Transformation 

The ability to effectively reduce transient and percussion noise is 

an important step for key and chord recognition. Audio denoising 

is typically applied at the pitch representation stage using median 

filtering [12] or at the chromagram stage using lowpass filters 

[13]. In this paper, we adopt UWT on the raw audio signals to 

reduce noise at the very beginning stage to obtain a smoother 

representation of raw signals before other audio processing tasks. 

Unlike a discrete wavelet transform (DWT), the UWT is shift-

invariant which is a critical property for denoising since the 

extraction and conversion of signals from audio CDs to WAV 

format can easily cause slight misalignment (see details in 

Section 4.2) in signal locations. Furthermore, the output at each 

level of UWT has the same sample length as that of the input 

which allows us to use existing tools for chroma extraction 

without further translation of the denoised signal.   

Music in WAV is read at a sampling rate of 22050Hz. To 

perform UWT, we first choose an appropriate base wavelet 

which matches the shape of the target audio signals. This is 

usually done by visual comparison and therefore subjective in 

nature. In our case, Daubechies (db) and Symlets (sym) are 

chosen as candidate base wavelets for UWT. Secondly, we need 

to determine the order of the base wavelet and level of wavelet 

decomposition. A higher order base wavelet is generally 

smoother than lower order ones while wavelet decomposition at 

a higher level also gives smoother representation of the raw 

audio signals. We employee different orders, from 8 to 12, for 

each candidate base wavelet (db8 ~ db12 and sym8 ~ sym12) 

and different levels (N=3~4) to obtain UWT approximation 

coefficients; detail coefficients are discarded. Therefore, there 

are a total of 2 (base wavelet) × 5 (order) × 2 (level) wavelet 

configurations for a target music piece. Two criteria are 

experimented in selecting the best configurations to represent 

denoised audio signals. The first criterion is entropy based where 

we choose the configuration that produces the wavelet 

approximation with the lowest Shannon entropy as described in 

Eq. (1). For the second criterion, a correlation coefficient as 

described in Eq. (2) is used to measure the similarity between the 

original audio signals and UWT approximation. The chosen 

denoised (smoothed) approximation of the original signal is used 

for chroma extraction in Stage 2. 

Eentropy(S) = - ∑   
   pi ·log2 pi (1) 

where S is the signal and p is the energy probability distribution 

of n wavelet approximation coefficients. 

C(S,A) = 
   

    
 (2) 

where S is the signal and A is wavelet approximation.     

denotes their covariance.    and    are the standard deviation of 

S and A, respectively.  

 

 Since the length of the raw audio signals must be a multiple 

of 2N for UWT, we satisfy this requirement by removing the last 

2N sampled raw data points, i.e., we remove at most (2N -1) 

samples for the N-level UWT from the raw signals. Removal of 

up to 7 or 15 trailing samples has virtually no impact on chroma 

representation since the wavelet transformation maintains the 

original sampling rate of 22050 Hz. Therefore, the removed 

trailing samples represent a duration of at most 7×10-4 second. In 

other words, the dimensions of the denoised signals will remain 

the same for each song regardless of the values of N (=3~4) 

under UWT. Figure 2 shows an example of UWT of 500 

sampled audio signals and an example of its UWT 

approximation. 

 

 

 
Figure 2: Top: audio signal with 500 samples. Bottom: UWT 

(sym8, level-4 approximation) transformed signal  

3.2. Chroma Extraction 

Since the wavelet transform is undecimated, the UWT 

approximation coefficients represent the signal with the same 

sampling rate as the original WAV signal. The wavelet-

transformed signals are used for chroma feature extraction. We 

feed these wavelet coefficients as denoised signals into the 

Chroma Toolbox [14] where a constant Q multirate filter bank is 

used with sampling rate of 22050 Hz for high pitches, 4410 Hz 

for medium pitches, and 882 Hz for low pitches. The hop size is 

half of the sampling rate which results in a feature rate of 10 Hz. 

Table 1 describes the variants of chroma features (first 3 rows) 

proposed in [14] and our wavelet-based chroma feature (CUWT-

N where N=3 ~ 4). In the following discussion, we use these 

specific names to address different variants of chroma features 

for performance comparison. However, for a general discussion 

of chroma features without the need to address a specific variant, 

we use CFi to denote the chroma feature of the ith frame. 
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Table 1: Variants of Chroma features used in this paper 

Name Feature Description 

CLP  Chroma Log Pitch  

CENS Chroma Energy Normalized Statistics (no log) 

CRP Chroma DCT-Reduced log Pitch 

CUWT-N UWT on raw signals to produce CLP 

 

3.3. Local Key Estimation  

To achieve higher performance of chord recognition, we first 

extract local keys of a music piece for two reasons. First, since a 

key typically covers wider segments of the music piece than a 

chord, we assume that extracting local keys from a chromagram 

is less impacted by noises (such as percussion) due to their wider 

coverage than that of chords in a music piece. Second, given 

local keys of a music piece, we can predict prominent pitches 

that reside within the key; therefore we have a higher chance of 

extracting correct chords from a noisy chromagram.  

 Each frame of the chromagram represents the energy level 

of 12 pitch classes and we want to use prominent pitches to 

quickly estimate keys within the whole music piece. Since triads 

(major and minor) are the most prevalent chords in pop music, 

we apply a simple peak-picking algorithm on each frame to pick 

out the major or minor triad with the highest energy to represent 

the frame for key recognition. We denote yi as the triad 

representing frame i and denote Y = {y1,y2, …, yn} for n frames 

of a music piece. Note that Y is a series of preliminary triads that 

we use to estimate local keys and therefore not the results of 

chord recognition. 

 We use a generative process to determine what local keys 

(latent variable θ) generated Y without any training data. Our 

emphasis is on finding the most likely local keys that are present 

in the target music piece but ignore their sequence and precise 

modulation points. Each θi in θ is modeled as a Gaussian 

component, specified by its mean and covariance. To bypass the 

requirement of specifying the number of local keys in a Gaussian 

mixture, we use an infinite Gaussian mixture model (IGMM) 

depicted in Figure 3. For details of IGMM which is a specific 

variant of Dirichlet mixture model, we refer readers to [15]. 

 

  

:G Hyper-parameters 

for Gaussian mean (µi) 

and covariance (∑i) 

 

θ ~ G 

π|α ~Dirichlet(α/K,… α/K)                                     

c|π ~ Multinomial(π)                                              

yi | c, θi ~ F(θi)

 
Figure 3: IGMM for keys generation 

 In Figure 3, θi is a Gaussian component with mean (µi) and 

covariance (∑i). c = {c1, c2, …, cn} is an indicator variable 

establishing  a mapping between each chroma vector in Y and θ. 

Hyper-parameter α is the prior for a discrete distribution for 

mixture proportions πi where i = 1 …k. A GMM would have a 

set value of k, but in the case of an IGMM, k is completely 

determined by the generative process which allows it to go into 

infinity. The mixing proportions (π) are modeled as a Dirichlet 

distribution which serves as a conjugate prior for multinomial 

component indicators (c).  

 Given a chromagram Y, the joint posterior distribution of 

model parameters is described in Eq. (3). Since the indicator 

variable c associates each chroma vector to key θ, together they 

completely determine what local key generated each chroma 

vector. Therefore, our goal is to use an iterative sampling process 

to obtain c and θ. 

p(c, θ, π, α|Y) ∝ p(Y|c, θ)p(θ|G) ∏   
   p(ci| π)p(π| α)p(α) (3) 

Following [18], an efficient way to sample θ and c is based 

on Eqs. (4 & 5): 

p(a new θ) ∝ α / (n – 1 + α) (4) 

where a new θ sample can be generated based on G as described 

in Figure 3 and Table 2. 

p(an existing θj) ∝  nj / (n – 1 + α) (5) 

where n and ni represent the total number of data points and the 

number of data points generated by θj, respectively. θj can repeat 

its value due to discreteness. 

  

 Eqs. (4 & 5) govern how to sample a new (or existing) 

configuration ci for data point yi. The idea is that for each yi in Y 

that we process iteratively, we first use Eqs. (4 & 5) to 

probabilistically determine whether it was generated by a local 

key that was not seen before or by one of the existing local keys; 

based on the determination, we generate a new θ as the new 

unseen local key for yi or associate yi to an existing local key. 

Therefore, if ci is obtained by Eq. (5), we simply associate yi 

with an existing θj. If ci is obtained through Eq. (4), we sample a 

new θ from G as described in Figure 3. Table 2 describes how we 

encode mean (µi) and covariance (∑i) of Gaussian key in C major 

and C minor. Minor keys are encoded based on a mix of 

harmonic and natural minor scales. Other keys can be obtained 

by circular shifting the matrices described in Table 2. We 

implement ∑i as a diagonal matrix and assign a value of 1 for 

notes present in the key. 

 From Figure 3 and Eq. (3), we see that hyperparameter α 

serves as a prior to the mixture proportions as well as a 

probabilistic event to introduce a new θ into the mixture of local 

keys. To sample α from the generative process described in 

Figure 3, we follow the sampling process proposed by [16] in 

Eq. (6). The idea is to draw a new value for α at the end of each 

iteration (after processing all n  data points) based on the most 

recent values of α and k (number of Gaussian components) 

using Gamma(1,1) as the prior for α. 

p(α|k, π, Y) = p(α|k) ∝ p(α)p(k|α) (6) 

 

We feed Y into the IGMM to iteratively generate local key 

samples that most likely produced Y. We arbitrarily generate the 

first key sample and after 4 burn-in iterations, these samples start 

to converge to the estimated local keys very quickly, usually in 

less than 12 iterations. Note that a sample generated from an 

iteration contains all possible local keys used in the entire music 

piece. We iterate s times to obtain s samples of local keys and 

c 

α 

µk

 

∑k

 

π 

yi 

θ  

(key) 

 

Music Theory (G) 

) 
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discard those that cover less than 10% of the chromagram due to 

their short existence. Table 3 summarizes the algorithm. 

Table 2: Gaussian coding examples for keys 

 Example [C, C#/Db, …, A#/Bb, B] 

µi 
C major key [1 0 1 0 1 1 0 1 0 1 0 1] 

C minor key [1 0 1 1 0 1 0 1 1 1 1 1] 

∑i C major / minor key A 12×12 diagonal matrix based 

on µi 

 

Table 3: Key sampling algorithm using IGMM 

Obtain peak pitches Y (triad peak-picking) 

Initialize G; Initialize c1 and θ1 to random values. 

For i = 1:s samples  

For j=1:n   (n = size of Y) 

Sample a new cj based on Eqs. (4 & 5) 

If a new θ is required, sample a new θ 

Update α  based from iteration (i-1) using Eq. (6) 

Regroup Y based on all sampled θ;  

Discard θ’s that cover less than 10% of the chromagram; output 

θ as a BOL keys 

Based on Eqs. (4 & 5) and the sampling process described 

in Table 3, we see that data points in Y are assumed to be 

exchangeable which is a prerequisite of a Dirichlet mixture 

model. In our case, it means that every finite subset of Y, the 

joint distribution of them is invariant under any permutation of 

the c indicator variable. Obviously, exchangeability does not 

exist in music since musical notes contained therein are products 

of careful orchestration by composers and performers. However, 

for tonal music, its tonal centers (keys) dominate the use of 

specific pitch hierarchy of the tonic, so the random exchange, in 

terms of their placement in the music piece, of pitches would 

have minimal effect in our estimation of a BOL keys; therefore, 

we can uphold the presumption of exchangeability in applying 

the IGMM for key analysis. 

3.4. Chord Recognition 

Given a BOL keys for the chromagram, we recognize 5 chord 

classes (maj, min, aug, dim, sus) and 1 “N” label representing 

“no chord” or silent period on a frame-by-frame basis. We 

catalog the mapping of 17 chord types to the 5 chord classes in 

Table 4. The idea is that once we have local keys extracted, we 

only consider pitch energy of diatonic tones within the detected 

local keys and further adjust chroma energy using the Krumhansl 

& Kessler (KK) profiles [9] described in Figure 4. 

 We use binary templates, denoted as TKey, to represent the 

local keys that we have determined as described in Table 2 (µi). 

Similarly, binary templates are used for chord classes. Therefore, 

a C major chord has a template TChordmaj = [1 0 0 0 1 0 0 1 0 0 0 

0]. Given the key information TKey, we use the corresponding 

KK profile to adjust CFi (chroma feature for the ith frame, 

defined in Section 3.2) accordingly by promoting prominent 

while suppressing less prominent ones in CFi. We denote 

KKdetermined as the key profile for local keys determined from 

IGMM by circular shifting either KKmaj or KKmin. Every time we 

circular shift TChord for one of the 5 chord classes, we compute 

the dot product as described in Eq. (7) to obtain the adjusted 

chroma energy for frame i. The TChordc template corresponds to 

the highest energy sum, CFi_adjusted, of the dot product is the 

recognized chord for frame i. 

CFi_adjusted  =  CFi · TKey · KKdetermined · TChord (7) 

Table 4: Chord classes 

Chord Class Chord Type 

Major maj, maj7, 7, maj6, 9, maj9 

Minor min, min7, minmaj7, min6, min9 

Diminished dim, dim7, hdim7 

Augmented Aug 

Suspended sus2, sus4 

 

 

Figure 4: The Krumhansl & Kessler major- and minor-key 

profiles 

For example, if C major has been detected as one of the 

local keys in a music piece, we set TKey = [1 0 1 0 1 1 0 1 0 1 0 

1] and KKdetermined to values as described in Figure 4. We also 

circular shift 5 chord templates (maj, min, dim, aug, sus) as 

TChord to represent C major, C minor, and etc. Finally, for each 

chroma frame CFi, we use Eq. (7) to obtain the adjusted chroma 

feature CFi_adjusted and we select the TChord among all detected 

local keys and 5 chord classes that produced the highest energy 

sum CFi_adjusted as the recognized chord for the ith frame. 

4. EXPERIMENTAL RESULTS 

We tested the performance of this new approach using 175 

songs1 from the Beatles’ 13 albums. The signals were down-

sampled to 22050Hz with mono channel.   

 The two selection criteria described in Eqs. (1 & 2) 

represent competing perspectives on how to choose a base 

wavelet for denoising: one seeks to minimize the entropy while 

the other maximizes similarity. We randomly chose one song 

from each album and tested the two criteria and it was evident 

                                                 
1 We exclude 5 songs out of 180 due to ambiguous tunings. They are: 

Revolution 9, Love You Too, Wild Honey Pie, Don’t Pass Me By, and 

The Continuing Story of Bungalow Bill. 
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that a trade-off criterion was in order. Therefore, we selected the 

best wavelet that maximized C(S,A)/Eentropy(S) among the 

configurations as described in Section 3.1. Furthermore, based 

on this preliminary test of wavelet configurations, we determined 

that level-4 (N = 4) approximation was the most suitable for 

applying UWT on the WAV audio signals to estimate local keys 

and chords.  

4.1. Local key Estimation 

 

For competitions in global key extraction, MIREX2 provides an 

evaluation method that gives a full point for correct key 

estimation and various partial points to related keys such as 

perfect fifth, relative or parallel major/minor. However, no 

evaluation method has been proposed for competition in local 

key extraction. Fixed-length windows have been proposed by [6, 

7] to extract keys; with the aid of metrical information, [18] 

estimated local keys without using such fixed-length window. 

Since we extract a BOL keys, none of the above evaluation 

method can be applied for our work. The most suitable 

evaluation method for our work is to use precision, recall, and F-

measure which is a widely adopted metric for information 

retrieval task. We used musicologist Allan Pollack’s complete 

annotation of all the Beatles’ recordings from the internet [19] as 

the ground truth to calculate the three measures. We extracted all 

possible local keys (even described as “hint of” modulation) 

described in his notes for each song to compare with recognized 

local keys from our algorithm. Also, recall from Section 3.3, we 

discarded local keys that covered less than 10% of total frames in 

the chromagram. Moreover, we strictly compared our results 

with Pollack’s notes – i.e., related keys (fifth, relative or parallel 

major/minor) were not counted as correct recognition and no 

partial points are given. We categorized songs into single and 

multiple keys and computed their precision, recall, and F-

measure. Table 5 depicts the findings of using the CUWT-4 

denoised chromagram. We give a brief definition of the three 

measures to facilitate the discussion. 

 

 Precision: fraction of retrieved keys are true keys 

 Recall: fraction of true keys that are successfully retrieved 

 F-measure: (2 × precision × recall) / (precision + recall) 

 

 In Table 5, the high recall values for songs without key 

modulations indicate that 86% of true global keys are extracted 

and almost 70% of extracted keys are true keys. However, for the 

30 songs with key modulations, we extracted 60% of true local 

keys while 65% of extracted local keys are true keys. Overall, 

69% of extracted keys are true keys and 82% of true keys are 

retrieved. The result is encouraging and indicates that a 

chromagram using level-4 approximation of UWT in conjunction 

with an IGMM generative process can be used to recognize 

global as well as local keys in a music piece. Since the overall 

precision is 13% lower than that of recall, we conclude that the 

algorithm generates a high number of false positives. 

 

 

 

                                                 
2 http://www.music-ir.org/mirex/wiki/2012:Audio_Key_Detection 

Table 5. Performance of local key estimation 

 # of 

songs 

Precision Recall F-Measure 

Single key  145 .698 .866 .773 

2 ~ 4 keys 30 .650 .603 .625 

Overall 175 .690 .820 .750 

4.2. Chord Recognition 

We use [17] as ground truth which contains a sequence of 

chords’ start and end times for each song. Recognition rate is 

defined as the number of frames that correctly identify the chord 

over the total number of frames (average overlap score, AOS) for 

the whole duration of the 175 songs. Since all chords specified in 

the ground truth can be mapped to the 5 chord classes (and “N”), 

all frames are evaluated against the ground truth. However, since 

the average time difference in terms of song lengths between 

Harte’s annotation and our chroma features is 0.262 second 

which is longer than 2 frames, we suspect that there are slight 

misalignments in our WAV files (comparing with the ground 

truth) after they are ripped from audio albums. Therefore, we 

also report recognition rate with 1 frame tolerance on each side 

of the annotated chord. Table 6 depicts the results. To see the 

effect of using the extracted local key knowledge for chord 

recognition, Table 6 also shows chord recognition rates without 

using the extracted keys (in parenthesis) -- all 24 major and 

minor keys from the KK profiles were used in Eq. (7) in the 

process described in Section 3.4.  

Table 6: Average overlap score for chord recognition 

 Exact Match (no 

tolerance) (%) 

+/- 1 Frame Tolerance 

(%) 

CLP 64.5 (41.5) 68.3 

CENS 51.9 (33.8) 54.8 

CRP 56.2 (42.9) 59.3 

CUWT-3 66.7 (43.5) 70.7 

CUWT-4 68.2 (42.9) 72.3 

 

 From Table 6, we see that extracted keys improved the 

chord recognition rate by roughly 15% comparing with the case 

of bypassing stage 3 and using all 24 KK profiles to adjust the 

chromagram for chord recognition as described in Section 3.4. 

Though extracted keys are a subset of all 24 keys and higher 

energy levels are expected in diatonic pitch classes of a chroma 

vector, the chord recognition process described in Eq. (7) did not 

work well without using targeted local keys extracted from Stage 

3. We also see that the three chroma features (CLP, CENS, and 

CRP) produced lower recognition rates which are consistent with 

the analysis described in [14] with the exception that the CLP 

outperforms CRP significantly. Furthermore, our UWT level-4 

denoised chroma feature gives approximately 4% boost over 

CLP. Furthermore, if we can properly align our audio files with 

the ground truth, we estimate that our chord recognizer achieves 

an AOS of 72% on 5 classes of chords and 1 “N” (no chord) 

label without discarding any frames from the chromagram.  
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5. CONCLUSION AND FUTURE WORK 

We have proposed a wavelet-based audio denoising and bag-of-

keys extraction techniques which lead to an unsupervised chord 

recognition system without using other musical elements. The 

UWT can be easily applied to any WAV signals to obtain a 

smoother approximation as input to a chroma-based audio 

processing front-end for subsequent tasks. We estimated that the 

best representation of the raw audio signals for a chord 

recognizer is the level-4 UWT using either Symlet or Daubachies 

base wavelet with various orders. We obtained the best 

approximation by choosing the wavelet configuration that 

produced the maximum correlation to entropy ratio.  

Our second contribution is the use of an IGMM to 

probabilistically determine a BOL keys that generated the 

chromagram. For tonal music, we can safely predict that the 

majority of pitches or musical notes that are present in a music 

piece are from the diatonic scale of a (local) key and those not in 

the scale are consider accidentals. Therefore, we treat chroma 

vectors in the chromagram as exchangeable to obtain a BOL 

keys using IGMM. Unlike estimating a time series of local keys, 

our bag-of-local-keys approach bypasses the need to specify the 

length of a sliding window through the chromagram. The search 

for the optimal window length is still an open problem [18].  

From the experimental results, chroma features using UWT-

4 gains approximately 4% accuracy for chord recognition. Using 

simple mean and covariance profiles based on fundamental 

music theory, the generating process can produce local key 

samples that converge quickly in less than 12 iterations. With 

extracted local keys, we adjust the chromagram by applying the 

Krumhansl & Kessler profiles to promote diatonic pitches to 

recognize chords. Other profiles, such as [8] can also be used. 

From the experiments, the overall chord recognition rate is at 

least 68.2% and possibly 72.3% using slightly misaligned and 

perfectly aligned audio files, respectively.  

Comparing with the more complex chord recognizers using 

supervised learning technique, a simpler and unsupervised 

counterpart can perform just as well or outperform approaches 

requiring scarce labeled training data. Our next step is to adjust 

the framework to replace the one-way interaction (a BOL keys 

first, then frame-by-frame chords) with two-way estimation so 

that chord information can be used to transform the BOL keys 

into a time series of local keys which can in turn improve the 

chord recognition task iteratively. 
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