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ABSTRACT

We present SuperFlux - a new onset detection algorithm with vi-
brato suppression. It is an enhanced version of the universal spec-
tral flux onset detection algorithm, and reduces the number of
false positive detections considerably by tracking spectral trajec-
tories with a maximum filter. Especially for music with heavy use
of vibrato (e.g., sung operas or string performances), the number
of false positive detections can be reduced by up to 60% with-
out missing any additional events. Algorithm performance was
evaluated and compared to state-of-the-art methods on the basis of
three different datasets comprising mixed audio material (25,927
onsets), violin recordings (7,677 onsets) and operatic solo voice
recordings (1,448 onsets). Due to its causal nature, the algorithm
is applicable in both offline and online real-time scenarios.

1. INTRODUCTION AND RELATED WORK

Onset detection is the process of finding the starting points of all
musically relevant events in an audio performance. While the de-
tection of percussive onsets can be considered a solved problem,1

softer onsets, vibrato and tremolo still constitute major challenges
for existing algorithms.

Since soft onsets (e.g., of woodwind or bowed string instru-
ments) have a long attack phase with a slow rise in energy, energy-
and magnitude-based approaches are not the best choice for detect-
ing them. To overcome the shortcomings of these approaches, spe-
cific algorithms that solve the soft onset problem by additionally
incorporating phase [2, 3, 4] or pitch information [5, 6, 7] or a com-
bination thereof [8] have been proposed. However, magnitude-
based methods [9] have advanced and perform on par with the
above methods and outperform them on all kinds of percussive
audio material.

The current state-of-the-art methods for online [10] and of-
fline [11] onset detection are based on a probabilistic model and
incorporate a recurrent neural network with the spectral magni-
tude and its first time derivative as input features. In particular the
offline variant OnsetDetector shows superior performance on all
sorts of signals [1]. Because of its bidirectional architecture, it is
able to model the context of an onset in order to both detect hard
do discover onsets in complex mixes (e.g., a soft note onset of rela-
tively low volume) and suppress events which are erroneously con-
sidered onsets by other algorithms, such as the sound of stopped
strings.

Vibrato is an artistic effect commonly used in classical mu-
sic and can be sung or played by instruments. It reflects a quasi-

1State-of-the art detection algorithms achieve F-measure values greater
than 0.95 on percussive sounds [1].

periodic change in the frequency of a played or sung note. Vi-
brato is characterized technically by the amount of pitch variation
(e.g.,± a semitone for string instruments and up to a complete tone
in operas) and the frequency with which the pitch changes over
time (e.g., 6 Hz). It is sometimes used synonymously as a combi-
nation with another effect: the tremolo, which describes changes
in the volume of a note. As it is technically difficult for a human
musician to play pure vibrato or tremolo, both effects are usually
performed simultaneously. Because of the resulting fluctuations
in loudness and frequency, it is very hard for onset detection al-
gorithms to correctly distinguish between new note onsets and an
intended variation of the note.

So far only very few publications have addressed the prob-
lem of spuriously detected onsets in vibrato music. Collins [5]
uses a vibrato suppression stage in his pitch-based onset detection
method that first identifies vibrato regions which fluctuate by at
most one semitone around the center frequency and collects the
extrema in a list. The region is then expanded gradually in time to
cover the whole duration of the vibrato. After having identified the
complete extent of the vibrato, all values within this window are
replaced by the mean of the extrema list. The onset detection func-
tion is based on the concept of stable pitches and uses the changes
in pitches as cues for new onsets.

Schleusing et al. [7] deploy a system based on the inverse cor-
relation of N consecutive spectral frames centered around the cur-
rent location. Regions of stable pitch lead to low inverse correla-
tion values, and pitch changes result in peaks in the detection func-
tion. To suppress vibrato, they use a warp compensation which
cancels out small pitch changes within the window under consid-
eration, leaving the changes due to onsets mostly untouched.

Both systems work only in offline mode because they require
future information to reliably detect the vibrato and apply their
counter-measures. Furthermore, they can be used only for pitched
non-percussive music and are unsuitable for all other kinds of au-
dio material. Glover et al. [12] described a linear prediction post-
processing technique that can be applied to existing online onset
detection algorithms and is not limited to pitched instruments. Al-
though not designed specifically for vibratos, it is related because
it improves mostly the recall performance of the investigated onset
detection algorithms.

In this paper, we concentrate on vibrato suppression methods
which can be applied both to online (i.e., real-time processing of
a continuous audio stream with minimal latency) and offline on-
set detection scenarios. As a basis for our research we chose the
LogFiltSpecFlux method proposed in [9], which is the current non-
probabilistic state-of-the-art onset detection method [1]. It oper-
ates in the spectral domain; more specifically, it only considers the
magnitude spectrogram without incorporating any phase informa-
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tion. Like the common spectral flux algorithm [13] it relies on the
detection of positive changes in the energy over time, but instead
of calculating the difference from the same bin of a previous frame
(see Figure 1a), it includes a special trajectory-tracking stage. A
general approach to trajectory tracking is shown in Figure 1b and
illustrates the ability of this method to suppress spurious positive
energy fragments (which are falsely detected as new onsets by the
spectral flux algorithm) because it calculates the difference along
the trajectory path. The new method incorporates a maximum fil-
ter (Figure 1c) to track the trajectory in a computationally efficient
and simple but effective way.

t

(a) classical bin-wise difference calculation

t

(b) trajectory tracking-based difference calculation

t

(c) maximum filter-based difference calculation

Figure 1: (a) the problem of difference calculation in vibrato sig-
nals inherent in spectral flux-based methods, (b) a general trajec-
tory tracking-based solution, and (c) the proposed maximum filter-
based method. Arrows indicate the positions used for difference
calculation, with the tails indicating the positions of the minuends
and the heads those of the subtrahends. The grey lines in (c) mark
the frequency bounds of the regions which are assigned the same
magnitude value via the maximum filter.

2. PROPOSED METHOD

Our method adds a spectral trajectory-tracking stage to the com-
mon spectral flux (SF) [13] algorithm. The system processes the
signal in a frame-wise manner. Thus the signal is divided into
overlapping chunks of length N = 2048 samples, and each frame
is weighted with a Hann window of the same length before being
transformed to the spectral domain via the Discrete Fourier Trans-
form (DFT).

The original spectral flux implementation uses the temporal
evolution of the magnitude spectrogram |X(n, k)| by calculating

the bin-wise difference between two consecutive short-time spec-
tra and then sums all positive deviations [13]:

SF (n) =

k=N
2∑

k=1

H (|X(n, k)| − |X(n− 1, k)|) (1)

with H(x) = x+|x|
2

being the half-wave rectifier function, n the
frame number and k the frequency bin index.

The problem of the difference calculation in signals containing
vibrato can be seen in Figure 2b. Many spectral peaks appear if
the difference between a frequency bin and the same frequency
bin k of the previous frame n − 1 is calculated. The result of our
maximum filter-based trajectory-tracking approach is illustrated in
Figure 1c and described below.

2.1. Pre-processing

To facilitate trajectory tracking, some pre-processing measures are
taken. In general, it is desirable to have a much finer temporal
resolution than the standard frame-rate of fr = 100 fps used for
onset detection. We thus chose to double the frame-rate so that we
can report onsets with 5 ms accuracy. An increased frame rate has
the advantage that the quantized magnitude spectrogram features
much smoother trajectories, which simplifies tracking. However
(in addition to the higher computational cost) is has the disadvan-
tage that the individual differences (on which the onset detection
function is based) are much smaller due to greater overlapping of
the windows. Thus, instead of calculating the difference between
consecutive frames, we use frames that are further apart, the offset
determined by the parameter µ:

µ = max (1, b(N/2−min{n|w(n) > r}) /h+ 0.5c) (2)

with r being a parameter which defines the height ratio of the win-
dow functionw(n) with lengthN , and the hop-size h between two
frames. The hop-size can be calculated by dividing the sample-rate
of the audio signal fs by the frame-rate fr . The spectral flux on-
set detection function with the improved difference calculation is
given by:

SF ′(n) =

k=N
2∑

k=1

H (|X(n, k)| − |X(n− µ, k)|) (3)

with µ ≥ 1. The main advantage of this measure is that the differ-
ence values are greater since the overlap of the two windows con-
sidered is smaller (because they are located further apart). Values
of r = 0.5, resulting in µ = 2, were found to yield the best perfor-
mance for a frame-rate fr = 200 fps and the standard sample-rate
fs = 44.1 kHz of the audio signal. Additionally, the peaks of
the resulting onset detection function are much closer to the ac-
tual onset positions, which renders lag compensation in the final
peak-picking unnecessary.

To simplify trajectory tracking, the linear magnitude spectro-
gram is filtered with a filterbank F (k,m) with M = 138 trian-
gular filters with center frequencies aligned on the western music
scale and separated by a quarter-tone from each other, covering a
frequency range of 27.5 . . . 16,000Hz. Operating on a logarith-
mic frequency scale has the advantage that a constant frequency
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(a) magnitude spectrogram
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(b) classical bin-wise positive difference
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(c) positive difference with maximum-filtering trajectory tracking
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(d) sum of differences

Figure 2: (a) logarithmic magnitude spectrogram of a 4 s violin
recording featuring vibrato, and filtered with a quarter-tone fil-
terbank, (b) the positive differences calculated by taking the bin-
wise difference between two consecutive spectrogram frames, and
(c) with the proposed maximum-filtering trajectory tracking. (d)
shows the sum of all positive differences, the dotted line represent-
ing the sum of the spectrogram given in (b) [9] and the solid line
the sum with the maximum filter applied shown in (c).

shift (e.g., by a semi-tone) always results in a shift by the same
number of frequency bins (2 if quarter-tone filters are used) inde-
pendent of the fundamental frequency of a sounding note. Thus,
the search range for trajectory tracking is constant, independently
of the starting frequency bin m.

It has been found to be advantageous (i) to filter the spectro-
gram first and then take the logarithm of the summed (filtered)
magnitude as in [9] (using the same trick of adding 1 before taking
the logarithm) and (ii) not to normalize the filters of the filterbank
to have equal areas. The logarithmic filtered spectrogram is given
by:

Xlog,filt(n,m) = log10 (|X(n, k)| · F (k,m) + 1) (4)

with m being the frequency bin index on the quarter-tone fre-
quency scale used.

2.2. Trajectory tracking

The frequency deviation of vibrato in string music is usually ±1
semitone with an alternation frequency of up to 10Hz. In operatic
singing, the frequency deviation can be much greater, but the al-
ternation frequency is lower, which results in a very similar search
space for the tracking of the magnitude trajectories. For the given
setting of fr = 200 fps and a quarter-tone filtered spectrogram, a
search space of m = ±1 frequency bins over µ = 2 consecutive
time frames covers the expected fluctuations.

Below we present two methods we investigated. They are su-
perseded by our maximum filter-based approach, described sub-
sequently, which performs as well or better but has a much lower
computational complexity.

First we investigated an approach which uses the cross-corre-
lation of two frames to determine the shift in frequency needed to
achieve the highest similarity between the two frames. Based on
this frequency shift, we calculated the bin-wise differences from
the µ-th preceding frame shifted by exactly this lag. The method
is similar to that used in [7]. There, the correlation between two
consecutive frames of the linearly scaled spectrogram is used to
formulate a detection function, but a special warping method is
needed to compensate for the greater frequency spreading at higher
frequencies. Using a logarithmic frequency scale as described in
the previous section and incorporated in the approach in [14] ren-
ders warping for proper cross-correlation calculation between two
frames unnecessary. Because both methods use the level of corre-
lation directly as a feature (in [7] weighted by the energy of the sig-
nal), they only use frequencies up to 8000 Hz [7] and 3000 Hz [14],
respectively, to achieve higher correlation values. Since we use the
cross-correlation values only to choose the shift needed for maxi-
mum correlation, the frequency range need not be limited.

While this method works perfectly for monophonic pitched
non-percussive music, it shows inferior performance when used
for mixed audio signals where high energy portions of the signal
can impede the vibrato detection based on correlation. Thus, we
implemented a more universal approach which works on all kinds
of musical signals. A simple trajectory tracking approach was cho-
sen which follows the magnitude trajectory of each frequency bin
m backwards in time in µ individual time-steps. The difference for
each bin is then calculated with respect to the magnitude along the
trajectory path, as can be seen in Figure 1b. Since this approach is
computationally expensive, methods with lower complexity were
investigated.
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A very simple method which performs as well as (or better
than) the two aforementioned approaches – independently of the
audio material used – incorporates a maximum filter. Maximum
filters are commonly used in computer vision and set the value at
a given position to the maximum value in its neighborhood, which
is defined by the shape of the filter. We chose the filter shape such
that the current frequency bin and its direct neighbors on the log-
arithmically scaled filtered spectrogram Xlog,filt(n,m) are cov-
ered, but limited to the current time frame. The effect of this max-
imum filter is a widened trajectory (on the frequency axis), and is
shown in Figure 1c. The maximum filtered spectrogram is then
given by:

Xmax
log,filt(n,m) = max (Xlog,filt(n,m− 1 : m+ 1)) (5)

In the final SuperFlux detection function, the difference is then
calculated with respect to this maximum-filtered spectrogram:

SF ∗(n) =

m=M∑
m=1

H
(
Xlog,filt(n,m)−Xmax

log,filt(n− µ,m)
)
(6)

The effect of the measures described above is clearly visible
in Figure 2c, which plots the positive difference (calculated to the
next to last frame) with maximum-filtering trajectory tracking of
the 4-second recording of a violin played with vibrato shown in
Figure 2a. Compared to the standard spectral flux difference cal-
culation approach (Figure 2b), it clearly shows fewer positive en-
ergy components in the regions played with vibrato. Figure 2d
plots the sums of the two difference calculation approaches shown
above. The solid line represents the SuperFlux detection function
according to Equation 6, the dotted line the standard spectral flux
algorithm (applied to the filtered logarithmic spectrogram given in
Equation 4). This approach is described in [9] and serves as a state-
of-the-art spectral flux implementation for evaluation in Section 3.
Although the peaks of the SuperFlux detection function are some-
times a bit lower if the new notes are played slurred (e.g., onsets
around frame numbers 430 and 580), the overall detection function
has a much lower noise floor caused by vibrato. The remaining
ripple is mostly due to variations in loudness, for instance effects
intended by the player (e.g., tremolo) or a natural loudness fluctu-
ation while playing vibrato.

2.3. Peak picking

We use the peak-picking method described in [9] to select the final
onsets of the SuperFlux detection function. This method is simple
and suitable for both offline and online settings. In online mode
(i.e., when reading an incoming audio stream) no future informa-
tion is available, and thus only past information can be used. A
frame n of the SuperFlux onset detection function SF ∗(n) is se-
lected as an onset if it fulfills the following three conditions:

1. SF ∗(n) = max (SF ∗(n− pre_max : n+ post_max)),

2. SF ∗(n) ≥ mean(SF ∗(n−pre_avg : n+post_avg))+δ,

3. n− nprevious onset > combination_width,

where δ is the tunable threshold. The other parameters were cho-
sen to yield the best performance on the complete dataset. Specif-
ically, pre_max = 30ms, post_max = 30ms, pre_avg =
100ms, post_avg = 70ms, and combination_width = 30ms

achieved good overall results. Parameter values must first be con-
verted into frames depending on the frame-rate fr used. For peak
picking in online mode, post_max and post_avg are set to 0.

3. EVALUATION

We used a variety of datasets and settings in our evaluation to max-
imize comparability with published methods.

3.1. Datasets

The biggest dataset used for evaluation is that described in [9],
which consists mostly of mixed audio material covering different
types of musical genres, performed on various instruments. It in-
cludes the sets used in [3], [8], and [11]. The 321 files have a total
length of approximately 102 minutes and have 27,774 annotated
onsets (25,927 if all onsets within 30 ms are combined). The main
purpose of this set is to show how the new SuperFlux algorithm
performs on a general-purpose dataset. This dataset is hereafter
referred to as Böck. Based on this set, we built a subset covering
only the violin and cello recordings played with vibrato. These
16 files have 849 onsets.

For comparison with the current state-of-the-art algorithm for
pitched non-percussive music presented in [7], we use the authors’
dataset. However, not all sound files and annotations could be used
for evaluation, since the authors could provide only part of this set.
As the available dataset contains 75% of the original dataset (7,677
instead of 9,717 onsets) and an identical distribution of the differ-
ent playing styles (50% contain vibrato, some staccato etc.), we
are confident that the results obtained are nonetheless comparable.
We call this the Wang dataset.

To investigate our algorithm’s ability to suppress the vibrato
in operatic singing, a third dataset (called the Opera dataset) con-
sisting of solo singing rehearsal recordings of a Haydn opera was
used. The recordings were made at the Ars Electronica Future Lab
in Linz, Austria. The set covers both male and female singers and
has a total length of 10 minutes, containing 1,448 onsets.

3.2. Performance measures and evaluation settings

The performance of onset detection methods is commonly evalu-
ated by means of Precision, Recall, and F-measure. If a detected
onset is within the evaluation window around an annotated ground
truth onset location, it is considered to be correct. However, every
detected onset can only match once, and thus any detected onset
within the evaluation window of two different annotated onsets
counts as one true positive and one false negative (a missed onset).
The same applies to annotations: all additionally reported onsets
within the evaluation window of an annotation are counted as false
positive detections. For better comparability with other results, we
match the evaluation parameters as follows:

Our standard setting is that used in [9], which combines all
annotated onsets within 30 ms to a single onset and uses an eval-
uation window of ± 25 ms to identify correctly detected onsets.
Thus, the combination_width parameter of our peak-picking is
also set to 30 ms.

The second set of parameters (used for the evaluation of the
Wang dataset) uses the same settings as in [7], where all onsets
within 50 ms are combined (i.e., combination_width = 50ms)
and an evaluation window of ± 70 ms is used.

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

Unless otherwise noted, all results were obtained by swiping
the threshold parameter δ of the peak-picking stage and choosing
the value that maximizes the F-measure on the respective dataset.

3.3. Results & Discussion

In order to demonstrate that the SuperFlux algorithm is a good all-
round performer which not only suppresses false positive onsets in
music with vibrato, but also performs on the same level as state-of-
the-art methods, we tested it against various other onset detection
algorithms.

3.3.1. Competitors

For comparison, we chose the four best-performing online and of-
fline onset detection methods among those submitted to the 2012
MIREX evaluation [1]. We consider these submissions the state
of the art, since they achieved the highest ever F-measures in the
MIREX evaluation. OnsetDetector.2012 is an improved version
of the method originally proposed in [11], which shows superior
performance in offline scenarios. Together with its online variant,
OnsetDetectorLL [10], it belongs to the group of probabilistic ap-
proaches. Since both were trained on the complete Böck dataset
(cf. Section 3.1), results given for these algorithms were obtained
with 8-fold cross-validation and parameter tuning on the training
subset. The LogFiltSpecFlux [9] algorithm uses no probabilistic
information and thus is much less computationally demanding. It
can be used both in online and offline scenarios and marks the up-
per bound of performance “simple” algorithms are able to achieve
to date.

3.3.2. Böck set

The results for the full Böck dataset are given in Table 1. In on-
line mode, the new SuperFlux algorithm clearly outperforms the
LogFiltSpecFlux method [9] on which it is based, and it closes the
gap to the reference OnsetDetectorLL neural network-based ap-
proach [10].

Precision Recall F-measure

online
OnsetDetectorLL [10] 0.863 0.783 0.821
LogFiltSpecFlux [9] 0.854 0.753 0.801
SuperFlux 0.855 0.787 0.820

offline
OnsetDetector.2012 [11] 0.892 0.855 0.873
LogFiltSpecFlux [9] 0.877 0.756 0.812
SuperFlux 0.883 0.793 0.836

Table 1: Precision, Recall and F-measure of different onset detec-
tion algorithms using online (upper half) and offline (lower half)
settings on the Böck dataset. Results for the OnsetDetectorLL [10]
and OnsetDetector.2012 [11] algorithms were obtained with 8-
fold cross-validation and parameters selected solely on the train-
ing set.

An important aspect of the results is the shift of the new method
towards higher recall values (and thus a more balanced ratio with
respect to precision). Although the algorithm does not detect more
onsets per se, suppressing spurious onsets has the very favorable

side effect of allowing a lower overall threshold to be chosen for
the peak-picking stage, which leads, in turn, to a higher recall rate
without too many additional false positives.

In offline mode, the overall picture is very similar: all methods
performed slightly better than in online mode with the exception of
the OnsetDetector.2012 algorithm, which exhibited superior per-
formance. This is mainly due to the algorithm’s ability to model
the context of an onset and thus to detect “more difficult” onsets
that cannot be found by other methods. Detailed investigations of
the remaining false positive detections revealed that OnsetDetec-
tor.2012 recognizes the sound of a stopped string and thus does
not report an onset in such situations, which results in a higher
precision rate. However, this is only possible if future information
is available (i.e., only in offline mode) and exploited by the algo-
rithm – which is not the case for the SuperFlux since its trajectory
tracking is strictly causal, and the offline mode only differs in the
peak-picking settings.

Table 2 compares SuperFlux and LogFiltSpecFlux on the basis
of the string pieces of the dataset, and highlights the ability of our
SuperFlux algorithm to successfully suppress false positive detec-
tions originating mostly from vibrato. Especially in online mode,
the number of false detections decreases from 185 to 118, which
is a reduction by 36%. At the same time SuperFlux misses fewer
notes (263 compared to 294) because of the lower threshold cho-
sen. In offline mode, the number of false positive detections cannot
be reduced any further, but a few additional correctly identified on-
sets lead to slightly improved results compared to the online mode.

Precision Recall F-measure

online
OnsetDetectorLL [10] 0.822 0.676 0.742
LogFiltSpecFlux [9] 0.750 0.654 0.699
SuperFlux 0.832 0.690 0.755

offline
OnsetDetector.2012 [11] 0.834 0.820 0.827
LogFiltSpecFlux [9] 0.786 0.684 0.732
SuperFlux 0.836 0.701 0.762

Table 2: Precision, Recall and F-measure of different onset detec-
tion algorithms using online (upper half) and offline (lower half)
settings on the strings subset of the Böck dataset using the same
parameters as used for the results in Table 1.

For the results in Table 2 the parameters were not optimized to
give the best F-measure performance on the strings subset; rather,
the settings used to obtain the results in Table 1 were retained
to demonstrate our algorithm’s ability to outperform existing ap-
proaches on both a general-purpose dataset and string recordings
with vibrato without altering settings.

3.3.3. Wang set

Table 3 shows the performance on violin music on the basis of
the Wang dataset. The SuperFlux method outperforms all other
algorithms in terms of false positive detections both in online and
offline mode. In comparison to the LogFiltSpecFlux method, a
reduction in false positives by 61% in online mode and 58% in
offline mode can be achieved.

Compared to the algorithm described in [7], which is tuned
specifically for pitched non-percussive signals with vibrato, Su-
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perFlux is able to achieve the same low level of false positive de-
tections, but increases the number of correctly reported onsets by
3.8%. Since the method in [7] works only in offline mode, no re-
sults for online mode can be given. Because the results of the Su-
perFlux algorithm performing in online mode are on the same level
as this highly specialized algorithm for pitched non-percussive in-
struments (in offline mode), it can be considered a more universal
approach for onset detection.

True positives False positives

online
OnsetDetectorLL [10] * 92.3% 20.8%
LogFiltSpecFlux [9] * 97.1% 20.7%
SuperFlux * 92.7% 9.6%

offline
Collins [5] * 62.4% 24.4%
OnsetDetector.2012 [11] * 96.5% 15.5%
LogFiltSpecFlux [9] * 97.0% 17.8%
Schleusing et.al. [7] * 91.2% 9.2%
SuperFlux * 94.7% 9.1%

Table 3: True and false positive rates of different onset detection
algorithms using online (upper half) and offline (lower half) set-
tings on the Wang dataset. Results for Collins’ and Schleusing’s
algorithms were taken from [7]. Asterisks mark the evaluation
method used in [7].

Interestingly, the methods without any dedicated vibrato sup-
pression (LogFiltSpecFlux and OnsetDetector) outperform the one
proposed in [5], which does include a vibrato suppression stage
and is also tuned specifically towards pitched instruments.

Since the recordings in the Wang dataset are exclusively solo
recordings made in a sound-absorbing room and contain only very
few polyphonic parts, we consider the results given in Table 2 a
much better approximation to real-world examples since they also
feature accompanying instruments, which make vibrato tracking
and suppression harder. Also, the evaluation criteria chosen are
very lax compared to those used for all other results. With the
stricter evaluation, the new SuperFlux algorithm achieves true and
false positive rates of 89.7% and 22.8% respectively (Precision =
0.772, Recall = 0.897, and F-measure = 0.830).

3.3.4. Opera set

The last dataset for performance evaluation was the newly created
dataset with male and female opera rehearsal recordings. In line
with the other results, our method dramatically outperforms the
LogFiltSpecFlux algorithm and thus closes the gap to probabilistic
methods. In the case of online peak picking, the number of false
detections decreased from 1198 to 498, which is a reduction by
58%. In offline mode, the false positive rate was reduced by 55%.
The recalls of both algorithms are almost identical in both cases.

Note that no opera material was used to train the two neural
network-based methods. Only the threshold values for peak pick-
ing were adopted to yield the best overall performance. This ex-
plains the imbalance of the recall and precision values compared
to those of our new method, which exhibits a much better balance.

Precision Recall F-measure

online
OnsetDetectorLL [10] 0.588 0.744 0.657
LogFiltSpecFlux [9] 0.435 0.638 0.518
SuperFlux 0.649 0.637 0.643

offline
OnsetDetector.2012 [11] 0.576 0.777 0.662
LogFiltSpecFlux [9] 0.480 0.632 0.546
SuperFlux 0.672 0.635 0.653

Table 4: Precision, Recall and F-measure of different onset detec-
tion algorithms using online (upper half) and offline (lower half)
settings on the Opera dataset.

3.4. Runtime

The new SuperFlux algorithm has almost the same low computa-
tional complexity as the LogFiltSpecFlux method [9] on which it
is based. On a single 2.26 GHz core of an Intel Core 2 Duo Mac-
Book Pro, processing of a 60-second audio piece takes 2 seconds
(30 times real-time) compared to 1.7 seconds of the same algo-
rithm without any maximum filtering trajectory tracking. This
is extremely fast compared to neural network-based approaches,
which take approximately 14 and 20 seconds (online- and offline-
mode). Additionally, they require annotated audio material for
training, which takes several hours.

4. CONCLUSIONS

This paper has presented a new method for vibrato suppression
with maximum filtering. Our SuperFlux onset detection algorithm
is based on the common spectral flux method and is able to reduce
the number of false positive detections originating from vibrato by
up to 60% compared to current state-of-the-art implementations.
It does so without missing any onsets otherwise detected.

In comparison to highly specialized vibrato suppression mech-
anisms for monophonic pitched music, our method achieves the
same precision rate but improves the recall rate by 4%. The same
rise in recall rate can be observed on complex polyphonic mixed
audio signals. This underlines the universal suitability of the new
algorithm.

Since our method’s vibrato suppression mechanism is based
solely on past information, it can be used in online real-time ap-
plications without any fundamental modifications. In online sce-
narios, the method closes the performance gap to the best neural
network-based approach but has the advantage of a much lower
computational complexity. Because of this low processing de-
mands it can be considered the first choice for a universal onset
detection method suitable for all kinds of music. An open-source
(BSD-licensed) reference Python implementation of the method
can be found at https://github.com/CPJKU/SuperFlux.
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