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ABSTRACT

The finite state transducer (FST), a type of finite state machine
that maps an input string to an output string, is a common tool in
the fields of natural language processing and speech recognition.
FSTs have also been applied to music-related tasks such as au-
dio fingerprinting and the generation of musical accompaniment.
In this paper, we describe a system that uses an FST to generate
harmonic accompaniment to a melody. We provide details of the
methods employed to quantize a music signal, the topology of the
transducer, and discuss our approach to evaluating the system. We
argue for an evaluation metric that takes into account the quality of
the generated accompaniment, rather than one that returns a binary
value indicating the correctness or incorrectness of the accompa-
niment.

1. INTRODUCTION

Harmonic accompaniment of melody is a common feature of many
musical styles. The automatic generation of harmonizations of
melodies has a number of applications, such as in interactive and
algorithmic composition systems, real-time interactive music sys-
tems, as well as tools for education and entertainment aimed at
novice musicians. There are several popular commercial products,
such as Band-in-a-Box,1 that offer this functionality. There has
been a good deal of research into this task, and many different
techniques have been employed, including the use of genetic algo-
rithms, music-theoretic concepts, and neural networks. Amongst
those, finite-state methods, in particular Hidden Markov Models
(HMMs), have been applied to accompaniment generation.

Another type of finite state machine, the finite state transduc-
ers (FST) has been used primarily in the fields of natural language
processing, machine translation, and speech recognition. FSTs en-
code a mapping from an input string to an output string, and can
provide a convenient way to reduce a complex problem to a series
of more manageable sub-problems. Because we can represent mu-
sical phenomena as sequences of symbols, FSTs have applications
in various music-related tasks, such as an audio fingerprinting sys-
tem [1], as well as a musical accompaniment generation system
[2]. In addition, there are a number of available FST software li-
braries, such as [3], that provide highly efficient implementations
of FST algorithms capable handling large data sets. Some of these
libraries implement the training of probabilistic FSTs using unsu-
pervised learning techniques.

While FSTs naturally lend themselves to the task of automated
accompaniment, there are numerous steps in the process of quan-
tizing an audio or MIDI signal to a finite set of symbols so that it

1http://www.pgmusic.com/

can be used in an FST. Each of these steps, as well as the choice of
FST topology, requires making a number of design decisions that
can affect the overall quality of the system. Although it would be
desirable to be able to quantify the performance of an accompani-
ment generation system, common evaluation metrics such as accu-
racy may not be appropriate. In this paper, we describe our work
on a MIDI-based accompaniment generation system, and a pro-
vide a quantitative evaluation of the system’s performance across a
range of design parameters. Although the system described in this
paper is MIDI-based, we plan to develop it into an audio-based
system. However, we are currently focused on some of the funda-
mental design decisions, and issues related to the use of audio are
outside the scope of this paper.

The remainder of this paper is structured as follows. In section
2, we review some related systems for automated accompaniment
generation. In section 3, we describe finite state transducers in
more detail, and provide the details of our system. Section 4 de-
scribes our evaluation methods and results, and in section 5, we
discuss our conclusions and directions for future work.

2. RELATED WORK

Many music generation systems have employed various types of
finite state machines, such as the factor oracle and audio oracle
[4, 5], variable-length Markov chains [6], and prediction suffix
graphs [7]. Finite state machines have also been used to gener-
ate automated harmonic accompaniment for a melody. A number
of these systems use Hidden Markov Models (HMMs). For ex-
ample, Allan and Williams [8] train a first-order HMM to gener-
ate chorale harmonizations by learning from a corpus of training
data consisting of pieces by Johan Sebastian Bach. In their sys-
tem, melody notes are treated as observations and chords as hid-
den states. Once trained, the HMM generates an accompaniment
for a given melody by finding the most likely chord sequence. An
additional HMM models ornamentation.

Buys and van der Merwe also implemented a system for har-
monizing melodies in the style of Bach chorales [2]. In this sys-
tem, probabilistic finite state transducers and automata are used
model various aspects of harmonization. For example, a single-
state FST is used in conjunction with a first-order Markov chain.
The transducer maps chords to melody notes, and the Markov
chain models chord progressions.

While the systems described above attempt to emulate Bach’s
specific style of harmonizing melodies, MySong [9] is a system,
designed for novice and non-musicians, that generates harmonic
accompaniment for vocal melodies. MySong also makes use of
HMMs with melody notes as observations and chords as hidden
states. The HMMs are trained on a large corpus of popular, rock,
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jazz, R&B, and country songs.
Paiement, Eck, and Bengio [10] describe an approach based

on a probabilistic graphical model designed to incorporate musi-
cal information at different levels in the temporal hierarchy. The
authors describe models to predict root note progression given a
melodic sequence, and to generate harmonic progressions, given
the root and melody notes. The system developed by Raczyński et
al. [11] uses a model that interpolates between a number of differ-
ent sub-models that incorporate information about various aspects
of the music, such as the current tonality and melody.

3. APPROACH

Our system makes use of probabilistic finite state transducers in a
similar fashion to the one described in [2]. However, because we
intend to expand our system for use with audio signals, we take a
different approach to the quantization of the music signals. Quan-
tizing a signal as complex as music into a finite set of symbols, a
step necessary when employing finite state machines, poses some
interesting challenges. We will discuss these issues in 3.2. How-
ever, we first provide some background on finite state automata
and transducers.

3.1. Finite State Automata and Transducers

Finite state machines are used in a variety of fields including natu-
ral language processing, bioinformatics, and computer vision [12].
Finite state automata (FSAs) and finite state transducers (FSTs)
are two closely related types of finite state machine. They are
typically represented as directed graphs, which consist of nodes,
referred to as states, and edges. Each edge is labelled with one or
two symbols (in the case of FSAs and FSTs, respectively), and,
optionally, a weight.

More specifically, an FSA F is defined by the 5-tuple
〈Σ, Q, I, F, δ〉, where Σ is a finite alphabet, Q is a finite set of
states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states,
and δ(q, a) is a state-transition function. The state-transition func-
tion defines a mapping between the state q ∈ Q and q′ ∈ Q given
an input symbol a ∈ Σ ∪ {ε}, where ε represents a null input. An
edge connecting states q and q′ labeled with ε allows a transition
between q and q′ without consuming any input.

If we have an input string A = aoa1 . . . an, where ai ∈
Σ ∪ {ε}, we can parse A by presenting one symbol at a time to
F , thus proceeding from one of the initial states through the au-
tomaton, governed by the state-transition function δ(q, a). If the
state we are in when we reach the final symbol in our string is
one of the final states, then the string is said to be accepted by
the automaton; otherwise, the string is rejected. For example, if
we for the moment ignore the output labels and weights in figure
1, we can view it as an FSA. The string “bca” is accepted by this
FSA, while the string “cc” is rejected. For this reason, FSAs are
sometimes referred to as finite state acceptors. FSAs can also be
viewed as generative; in this case, the FSA can generate the strings
{aa, aba, bba, bca, bcba}.

In a weighted FSA, weights are associated with each transi-
tion defined by δ. In addition, weights may be associated with
the initial and final states. Therefore, in addition to indicating
whether or not input string A has been accepted or rejected by
a weighted FSA F , parsing A will produce a set of weights ac-
cumulated along the path followed through F . These weights are
often used to represent probabilities associated with each state in
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Figure 1: Probabilistic FST with input alphabet Σ = {a, b, c} and
output alphabet ∆ = {x, y, z}. The initial state is q0 and the final
state is q4. Edges are labeled as input label:output label/weight.

qi

qa qb

a/P (a) b/P (b)

b/P (b|a)
a/P (a|a)

a/P (a|b)

b/P (b|b)

1

Figure 2: Probabilistic FSA representing the bigram for the alpha-
bet Σ = {a, b}. The initial state is qi and the final states are qa
and qb.

the automata. We can define the weight on the transition from state
q to state q′ as the probability of transitioning from q to q′; in this
case, the probabilities on all the transitions from q must sum to
one. For example, if the weights in the FSA in figure 1 represent
probabilities, then it will generate the string “bca” with probability
0.3× 0.4× 0.8 = 0.096.

Finite state transducers extend FSAs through the inclusion of
an output alphabet ∆ to the set of parameters, and are thus de-
fined by the 6-tuple 〈Σ,∆, Q, I, F, δ〉. The transition function
δ still maps between two states given an input symbol, but ad-
ditionally defines an output symbol b ∈ ∆ ∪ {ε}. Like an FSA,
we can parse a string of symbols from the input alphabet Σ with
an FST T . As above, the input string A will be either accepted
or rejected by T . In addition, T will produce a series of out-
put symbols B = bob1 . . . bn, bi ∈ ∆ ∪ {ε}, with each input
symbol ai producing an output symbol bi. In this way, an FST
maps a string in the input alphabet to a string in the output al-
phabet. For example, we again consider the FST shown in fig-
ure 1. This FST accepts the strings {aa, aba, bba, bca, bcba}, as
described above, and thereby produces the corresponding strings
{xy, xzx, xyy, xyyx}. Note that an FSA can be represented as an
FST in which the input and output labels are identical.

As in the case of weighted FSAs, weighted FSTs are transduc-
ers with weights, often probabilities, associated with each transi-
tion. These probabilities can represent the conditional probability
of an output string given an input string, i.e., P (B|A). For ex-
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Figure 3: Single-state probabilistic FST representing a mapping
between input alphabet Σ = {a, b} and output alphabet ∆ =
{x, y}; q is the initial and final state.

ample, if the FST in figure 1 encodes this conditional probability,
then P (B = xyy|A = bca) = 0.3× 0.4× 0.8 = 0.096.

There are a number of unary and binary operations one can
apply to FSTs [13]. One important operation, composition, allows
us to combine two transducers, T1 and T2, into a larger transducer
T . This operation is notated as T = T1 ◦ T2, and requires that
the ouput alphabet of T1 is the same as the input alphabet of T2.
In this way, we can break a complex problem into simpler parts.
In the context of speech recognition, for example, one approach
is to construct separate probabilistic FSTs to model grammar, pro-
nunciation, and phoneme to phone mapping, which can then be
composed into one larger FST [14]. There are also algorithms
to reduce the size and improve the search efficiency of weighted
transducers, making the use of these larger FSTs more practical
[14].

With composition, we can use a probabilistic FST, T , to esti-
mate a string of output symbols B, given a string of input symbols
A. In this case, we first create a simple transducer A whose edges
are labelled with the symbols of A. We then use composition to
form TA = A◦T . TA will contain all the possible paths the input
string A can take through T , and a shortest path algorithm such as
the Viterbi algorithm or beam search can be used to find the most
likely path through TA, yielding the output sequence B.

In addition, composition of weighted transducers also allows
us to represent a Hidden Markov model using an FSA and an FST
[15]. A Markov chain, M, can be represented by a probabilis-
tic FSA; an example of such an automaton is shown in figure 2,
which represents a bigram for the alphabet Σ = {a, b}. We can
compose this with a single-state FST, T , such as the one shown
in figure 3. This FST maps the input alphabet Σ = {a, b} with
the output alphabet ∆ = {x, y}. If we have a sequence of in-
put symbols, {σ0σ1 . . .}, thenM models P (σt|σt−1). Similarly,
T models P (δt|σt), where δt is an output symbol. If we form
M◦ T , the resulting FST,H, will model P (σt|σt−1) · P (δt|σt).
If we considerM as modeling the transition probabilities, and T
as modeling the emission probabilities, then we can view H as
an HMM. In our system, we use such a composition of a Markov
chain, represented as an FSA, and an FST (see section 3.3).

Figure 4: Overview of the process to quantize MIDI data into se-
quences of symbols.

3.2. Quantization

As in [8] and [2], we selected a set of four-voice chorales by J.
S. Bach in MIDI format as a data set.2 These chorales are are
well-suited to serve as our data set for a number of reasons. In
particular, the pieces are relatively similar, and are harmonically,
melodically, and rhythmically simple, with a clear harmonic struc-
ture. In addition, the number of chorales in this collection is fairly
large (almost 400 pieces). We use the music21 Python toolkit [16]
to parse the MIDI files.

Because FSAs and FSTs require finite alphabets, our first task
is to find a discrete representation for the MIDI data, both single
notes (which will ultimately serve as the input to the accompani-
ment system) and simultaneities of notes (i.e., more than one note
sounding during a particular time interval). An overview of the
quantization process is shown in figure 4. In brief, a set of features
is computed from the MIDI data. A vector quantization algorithm
computes a codebook from the feature set; this codebook is used
to quantize the features from continuous-valued vectors to a finite
set of symbols. Alternatively, the quantization step can use a set of
“hand-crafted” binary templates instead of a codebook.

For the monophonic melodies, we use pitch class representa-
tion, in which all notes are folded to a single octave and repre-
sented by a single value between 0 and 11, corresponding to the
notes C through B. For each of the individual voices of a chorale,
pitch class is a sufficient representation. However, if we wish to
represent simultaneities of pitches , we can use a 12-dimensional

2Downloaded from http://www.jsbchorales.net
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chroma vector xi, where i ∈ [0, 11] denotes a pitch class.
Although pitch class and chroma discard useful musical in-

formation, namely pitch height, there are a number of important
practical advantages to these representations. Firstly, representing
each note as a MIDI pitch value can create an intractably large
space, while using an octave invariant representation greatly re-
duces the feature space and increases the number of similar sam-
ples to train the finite state machines. In addition, octave invariant
representations allow us to easily transpose chroma vectors simply
by performing a circular rotation. This property of chroma vectors
allows us to easily key-normalize each piece in our data set (i.e.,
transpose all pieces to the same key).

We can also analyze the music signal at any number of levels
of temporal resolution. Because the music in the training set con-
sists largely of quarter note durations, we choose to use this as the
maximum temporal quantization level. We also experimented with
higher temporal resolutions, in particular eighth note and onset lev-
els, but found that performance deteriorated at these resolutions.

At each quarter note, we represent the note in the melodic se-
quence by its pitch class, already a discrete value (if more than
one melody note occurs with a quarter note duration, we select the
one closest to the downbeat). We represent the harmonic progres-
sion as sequence of chroma vectors (referred to as a chromagram).
Because the MIDI files in the data set did not contain any use-
ful MIDI velocity information, we compute the magnitude of each
dimension of a given chroma vector, denoted mi, as:

mi =
duri
durq

, i ∈ [0..11] (1)

where duri is the duration of the note with pitch class i, and durq
is the duration of the quantization level (in this case, a quarter
note). Thus, the chromagram is normalized such that 0 ≤ mi ≤
1, ∀i ∈ [0..11].

In addition, we employ an optional key-normalization step to
transpose all the pieces to the key of C major.3 For each piece,
we use the music21 implementation of the Krumhansl-Schmuckler
key-finding algorithm to find the key, and perform the transposi-
tion by performing a circular rotation on the piece’s chromagrams.

Because a finite state transducer maps an input string to an out-
put string, we need to produce pairs of sequences from our training
data. Each of the pieces in our data set has four voices. Because
we are concerned with modeling the notion of accompaniment in
general, we use each of the individual voices as the source of the
input sequence, while the remaining three voices are combined to
form the accompaniment. Each piece thus provides four training
pairs, each of which consists of a monophonic melody and a poly-
phonic accompaniment.

We first compute the beat-synchronous chromagrams for each
of the voices. Quantizing individual voices is trivial: the chro-
magram can be converted directly into a sequence of pitch class
symbols. These pitch class symbols are denoted pci, where i in-
dicates the pitch class. The chromagrams for the remaining three
voices are summed into a single chromagram, which is then re-
normalized so that the maximum value in each chroma vector is
1. The next step is to quantize these chroma vectors. The two
methods we employ are discussed below.

3minor key pieces are transposed to the key of A minor, the relative
minor of C major

3.2.1. Binary templates

A binary template [17] is essentially a “hand-crafted” chroma vec-
tor that represents a particular chord type we wish to represent. A
1 is used to indicate the presence of a particular pitch class, and
a 0 indicates its absence. For example, we represent a C major
triad, consisting of the notes C, E, and G, with the chroma vector
v = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]. Note that index 0 corresponds
to the pitch class C, index 1 corresponds to the pitch classes C]/D[,
and so forth. One can use any number of possible combinations of
binary templates to represent harmony; one common set, used in
the chord recognition task, consists of the 24 major and minor tri-
ads [17].

3.2.2. Vector quantization

Vector quantization is a form of lossy data compression in which
a set of points, referred to as a codebook, is used to represent a
much larger set of data points [18]. The codebook vectors can
be computed in any number of ways, including via the K-means
algorithm.

In our system, we use the online vector quantization algorithm
described in [19]. In this algorithm, K random points from the
data set are selected as the initial codebook vectors. The algorithm
then iterates through all the data points; for each point, the closest
codebook vector, v, is found. The position of v is then adjusted
so that it lies closer to the data point by an amount governed by a
learning rate. After this process has been completed for each point
in the data set, it repeats for a fixed number of iterations. The user
must specify the number of iterations, as well as the learning rate
and the initial size of the codebook, K.

As described in [19], we perform a circular rotation on each
chroma vector in the data set so the maximum magnitude chroma
bin is in the 0th bin. This rotation attempts to transpose all the
chroma vectors in the data set to the key of C, and thus the com-
puted codebook will also represent chroma vectors in C. Clearly,
this codebook alone would be insufficient to represent most har-
monies, so, after the initial codebook has been computed, we cir-
cularly rotate each of the codebook vectors to each of the 11 other
possible bins, in effect transposing the codebook to the 11 other
key centers. This method has the added benefits of greatly reduc-
ing computation time and ensuring that our codebook can repre-
sent harmonies in all keys equally well.

3.2.3. Quantizing the chromagrams

At this stage, we quantize the chromagrams computed in the previ-
ous steps. We quantize the monophonic chromagrams by directly
converting them to a sequence of pitch class symbols. In order to
quantize polyphonic chromagrams, we use either a codebook com-
puted as described above, or a set of binary templates.4 In order to
quantize a chroma vector v, we use Euclidean distance to measure
the distance between v and each of the K codebook vectors; the
closest such vector, vmin, is then used to represent v. We can then
represent a chroma vector as a symbol ki, where i ∈ [0..K − 1]
indicates the index of vmin.

At this point, our training data, originally consisting of chro-
magrams, is now represented by pairs of input and output symbol
sequences, Sin and Sout, respectively. For a given pair, Sin is a

4For convenience, we will refer to a set of binary templates as a code-
book
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sequence of pitch class symbols, i.e., Sin = {s0in, s1in, . . .}, siin ∈
{pc0, pc1, . . . pc11}, while Sout is a sequence of symbols cor-
responding to the codebook vectors in a size-K codebook, i.e.
Sout = {s0out, s1out, . . .}, siout ∈ {k0, k1, . . . kK−1}.

3.3. Transducer model

There are a wide variety of different transducer topologies [20,
14], such as single-state transducers, transducers with states cor-
responding to each symbol in the input and output languages, and
fully-connected networks of transducers. The model used in our
system follows the design described in [2]. Specifically, our model
consists of the composition of an FSA and an FST, as described
in section 3.1. The FSA is constructed as an n-gram that mod-
els chord sequences, i.e. P (ct|ct−1, ct−2, . . . ct−n), where ct is a
chord at time t and n is the n-gram order. The FST consists of a
single state, and models the mapping between chords and melody
notes, i.e. P (mt|ct), where mt is a melody note at time t.

To generate the n-grams, we used the OpenGRM NGram li-
brary [21]. We then converted the resulting n-grams to the trans-
ducer topology definition format used by the Carmel-finite state
toolkit.5 We computed P (mt|ct) directly from the training data.
Once the models had been trained, the Carmel toolkit was used to
generate the output sequences.

4. RESULTS

We ran a number of tests, varying the order of the n-grams, the
type of codebook used (i.e., either binary template or computed
via online vector quantization), and the codebook size. For each
test, we divided the data set into three roughly equal folds; one fold
served as a test set while the remaining two were used to learn the
n-gram and FST parameters. We computed our evaluation metrics
(see section 4.1) for each test fold. Each fold was used as a test set
in turn, and the metrics were averaged over all three tests.

4.1. Evaluation metrics

Following [22], we computed the percentage of correctly gener-
ated accompaniment symbols using the input/output sequence pairs
in the each fold of the test set. Each of these pairs consists of an
input sequence Sin and an output sequence Sout. Sin was pre-
sented as an input to the FST, which generated a prediction se-
quence Ŝout = {ŝ0out, ŝ1out, . . .}. Each symbol in the prediction
sequence ŝiout was compared to the corresponding symbol in the
output sequence, siout. If ŝiout = siout, a count of the global num-
ber of correct predictions, Ncorrect, was incremented. The total
number of predicted symbols generated by the FST, Ntotal, was
also counted. This procedure was repeated for all sequence pairs
in the fold, and the average accuracy for that fold was then com-
puted as:

Accuracy =
Ncorrect

Ntotal
× 100% (2)

The accuracy simply represents the average percentage of the time
the system predicted the correct symbol.

In addition, we computed the per-symbol distortion to measure
the overall quality of the predicted harmonic sequence, similar to
the distortion measurement described in [19]. The intuition here is
that an incorrectly predicted symbol may or may not be a musically

5 http://www.isi.edu/licensed-sw/carmel

reasonable choice. In other words, suppose that for a given input
symbol, the predicted symbol corresponds to a C major triad, while
the ground truth symbol corresponds to a Cmaj7 chord. Since the
two symbols are not equal, this prediction would be counted as
incorrect. However, a C major triad is a much better prediction for
Cmaj7 than a C] major triad would be, yet this is not reflected by
the accuracy.

In order to account for this problem, Chuan and Chew [22]
use a map representing related chords in order to account for this
situation. Our approach, however, is to compute the Euclidean
distance between the codebook vector corresponding to the pre-
dicted symbol, and the actual chroma vector computed directly
from the MIDI file. This distance is computed for each predicted
symbol, and the average is computed in a manner similar to the
accuracy computation. Finally, the distortion value is normalized
to the range [0, 1].

4.2. Results

We ran the tests described above using codebooks consisting of
the 24 major and minor triads (denoted BT24); the 36 major, mi-
nor, and diminished triads (BT36); a set of 276 binary templates
built from 23 common chords transposed to all 12 keys (BT276);
and codebooks computed using vector quantization with K = 24
(K24), K = 36 (K36), and K = 276 (K276). For each codebook,
the n-gram order was tested with n = {1, 2, 3, 4}, where possi-
ble (in the case of the codebooksBT276 andK276, memory issues
prevented us from completing tests for n = 4). The average accu-
racy (“acc”) and average per-symbol distortion (“dist”) computed
for each of these tests are shown in the tables 1 and 2.

Although none of the accuracy scores shown in the tables are
particularly high, they are similar to the accuracy values reported
in [22] and [11]. In general, the accuracy scores when using key-
normalization (table 2) are substantially higher than the accuracy
scores when the data is not key-normalized (table 1). For example,
if we consider theBT24 codebook and an n-gram order of 3, the
application of key normalization improves the accuracy from 34.7
to 41.5. Similarly, the distortion values are generally lower in the
key-normalized case.

Key normalization also seems to have had a particularly strong
effect on the performance of the K24, K36, and K276 codebooks.
These codebooks were created by running the vector quantization
algorithm described in section 3.2.2. Before the vector quantiza-
tion step, we rotate each chroma vector in the data set so the maxi-
mum magnitude chroma bin is in the 0th bin under the assumption
that the chroma vectors would correspond to root position chords
(i.e., chords in which the lowest note is the root). However, be-
cause we set the magnitude of the chroma vectors based on note
duration, this assumption is not guaranteed to be correct. As a
result, this technique may introduce some redundancy when the
initial codebook vectors are transposed, which may in turn con-
tribute to the lower accuracy scores. The key normalization pro-
cess seems to have ameliorated the problem to a certain extent,
perhaps because it performs a rotation consistent across all pieces,
thus reducing some of this redundancy.

While the two smaller binary template codebooks achieved the
best accuracy, their per-symbol distortion values were higher than
that of the other codebooks. In fact, a smaller codebook size will
in general yield better accuracy results, as any random guess is
more likely to be correct than with a larger codebook. The higher
distortion values also make sense if we consider that 24 major and
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Table 1: Results for different codebook sizes and n-gram orders, without key normalization.

BT24 BT36 BT276 K24 K36 K276

order acc dist acc dist acc dist acc dist acc dist acc dist

1 31.8 0.420 31.0 0.419 26.4 0.402 28.9 0.267 29.7 0.300 17.6 0.388
2 34.5 0.404 33.3 0.406 27.5 0.386 34.7 0.241 34.2 0.271 18.7 0.356
3 34.7 0.402 33.4 0.404 24.0 0.404 35.0 0.240 34.4 0.268 15.4 0.404
4 31.3 0.415 27.3 0.426 33.2 0.240 34.2 0.273

Table 2: Results for different codebook sizes and n-gram orders, with key normalization.

BT24 BT36 BT276 K24 K36 K276

order acc dist acc dist acc dist acc dist acc dist acc dist

1 37.6 0.351 36.9 0.354 23.7 0.415 36.2 0.234 36.2 0.264 26.2 0.329
2 39.7 0.342 39.3 0.342 24.9 0.405 38.1 0.226 38.0 0.251 28.0 0.321
3 41.5 0.333 40.3 0.338 24.9 0.405 38.0 0.227 38.3 0.249 28.2 0.319
4 42.0 0.330 40.9 0.334 38.2 0.226 38.2 0.249

minor triads, or even 36 major, minor, and diminished triads, may
not adequately represent the harmonic material in the data set. This
reasoning implies that larger codebooks are better able to represent
the harmonic material, yielding better distortion scores, but lower
accuracy scores. This is, for the most part, born out by the data.

Similarly, if we compare the results for BT276 and K276 in
the key normalized case, we see that the latter codebook has both
better accuracy and distortion scores. This implies that the chords
selected for the BT276 codebook were not particularly represen-
tative of the harmonies present in the training data. On the other
hand, because theK276 codebook is learned directly from the data,
it seems to better represent the harmonies in the data. This is true
when comparing binary template and vector quantization code-
books of the same size.

A direct comparison between our system and similar systems,
in particular the ones described by Buys and van der Merwe [2]
and Allan and Williams [8], was not feasible for a number of rea-
sons. First, our system is designed to model a general notion of
harmonic accompaniment for a melody. On the other hand, the
aforementioned systems are designed to emulate Bach’s compo-
sitional style, and are therefore more complex than ours. Thus,
a direct comparison does not seem appropriate. In addition, the
authors in [2] and [8] evaluate their systems using entropy as a
metric, and it is not suitable to directly compare entropy values
between such different models [15]. Because these systems were
not publicly available, we were unable to evaluate them using the
average accuracy and distortion metrics.

5. CONCLUSIONS AND FUTURE WORK

This paper describes the design of a basic system to automatically
generate harmonic accompaniment given a melody. The system,
trained on a corpus of MIDI data, has a number of design options,
specifically, the choice of n-gram order, the type and size of the

codebook used to quantize the MIDI data, and the application of
key normalization. The system was then evaluated with various
configurations of these components and parameters. Two evalua-
tion metrics, accuracy and per-symbol distortion, were computed
for each of the tests. It was argued that the distortion measure was
a more appropriate metric for quantifying the performance than ac-
curacy, as the former attempts to take into account the perceptual
result of a predicted harmonic sequence.

Future work includes expanding the data sets used to train the
system. These data sets would consist of music from a variety of
genres, and would be more harmonically, melodically, and rhyth-
mically complex music than the data set used for this work. In
addition, we plan to expand our system to use audio signals as
input and output.

As we pursue these plans, we will also improve our evaluation
metrics. Accuracy and distortion have their limitations, and we
are thus exploring different metrics, such as those based on infor-
mation theory. More study is needed to determine how well these
metrics correlate with human perception of the quality of a gener-
ated accompaniment. User studies would be valuable in assessing
the quality of our system and our quantitative metrics. Further
study is also required to determine optimal quantization strategies
and transducer topology design.
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