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ABSTRACT

Textual music programming languages offer greater expressive power
than diagrammatic visual programming languages and semi-modular
graphical user interfaces. However, textual music programming
languages don’t allow fine-grained incremental updates to the sig-
nal flow graph—instead, they only allow course-grained updates
at the statement level. In both the diagrammatic visual program-
ming language and the graphical user interface paradigms, users
can directly adjust a parameter by editing the value inline, and
such an adjustment does not affect the state of any other part of
the signal flow graph. For example, adjusting the attack time of
an envelope does not affect the contents of a delay line. By con-
trast, users of textual music programming languages must either:
1) assign names to nodes and then later use a separate statement
to adjust the parameter value, or 2) lose node states (eg. envelope
positions, instantaneous LFO phases, and delay line contents) by
reevaluating the entire original statement or program. We present
a new paradigm in which users can directly edit programs without
losing state. In our approach, time-varying programs evaluate to
time-varying signal processing graphs, and incremental updates to
the program result in incremental updates to the signal processing
graph.

1. INTRODUCTION

Ideally, platforms for creative music signal processing should ex-
hibit two characteristics:

Incrementality Music signal processing is inherently exploratory.
Often, users do not have an exact sound in mind when they
use synthesis software; rather, they start with a simple con-
figuration (eg. a simple saw wave) and iteratively modify
the sound until they find something appealing. To sup-
port rapid iteration, music software must allow users to in-
crementally modify parameters in real-time while preserv-
ing the state residing in the components of the signal flow
graph. For example, suppose a user is controlling a basic
subtractive synthesizer with a MIDI controller. The user
should be able play notes with the MIDI controller while
simultaneously adjusting the cutoff frequency of a low-pass
filter without losing the states of LFOs and envelopes (that
is, the phases of the LFOs should not be reset and the posi-
tions of the envelopes should not be reset).

Flexibility Music signal processing software should not impose
artificial limitations on users. For example, software syn-
thesizers should not artificially limit users to n oscillators

or k envelopes; such limitations are inherently necessary in
analog synthesizers, but are artificial in music software.

The three prevalent paradigms for interactive computer-based mu-
sic signal processing make different design trade-offs in terms of
these characteristics:

Simple GUI Many software synthesizers offer a virtual recreation
of a hardware synthesizer interface. These interfaces are
easy to learn and use but offer limited flexibility in routing.

Diagrammatic Visual Programming Language Another common
paradigm is to recreate the module-and-patch-cord inter-
faces of modular synthesizers. Diagrammatic visual pro-
gramming languages offer significantly more expressive power
than simple GUIs, but they can be harder to learn. Exam-
ples include PureData [11], Max/MSP, Reaktor, and Synth-
Maker.

Imperative Textual Programming Language Most music program-
ming languages suitable for interactive use rely on impera-
tive updates for incrementality. For example, a user might
instantiate a filter node and assign it to the variable x. The
user may then change the cutoff frequency by assigning a
new frequency to the cutoff frequency slot with a statement
such as x.f ← 440. Examples of this paradigm include
SuperCollider [9] and ChucK [14].

We present a new paradigm which we call incremental func-
tional reactive programming. In this paradigm, users incremen-
tally modify a functional program that evaluates to a signal flow
graph. Incremental changes to the signal flow graph are implicitly
derived from the user’s incremental changes to the program. Our
approach has two advantages over imperative music programming
languages:

1. At any given point in time, the complete declarative spec-
ification of the program (modulo node state) is available
to the user. In contrast, with an imperative language and
REPL, users must read through the entire interaction his-
tory to properly deduce the signal flow graph.

2. With our approach, users do not need to assign names to
nodes in order to modify them in the future. For example, a
user may specify

(lp-filter (+ 1000
(* (sin-lfo 1)

220))
0.8
audio)
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to produce a lowpass filter with the cutoff frequency mod-
ulated by a sinusoidal LFO. The user can then modify the
code to

(lp-filter (+ 1000
(* (sin-lfo 2)

220))
0.8
audio)

to change the rate of the LFO without changing its phase.
With an imperative language, this would not be possible
without giving the LFO a name.

2. INCREMENTAL FUNCTIONAL REACTIVE
PROGRAMMING

We now describe our approach in depth.

2.1. State mapping

As each signal processing node may be stateful, the nodes at any
given revision must be matched with corresponding nodes from
the previous revision in order to carry over the node states from the
previous revision. For example, consider the following program:

(define (f hz)
(* (sin-lfo hz)

(sin-lfo (* 2 hz))))

(define x (+ (f 2) (f 3)))

Here we have four sinusoidal LFOs: two for each invocation of the
function f. Let φ(k)

1 (t), φ
(k)
2 (t), . . . , φ

(k)
n (t) denote the instanta-

neous phase of each LFO at the kth revision of the program. Fur-
thermore, let these be ordered by the order in which they would be
evaluated, assuming a call-by-value evaluation strategy with left-
to-right argument evaluation order. Suppose that user enters the
initial revision of the program T0 at time t0 and then, at time t1,
changes the program to T1:

(define (f hz)
(* (sin-lfo hz)

(sin-lfo (* 2 hz))))

(define x (+ (f 2) (f 3) 2))

Suppose that φ(0)
i (t0) = 0 for all i ∈ 1..4—that is, each LFO is

initialized with an instantaneous phase of zero. In order to satisfy
the property of incrementality, we wish for φ(0)

i (t1) = φ
(1)
i (t1).

Now suppose the user changes the program to T2 at time t2

(define (f hz)
(* (sin-lfo hz)

(sin-lfo (* 2 hz))))

(define x (+ (f 5) (f 2) (f 3) 2))

We now have six invocations of sin-lfo. How should we define
the mapping between φ(1)

i (t2) and φ(2)
j (t2) for j ∈ 1..6? The

simplest solution would perhaps be to have

φ
(2)
j (t2) =

{
φ
(1)
j (t2) j ∈ 1..4

0 j ∈ 5..6

However, this replaces the phases of the LFOs invoked through
the call (f 3) with zero when it would be more parsimonious if
the state for the call to (f 3) was carried over. The problem is
worse with larger programs containing many modules of the same
type. With this mapping strategy, any newly inserted module f (k)

i

is initialized with the state of some existing module f (k−1)
i and all

subsequent modules are given states that may differ wildly from
their previous states.

We argue that this mapping should depend on how the user
edited the program source code. If the user inserts a node term,
the resulting signal flow node should be initialized with a default
state, and all other nodes should keep their current state. If the
user inserts a function invocation, all nodes associated with this
new function invocation should be initialized with a default state,
and all other nodes should keep their state. In the example above,
we should have the mapping

φ
(2)
j (t2) =

{
0 j ∈ 1..2

φ
(1)
j (t2) j ∈ 3..6

because the new function invocation is inserted before the other
invocations.

If the user duplicates a node term, both of the resulting signal
flow nodes should be initialized with the state of the original node
term. For example, if the user goes from

(+ 1 (sin-lfo 2))

to

(+ 1 (sin-lfo 2) (sin-lfo 3))

by copying and pasting (sin-lfo 2) and then modifying the
argument, then the new LFO should start with the same phase as
the copied LFO. If, on the other hand, the user enters (sin-lfo 3)
by hand, the LFO should start with a default phase.

If the user moves a node term into the body of a function, then
the node’s state is duplicated for each invocation of the function.
For example, if the user changes the program from

(define (f x)
(* x 2))

(+ (f 2) (f 3) (sin-lfo 2))

to

(define (f x)
(* x 2 (sin-lfo x)))

(+ (f 2) (f 3))

by cutting and pasting the sin-lfo term inside the function, then
both LFOs resulting from the call to f should begin with the same
state as the original LFO from the previous revision.

If the user moves a node term outside the body of a function,
the node’s state must be initialized with a default value, as there
is no way to determine from which function invocation the node’s
state should be derived. For example, if the previous edits were
done in reverse, the two LFOs would likely be out of phase, and
so there would be no easy way to choose which phase to keep.
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2.2. Description

To keep track of whether terms were added, copied, modified, or
deleted between revisions, we associate a label with each term in
the program. All labels are unique in a given revision, but labels
may be reused across revisions. To track labels across revisions,
we use an updated label of the form a  b. There are three types
of terms which use such labels: λ terms (λv.T )a b, application
terms (T1 T2)

a b, and node terms1 (ni T )
a b. The updated label

states that the term had label a in the previous revision and now has
b in the current revision. By allowing labels to change with each
revision, we permit node copying, where a single node in revision
k becomes two nodes in revision k + 1.

2.3. Evaluation

Interpreters for applicative programming languages commonly use
environments to keep track of variable mappings. When a λ func-
tion is evaluated, a closure is created that captures the variable
bindings in the current environment. With our programming lan-
guage, we maintain both a variable map and a context, which stores
a mapping between labels and instances of nodes, functions, and
applications. We say that a term is instantiated when it is first eval-
uated and matched when it is evaluated in a future revision in such
a way that state from the previous revision should be retained.

We define a big-step operational semantics operator T |γ, β =⇒
V |β′ that maps from terms with the given context β and variable
map γ to values with a new context β′. We deviate slightly from
traditional presentations by using closures: in our presentation,
λ terms evaluate to λ values that capture both the variable map
and context from the current environment. To evaluate some term
(λv.T )a b, we first look for a λ instance that matches the previ-
ous label:

L = β(a)

(λv.T )a b|γ, β =⇒ (λv.T )
β(a) ϕ
γ,β |b 7→ ϕ

where L = β(a) iff L is a member of the set of λ instance labels
and the context β maps the label a to L, and ϕ ∈ L is a λ instance
label unique to this reduction2. The set of λ instance labels is used
to give each λ value a unique identity and to permit comparison
between λ values. The notation (λv.T )δ ργ,β denotes a λ value with
the updated λ instance label δ  ρ. The notation b 7→ ϕ denotes
a context in which the label b maps to the instance label ϕ. If no λ
instance can be found, we instantiate the λ:

L 6= β(a)

(λv.T )a b|γ, β =⇒ (λv.T )ε ϕγ,β |b 7→ ϕ

where ε denotes the null label and L 6= β(a) iff either a /∈ β or
β(a) is not a λ instance label.

1For simplicity, our description of the language here only describes se-
mantics for unary functions and nodes, though the description can be gen-
eralized to n-ary functions without difficulty. Our description is no less
general, as currying and church-encoded tuples can be used to represent
n-ary functions.

2It is not difficult to modify the semantics in order to thread a sequence
of unique labels through the reductions explicitly. In the interests of pre-
venting an already-dense notation from becoming impenetrable, we elide
this formality.

To reduce an application, we first try to find an application
instance.

T1|γ, β =⇒ (λv.T )δ ρ
γ̂,β̂
|β′1

Aδ = β(a)
T2|γ, β =⇒ V1|β′2

T |v 7→ V ∪ γ̂, Aδ ∪ β̂ =⇒ V2|β̇
(T1 T2)

a b|γ, β =⇒ V2|b 7→ β̇ρ

where Aδ denotes a member of the set of application instances
with the λ instance label δ and γ1 ∪ γ2 denotes a combination
of two variable maps with preference given to the left map. The
notation β1∪β2 works similarly. The λ instance label comes from
the function that T1 evaluates to. If there is no application instance,
we instantiate the application:

T1|γ, β =⇒ (λv.T )δ ρ
γ̂,β̂
|β′1

Aδ 6= β(a)
T2|γ, β =⇒ V1|β′2

T |v 7→ V ∪ γ̂, β̂ =⇒ V2|β̇
(T1 T2)

a b|γ, β =⇒ V2|b 7→ β̇ρ

A variable reference v is simply looked up in the variable map
γ:

v|γ, β =⇒ γ(v)|∅
Matched nodes are evaluated by

Ni = β(a) T |γ, β =⇒ V |β′

(ni T )
a b|γ, β =⇒ nNi ϕ

i V |b 7→ ϕ

where Ni denotes a member of the set of node instance labels for
node type i and ϕ is a node instance label that is unique to the eval-
uation of this term. Nodes that must be instantiated are evaluated
with

Ni 6= β(a) T |γ, β =⇒ V |β′

(ni T )
a b|γ, β =⇒ nNi ϕ

i V |b 7→ ϕ

Note that the sets of λ instance labels, application instances, and
each set of node instance labels are all disjoint.

Let bindings bind a variable without introducing a new con-
text:

T1|β, γ =⇒ V1|β′1 T2|β, v 7→ V1 ∪ γ =⇒ V2|β′2
(v ← T1;T2)|β, γ =⇒ V2|β′1 ∪ β′2

3. IMPLEMENTATION

Our implementation combines an Emacs [13] extension with a pro-
gramming language implementation written in Haskell [7]. Before
sending the current revision to the Haskell process, the Emacs ex-
tension visits each pair of balanced parenthesis. The sexp is trans-
formed from (s1 s2 . . . sn) to ((a . b) s1 s2 . . . sn) and then
sent to the Haskell process, where a is label associated with the
opening parenthesis and b is a new label generated using gensym.
After the sexp is sent, the opening parenthesis is assigned the label
b. Labels are assigned to characters using Emacs’s text proper-
ties feature so that when text is copied or moved, the labels are
also copied or moved. We use paredit [1] to prevent users from
accidentally deleting and reinserting parenthesis.

Sexps are then translated straightforwardly into terms in the
language. Definitions of the form
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(define x expr)
rest

translate to x ← T1;T2, where T1 is the translation of expr and
T2 is the translation of rest. Definitions of the form

(define (f x) expr)

are translated into

(define f (lambda (x) expr))

Applications, lambda expressions, and variable references are trans-
lated as one would expect.

Our current implementation outputs a simple specification of
the signal graph updates and is not tied to any specific synthesis
engine. We plan to integrate our code with the SuperCollider en-
gine, although this may not allow for node copying.

4. RELATED WORK

Object oriented languages like Smalltalk [6] allow incremental
modification of programs. However, like other imperative lan-
guages, these modifications are course-grained. Classes in an ob-
ject oriented language are somewhat analogous to λ expressions in
incremental functional reactive languages, and objects are some-
what analogous to λ instances. Modifying a class or λ expression
changes all instances of that class or λ expression. However, λ
expressions are much more lightweight than classes in an object
oriented language.

Faust [10] is a functional programming language for music
signal processing. Like our approach, Faust generates a signal
flow graph from a functional specification of the graph. Unlike
our approach, Faust is not intended for interactive use. The design
of a compiled incremental Faust-like language would be interested
research area.

In the functional reactive programming paradigm [5], program-
mers manipulate signals—time-varying values. For example, the
position of a modulation wheel can be thought of as a number that
changes over time. The state of a midi keyboard key can be seen
as a boolean that changes over time representing whether or not
the key is currently pressed.

Subtext [3] provides a unique programming paradigm where
programs are edited live while running. However, it does not sup-
port state preservation as described here. Tangible functional pro-
gramming [4] provides a framework that seeks to address some of
the problems described in this paper, but it deviates from standard
programming language syntax.

Scratch [12] is a programming environment with a focus on
pedagogy. Users connect together tiles representing statements
and expressions to create a program. Alice [2] is a similar lan-
guage, also focused on pedagogy. The editor concepts from these
languages are applicable to the incremental functional reactive pro-
gramming.

Barista [8] can create structure editors that can track the iden-
tity of terms over time. Future research could combine techniques
from Barista with the programming language techniques described
in this paper.

5. CONCLUSION AND FUTURE WORK

We have presented incremental functional reactive programming,
a paradigm in which time-varying programs evaluate to time-varying

signal processing graphs. Our approach allows users to declara-
tively specify the signal flow graph while preserving state as the
program is edited.

There are several directions in which we would like to con-
tinue our research. Firstly, we would like to look into alternative
editors for programs. Because our semantics allow for rapid in-
cremental changes to the program, we would like to research the
embedding of widgets into the program source. For example, an
editor might allow a knob to be placed inline into an expression,
allowing the user to drag the knob and hear the results in real-time.
Output widgets could also be placed inline—for example, a user
might insert an meter inline to analyze at the peak amplitude at a
specific point in the signal flow graph.

We would also like to explore the pedagogical possibilities
of this work. Scratch and Alice both offer an exploratory envi-
ronment in which to learn to program imperatively, where users
can experiment with program modifications and see the results in-
stantly. An analogous environment for functional programming
could be developed using the techniques described in this paper.

In the language described here, terms evaluate to a signal flow
graph. Though past computation can affect current computation
within the signal flow graph, there is no way for past computa-
tion to affect term evaluation within the programming language.
Adding a fold primitive to fold over successive values for a term
would allow past computation to affect current computation. Such
a primitive could be used for reactive programming in circum-
stances that do not require hard real-time performance.

Our implementation is interpreted rather than compiled. Fu-
ture work could research the design of compilers for incremental
functional programming languages.

Overall, we think that the design of incremental functional
reactive programming languages for interactive music signal pro-
cessing may prove an interesting area for further research.
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