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ABSTRACT
Slow motion videos are frequently featured during broadcast of
sports events. However, these videos do not feature any audio
channel, apart from the live ambiance and comments from sports
presenters. Standard audio time-scaling methods were not devel-
oped with such noisy signal in mind and they do not always permit
to obtain an acceptable acoustic quality. In this work, we present
a new approach that creates high-quality time-stretched version of
sport audio recordings while preserving all their transient events.

1. INTRODUCTION

In today’s sports television broadcast, slow motion videos are om-
nipresent. They highlight crucial actions and incidents, they com-
municate the ambiance of an event to the distant viewers, they help
to understand referee’s decisions, etc. However, these videos lack
an important part of the atmosphere. There is no audio channel
matching what is shown. Indeed, time-scaling an audio signal
without any processing causes a scaling of the frequency content,
up or down, whether it’s accelerated or decelerated. In the domain
of speech and music processing, many time-scaling methods [1]
have been developed to address this issue. However, they are based
on the hypothesis that the underlying signal is mostly a sum of si-
nusoids. As we show later, we obtained interesting results using a
phase vocoder but transient detection is unreliable at best.

In [2], Picard introduces a method for time-scaling derived
from sound texture synthesis. It decomposes a set of contact sound
recordings into audio grains and computes correlation patterns be-
tween each grain and the rest of the recordings. The process then
shifts the grains to new positions, corresponding to the desired
speed factor α and fills the gaps with grains that maximize cor-
relation patterns. This cannot be performed in realtime because it
needs to compute the correlation patterns of every grain with every
file. Besides, it supposes that a set of recordings is already avail-
able as opposed to our situation where we start “from scratch” for
each new slow motion excerpt. Moreover, keeping all the record-
ings in memory is too strong a constraint for embedding it in actual
slow motion systems. Nevertheless, the hypotheses of this method
fit better with the signals recorded during sports events.

We propose a new method that decomposes the input file into
non-overlapping grains that are re-spaced1 according to a speed
factor α, and then the empty spaces possibly created between two
grains are filled with content generated “on-the-fly”. This ap-
proach can be described as a three-step “split-shift-fill” algorithm.
These three steps are detailed respectively in Sections 2, 3 and 4,
and the process is summarized in Section 5 while some points are
discussed in Section 6. The sports recordings used during the tests
and the results of these tests are presented in Section 7.

1Note that each grain has a certain “freedom of movement” around its
theoretical position to minimize artifacts. This is detailed in Section 3.

2. SPLIT

The first part of the algorithm divides the input signal x(n) into
frames of variable length, the so-called grains, whose boundaries
are located at non-transient samples. Picard et al. [2] propose to
place segmentation points at minimums of the spectral flux. How-
ever, we observed that using an energy measure, as explained in
Section 2.1, gives similar or better results when applied to the data
from Section 7.1 while being computationally less intensive.

2.1. Segmentation

The first step is to compute a transientness function. In this case
though, contrary to standard transient detection algorithms, the
goal is to detect non-transient parts of the signal. For this, we
use, for instance, the energy measure e(n) defined in Equation 1.

e(n) =

N−1∑
m=0

|x(nH − N

2
+m)we(m)|2 (1)

with N the frame length, H the hopsize and we a N -sample Hann
window function. In a second step, tg and Lg , the two parameters
of the gth grain gg , are computed. tg is the position of the first
sample of gg and Lg its number of samples. The length Lg of a
grain is simply equal to the distance between its starting point and
the starting point of the next grain

Lg = tg+1 − tg (2)

and tg is computed by looking for a minimum of energy in a region
located between Lmin and Lmax samples after tg−1, as shown in
Figure 1. Lmin and Lmax correspond respectively to the lower
and upper limit of a grain length. tg can be further refined by
looking for the sample closest to zero in a subset xs of the signal.
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Figure 1: The energy of an audio signal x(n) is computed and its
local minimums are used to place temporary segmentation points
p which are then refined into actual segmentation points tg .
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2.2. Parameters

We empirically set the computation parameters to N = 256 and
H = 4, or 5.3 ms and 83.3 µs, respectively, for a sampling rate
Fs = 48 kHz. As for the limits Lmin and Lmax, we arbitrarily
set the minimum duration to 10 ms and the maximum one to 40
ms which corresponds to the duration of a video frame at 25 fps.
This translates into Lmin = 480 and Lmax = 1920 samples.
The value for N is picked as a compromise between two opposite
trends. For longer frame sizes, e(n) is smoother but each transient
in x(n) influences e(n) over a larger span. This, in turn, blurs the
location of minimal values that are essential to the segmentation.
To put it differently, a small N makes it more likely that some
of the frames used to compute e(n) are devoid of any transient
and, as such, are neat and valid segmentation points. However, too
small a value for N produces a noisy e(n) (closer to x(n)2 as N
decreases) which also reduces the segmentation quality.

3. SHIFT

In the second part of the method, the grains are shifted from their
position tg in x(n) to a new position ug in the output signal y(n).
Theoretically, for a speed factor α, the new position ought to be

ug = ug−1 + αLg−1 (3)

with u0 = t0 = 0. However, if α > 1, the method detailed in
Section 4 has to generate content that fits perfectly into the gap
created between two grains, which is often not possible. Besides,
in the case α < 1, it forces an overlap-add between gg−1 and
gg at a likely non-optimal position. Our experiments show that
this is prone to artifacts and we apply two improvements to reduce
them. On the one hand, as presented in Section 3.1, we use the
principle from SOLA [3]: we allow the grains to be shifted around
position ug by δg samples, with |δg| ≤ ∆, in order to minimize
discontinuities when adding it to y(n). For reasonable values of
∆, the desynchronization between audio and images in a slow mo-
tion video cannot be perceived while the acoustic quality is signif-
icantly increased. On the other hand, we show in Section 3.2 that,
in some cases, the two grains can be directly concatenated.

3.1. Normal shift

To insert each grain in the output, we use a cross-correlation mea-
sure χ(n) between ι(n), the h first samples of grain gg , and o(n),
the samples of y(n) located ±∆ samples around sample ug , as
defined in Equation 6.

ι(n) = {x(tg), . . . , x(tg + h− 1)} (4)
= {gg(0), . . . , gg(h− 1)}

o(n) = {y(ug −∆), . . . , y(ug + ∆− 1)} (5)
χ(m) = o(n) ? ι(n) (6)

Note that the computation of χ(n) supposes that the output sam-
ples, up to y(ug + ∆ − 1), have been previously filled, after in-
sertion of gg−1, with content generated by the method described in
Section 4. The position p of the absolute maximum peak of χs(n),
a subset of χ(n), determines δg , the position shift of gg around ug .

y(n)
gg

h

y(n)

y(n)

o(n)

ι(n)

ug+Δug -Δ ug

ug δg+ ug δg+ +Lg -1

Figure 2: gg and y(n) extremities are windowed by half of a 2h-
sample Hann window. Then gg is overlap-added into y(n), start-
ing at position ug + δg , to obtain the next version of y(n).

3.1.1. Overlap-add

gg is inserted into y(n) at ug + δg through overlap-add (OLA).
The h first samples of gg are windowed by wh, the left half of a
2h-sample Hann window and the h last valid samples of y(n) are
windowed by the complementary window 1 − wh. Figure 2 and
Equations 7 to 9 present the overlap-add procedure. Note that in
case χs(p) is negative (i.e. the samples are anti-correlated), the
grain samples are inverted by a sign change before the OLA.

n = ug + δg +m (7)
ςg = sgn(χs(p)) (8)

y(n) = y(n)(1− w(m)) + ςg gg(m)w(m) (9)

form = [0, . . . , Lg−1], with ςg equal to either 1 or−1 depending
on the sign of χs(p). w is the left half of a Tukey window. The first
and last h samples of a Tukey window are cosine tapers whereas
the samples in-between are set to one. In other words, the first h
samples of w are equal to wh and the remainder equal to one.

3.2. Concatenation

If ug is less than ∆ samples away from the end of the previous
grain in y(n), inserting gg becomes a simple concatenation of
the two grains, ensuring perfect continuity in the output signal,
as shown in Figure 3. The double condition in Equation 10 checks

+ +
+

y(n)

L
ug

Δ Δ

gg

ug δg+ ug

y(n)

δg

δ
g -1

u δ u g -1g -1g -1g -1

Figure 3: In some cases, it is possible to append gg directly to gg−1

in the output signal y(n). This reduces the computational cost and
increases the acoustic quality of the output.

that ug−1 + δg−1 + Lg−1, the first sample after gg−1 in y(n), is
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within ug ±∆, the range of available positions for insertion of gg .

ug −∆ ≤ ug−1 + δg−1 + Lg−1 ≤ ug + ∆ (10)

If the condition is respected, the grain is added directly into
the output as per Equations 11 to 13. Note, however, that it is
multiplied by ςg−1, as computed for gg−1 during the previous it-
eration of the algorithm (be it a normal shift or a concatenation).
Obviously, if gg−1 has been inverted, gg must be inverted as well.

n = ug−1 + δg−1 + Lg−1 +m (11)
ςg = ςg−1 (12)

y(n) = ςg gg(m) (13)

for m = [0, . . . , Lg − 1]. In the concatenation case, as opposed
to the computation made using a cross-correlation in Section 3.1,
δg is computed using Equation 14, where it is the only unknown.
The value of δg is used in the next iteration of the algorithm, when
grain gg+1 is added to y(n).

ug + δg = ug−1 + δg−1 + Lg−1 (14)

Section 6 discusses the advantages that this optimization brings.

3.3. Parameters

In the same way that we decided the maximum length Lmax of
each grain, we fixed ∆ = 1024 samples at Fs = 48 kHz. This
corresponds more or less to 20 ms, so that the shift δg does not
desynchronize perceptibly the audio and image streams [4], for
a total span [−∆, . . . ,∆] close to the 40 ms duration of a video
frame at 25 fps. The second parameter is set to h = 128 samples.

4. FILL

The third part of the algorithm synthesizes content to fill the gap
in y(n) between gg−1 and gg , when gg cannot be concatenated.
Since the sport recordings in the database of Section 7.1 are mainly
made of noise, we first considered generating that content through
spectral modification of Gaussian white noise. For this, we apply
a Short-Time Fourier Transform (STFT) to Gaussian white noise
and replace the spectral amplitude with that of x(n) around tg , fol-
lowed by an inverse STFT (ISTFT). However, early experiments
showed that in order to obtain synthetic signals that reproduces
correctly the background noises (crowd, whistles, speech, etc.) we
needed to use analysis frames at least 150 to 300 ms-long. Smaller
lengths caused a distortion that seems to match Boll’s description
in [5] and referred to as musical noise in [6] and later publications,
although their context is different (speech denoising).

Although this produces high-quality time-stretching in most
part of the signal, it also causes artifacts in the synthetic con-
tent surrounding transients. Indeed, compared to common frame
lengths, 150-300 ms is oversized and many analysis frames include
transients. This corrupts the spectral amplitude used to modify the
white noise and the synthetic part of the time-scaled signal sounds
like transient smearing from a phase vocoder, except that it is in-
terleaved with grains from the input signal, transients included.

4.1. Self cross-synthesis

In the noisy condition of the recordings, detecting and process-
ing transients is not a reliable option. Therefore, in order to de-
termine the spectral envelopes of the filtering while removing arti-
facts caused by nearby transients, we propose to combine short and

x(n)

short-term 
analysis

long-term 
analysis

spectral 
envelope

spectral 
envelope

Figure 4: Contribution of the long-term spectral envelope is re-
moved from long-term amplitude spectrum and contribution of the
short-term envelope is added back. The artifacts caused by a
nearby transient in the long-term analysis (dashed circles) are ab-
sent from the cross-synthesized amplitude spectrum on the right.

long-term analyses through a form of cross-synthesis. Indeed, on
the one hand we suppose that a short-term frame extracted around
time tg has a spectral envelope devoid of the influence of surround-
ing transients. However, it causes musical noise and lacks the
pseudo-stationarity needed to create a synthetic signal of accept-
able quality. On the other hand, a long-term frame has this pseudo-
stationarity but its spectral amplitude is distorted by nearby tran-
sients that it contains. In the following, we apply cross-synthesis
between these two frames. As they come from the same signal,
centered on the same instant tg , with only a different length, we
use the name self cross-synthesis.

The principle of the self cross-synthesis method is illustrated
in Figure 4. In order to fill the empty space between gg−1 and
gg , two analysis frames fs and fl are built from the input signal
x(n), both centered at tg . The length of the frames is respectively
Ns and Nl, with Ns << Nl. fs is the short-term analysis frame
and fl the long-term analysis frame. For both frames, spectral en-
velopes are extracted and fl has its spectral envelope compensated
for. Therefore it is “whitened” into a signal whose spectral ampli-
tude is globally flat while still containing all its local details. Then
this “whitened” signal is “re-colored” using the spectral envelope
of fs, the short-term analysis frame. Finally the signal resulting
from this self cross-synthesis is used to synthesize the content to
fill the inter-grain empty space. For each aspect of this process,
different tools could be used. Cross-synthesis is usually achieved
either sample-by-sample with time-domain direct and inverse au-
toregressive filtering or, in the spectral domain, frame-by-frame
through STFT and its inverse, by division and multiplication of the
amplitude spectrum. Some preliminary tests showed that autore-
gressive filtering based on linear prediction analysis could cause an
annoying metallic artifact when applied to the noisy background
of sports events. Therefore a spectral framework seems more ap-
propriate. In the next section we detail a way to carry out this
spectral-only self cross-synthesis process in the cepstral domain.
It is similar to the method decribed by Burr et al. in [7].

4.2. Cepstral cross-synthesis

For a given signal x(n), each cepstral coefficient (or quefrency)
of its real cepstrum cx(n) represents a different “level” of detail of
|X(k)|, its amplitude spectrum. More exactly, the first coefficients
represent a gross approximation of the amplitudes, the spectral en-
velope, whereas the higher quefrencies correspond to the finer de-
tails. Therefore, if one sets the values of cx(n) to zero for n ≥ C
and then transforms this biased cepstrum back into the spectral do-
main, the resulting amplitude spectrum is an envelope of |X(k)|.
The value of C determines the level of details, the coarseness, of
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the envelope with higher values meaning more details. We use this
property to compute |Fχ(k)|, the spectral cross-synthesis of the
two amplitude spectrums |Fs(k)| and |Fl(k)| of frames fs and fl.

First we compute Fs(k) and Fl(k), the discrete Fourier trans-
forms (DFTs) of fs and fl, over Nl points2. Then, from |Fs(k)|
and |Fl(k)|, we compute cs(n) and cl(n), the cepstral transforms,
as the discrete cosine transform (DCT)3 of their logarithms. We
then proceed to the creation of a new cepstrum cχ(n) by concate-
nating the C first quefrencies of cs(n) and the Nc − C last of
cl(n), withNc equal to the number of cepstral coefficients. Finally
we compute the cross-synthesized amplitude spectrum |Fχ(k)| by
inversion of the DCT and exponentiation. Note that since DFTs
are symmetrical, we reduce the computational cost of the cepstral
transformation by using the first half of each DFT in the DCT of
the logarithms and, therefore, Nc = Nl/2 cepstral coefficients.

For some appropriate values of C, discussed in Section 4.5,
the resulting set of amplitudes |Fχ(k)| has the spectral envelope
of fs, hopefully free from any artifact caused by the surrounding
transients. It also has the fine details from fl, which capture better
information such as whistles, speech, and the long-term stationar-
ity of the background noise of most sports such as football. Note
that, of course, for a value C = 0, the transformation does nothing
and is equivalent to using |Fl(k)| as the spectral filter which is the
approach described in the first paragraph of Section 4. Similarly
for C = Nc, the process is equivalent to using only |Fs(k)|.

4.3. Low-pass filter

In practice, when applying this method, the spectrogram of the
time-scaled signals has the expected aspect but there is also mu-
sical noise, albeit less than when using only fs. Since it does not
appear when using only fl (i.e. C = 0), it is certainly due to the
replacement of its firstC cepstral coefficients with those of fs. We
add one more step to the process in order to reduce this defect. It
smoothes the evolution over time of the short-term cepstral coeffi-
cients, cs(n), using a first order low-pass filter.

Let us consider cs,g(n) the nth cepstral coefficient computed
from the short-term frame fs,g centered at each instant tg . The
low-pass filter is written

ĉs,0(n) = cs,0(n) (15)
ĉs,g(n) = (1− λ) ĉs,g−1(n) + λ cs,g(n) (16)

and for each gap between grains gg−1, and gg , cχ(n) is built as

cχ(n) = {ĉs,g(0), . . . , ĉs,g(C − 1), cl(C), . . . , cl(Nc − 1)}
(17)

4.4. Insertion

Once the spectral amplitude |Fχ(k)| is computed, it is used in an
ISTFT, with phases from the STFT of a Gaussian noise, to syn-
thesize the content filling the inter-grain space. Z samples4 of a

2fs is zero-padded to Nl samples.
3Note that the DFT of an even symmetrical signal is equivalent to the

DCT applied to its first half. Here, we use the DCT as a straightfor-
ward way to compute the cepstral coefficients from the even |Fs(k)| and
|Fl(k)|. This use of the DCT as a cepstral operator is also encountered, for
instance, when computing Mel-Frequency Cepstral Coefficients (MFCC).

4Actually more samples are generated, but the first one are discarded as
they are tampered by the analysis and synthesis windows of the STFT.

colored noise, z(n), are generated, with Z defined as

Z = (α− 1)Lg + h+ ∆− δg−1 + Θ

Then we compute the cross-correlation measure χ between the
first Θ samples of z(n) and the last h samples of gg−1.

ι(n) = {z(0), . . . , z(Θ− 1)} (18)
o(n) = ςg−1 {gg−1(Lg−1 − h), . . . , gg−1(Lg−1 − 1)} (19)
χ(m) = o(n) ? ι(n) (20)

In the same way it is done in Section 3.1, the maximum peak of
the absolute value of χs, a subset of χ, defines the position p of
the part of z(n) that overlaps best with gg−1 in the output signal.
Finally the selected part of z(n) is multiplied by ς , the sign of
χs(p), and overlap-added to the output signal at the end of grain
gg−1, following Equations 21 to 23.

n = ug−1 + δg−1 + Lg−1 − h+m (21)
ς = sgn(χs(p)) (22)

y(n) = y(n)(1− w(m)) + ςz(p+m)w(m) (23)

for m = [0, . . . , Z − p − 1]. w is a Tukey window equal to wh,
introduced in 3.1.1, for its first h samples and then set to one.

4.5. Parameters

There are several constant parameters to take into account in this
method: Ns, Nl, λ and Θ. The parameters used during the tests
are Ns = 1024 samples, Nl = 8192 samples, λ = 0.25 and
Θ = 4096. All but Θ, which is set arbitrarily, have been cho-
sen experimentally through trial and error during informal tests.
Note that, according to these preliminary tests, the sensitivity of
the method to changes of these values is acceptable as they can
vary in a relatively large span without affecting the acoustic quality
of the time-streched audio. For instance, the most critical param-
eter is probably λ and it can vary with few noticeable effects, in
a range [0.15, . . . , 0.35], with a complete range of possible values
[0, . . . , 1]. The other parameters are set to power-of-two values in
order to speed up the computations but can take other values with-
out altering much the quality of the results. Reducing Θ too much
could however limit the possibilities to find a region of z(n) that
overlaps with gg−1 well enough that the junction is inaudible.

Another fundamental parameter is C, but contrary to the pre-
ceding parameters, it has been found to be dependent from the type
of sound that is time-stretched. For quieter sports such as baseball,
tennis and cricket a value 15 ≤ C ≤ 25 generally gives the best
results, whereas for noisy sports like football and rugby, a higher
value of 45 ≤ C ≤ 55 gives better results. It must be noted that
these values are valid only for Nl = 8192. Indeed, the coarse-
ness of the spectral envelopes depends on C/Nc, the percentage of
cepstral coefficients that are retained and Nc, the total number of
cepstral coefficients, is a function of Nl, with Nc = Nl/2.

5. SUMMARY

Figure 5 summarizes schematically the ordering of each step of the
method during one iteration (i.e. the life cycle of a grain gg). After
a grain is extracted from the input, it is either concatenated to the
previous grain or shifted. In case it is shifted, synthetic samples are
first generated and inserted to fill the gap after the previous grain
and then the new grain is positioned and inserted.
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Figure 5: Overview of the different steps of the method. As ex-
plained in Section 3, the shift step can be either a normal shift or
a concatenation.

6. DISCUSSION

The entirety of x(n) is reproduced exactly into y(n), grain by
grain. For instance, a time scaling by a factor α = 1.25 has 80%
of its samples coming directly from the original recording. This
is similar to standard time-domain algorithms. However, contrary
to these, there is neither grain duplication nor change of hopsize
hence no transient duplication. It means that all the transients, at-
tacks and transitions are preserved in the time-scaled signal, while
avoiding an unreliable transient detection in noisy environments.

The simplification obtained by concatenating some grains in
Section 3.2 is especially useful for values of α close to one since
it both reduces the computational cost and improves the acoustic
quality of y(n). On the one hand, for such ratios, this concate-
nation happens frequently and, each time, the algorithm avoid the
computation of the cross-correlation χ(n) in Equation 6 and the
generation of content z(n) to fill a gap, as detailed in Section 4.
These two operations are the most computationally intensive of
the whole algorithm and the speed gain is significant, especially
for values of α ≤ 3, as shown in Table 1. On the other hand, each
replacement of an overlap-add by a concatenation increases the
overall acoustic quality. Indeed, it reduces the number of poten-
tial discrepancies due to poor overlap-add conditions. It also sup-
presses cases where gg could be shifted at a position located before
ug−1 + δg−1, when αLg−1 < ∆. In other words, where it could
be inserted before gg−1, thus inverting some grains in the output
signal compared to the input. Besides, in the case α = 1, the al-
gorithm is transparent and y(n) = x(n), which is not necessarily
the case when only the cross-correlation-based OLA approach is
used. As we can see in Table 1, for values of α ≤ 1.5, more than
50 % of the grains are directly concatenated, up to about 95 % for a
speed ratio 25/24. This translates into an equivalent speed up of the
method as the computational cost of a concatenation is negligible.

As for the cepstrum concatenation-based cross-synthesis, note
that cross-synthesis is usually [8] achieved by division and mul-
tiplication of |Fl(k)| with the spectral envelopes of |Fl(k)| and
|Fs(k)|, respectively. These two approaches are mathematically
equivalent, but the concatenation is obviously less computation-
ally intensive. Indeed, not only does it replace multiplication and

Table 1: Average percentage of grains that are concatenated as a
function of α for a 25.6 s file divided into 966 grains. Values of
α are typical of slow motion sports videos and correspond respec-
tively to 24/25, 90%, 80%, 2/3, 50%, 33%, 25% and 20%.

α 1.042 1.11 1.25 1.5 2 3 4 5
% 94.7 86.2 71.8 52.7 28.7 8.3 2.3 0.5

division operations with a simple concatenation but it also operates
only one inverse DCT instead of two. Besides, in the future, it will
allow more advanced combinations of the two spectral envelopes,
such as linear combination of the cepstrum.

We found a publication by Breithaupt et al. [9], in 2007, about
using cepstral smoothing for speech denoising without musical
noise. This cepstral smoothing is all but identical to the low-pass
filtering we apply to the short-term cepstrum cs in Equation 16.
The only difference is that they apply the smoothing to the coeffi-
cients above a given quefrencies klow, whereas we apply it to the
ones below C. However, klow is set to 4 where we use larger val-
ues of C, so all the coefficients that we smooth (and use in Equa-
tion 17) are low-passed as well in their implementation but for the
first four. Note that their smoothing parameter 1−β, equivalent to
our λ, is set to 0.2 (or β = 0.8), with some tests conducted at 0.3.
This is coherent with the value λ = 0.25 that we selected. Note
also that for some quefrencies, corresponding to the cepstrum of
the pitch excitation, they use a different value of β = 0.4.

7. RESULTS

7.1. Data

We have at our disposal a database of recordings from different
popular sports, namely: football (soccer), cricket, ice hockey, ten-
nis, basketball and baseball. For each of these we have several
excerpts coming from the same game. The total duration of videos
in each sport varies between 200 and 1400 seconds. The audio
channels are 16-bit PCM non-compressed, sampled at Fs = 48
kHz. The audio recordings have generally been created through
professional audio mixing of one or several sources, performed by
the directors during the events. These are the sounds intended for
live broadcast to viewers (crowd cheers, referee whistles, on-field
events, etc.), they are not the raw sounds coming directly from
the on-field microphones. However, they are separate from the
commenters audio recordings which are in other unused channels.
For each recording, only one audio channel from the ambiance
has been used during the development and tests. Time-scaling of
stereo signals with preservation of spatialization and synchroniza-
tion is a whole problem by itself and is not addressed in this work.

7.2. Performances

We measured the average execution time of a C++ implementa-
tion of our method for the same test file as in Table 1. Table 2
presents the average results obtained over 5 runs of the application
for different common values of α. The processor is an Intel Core 2
Duo P9700 at 2.80GHz (only one core was used) and the operating
system is linux (ubuntu 10.04 64 bits). The results clearly indicate
that it can perform the operation in a realtime context.
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Table 2: Average runtimes of the process as a function of α for a
file duration of 25.6 seconds. “% (out)” gives the relative runtimes
of the process as percentages of the output duration (α · 25.6 s).

α 1.042 1.11 1.25 1.5 2 3
t̄ (s) 1.358 2.104 3.324 5.01 7.084 9.226

% (out) 5.1 7.4 10.4 13.0 13.8 12.0

7.3. Listening tests

We performed two series of tests. One of them measures the mean
opinion scores (MOS) of the time-scaled sounds generated by ei-
ther our method or a phase vocoder with automatic transient detec-
tion and processing. The other one is a comparative MOS (CMOS)
between our method and that phase vocoder.

7.3.1. Phase vocoder with transient processing

The process used to handle transients is inspired from [10]. Briefly,
it consists in detecting transients and processing them separately
from the rest of the signal. To detect transients in a recording,
the spectrum of the signal is divided into mel-spaced bands and a
spectral flux is computed for each band. Then peaks in each spec-
tral flux are identified and compared to an adaptive threshold. If
a peak is above the threshold it is considered a transient. Multi-
ple detection of a same transient across several bands5 are merged.
Each transient is then removed from the original recordings and
the residual signal is time-stretched using a phase vocoder with
an analysis frame length of 8192 samples (170.7 ms). Finally ev-
ery transient is added into the time-stretched residual at its proper
location.

7.3.2. Mean opinion scores

For each test, viewers are presented with two videos: an original
sport recording and its slow motion version. They are asked to
judge the quality of the audio on a scale between 0 (very bad) and
5 (excellent). The slow motion is randomly chosen among three
possible speeds (α = 1.5, 2 or 3) and the audio is processed us-
ing either our method or the phase vocoder from Section 7.3.1;
which process is used is chosen randomly. Fifteen viewers par-
ticipated and each took 20 tests whose results are shown in Table
3 and Figure 6. Our method obtains slightly but not significantly
better scores. However, this preference decreases as α increases
and for α = 3 the two methods obtain comparable results. The

Table 3: MOS average results (with .95 confidence intervals) for
the phase vocoder (pvoc) and our method.

MOS overall α = 1.5 α = 2 α = 3
pvoc 3.3± 0.18 3.4± 0.25 3.6± 0.35 2.9± 0.3
ours 3.5± 0.16 3.9± 0.22 3.8± 0.23 2.9± 0.27

results considered sport-by-sport are consistent with the overall re-
sults from Table 3, with the exception of baseball which obtains an

5Taking into account possible minor time shifts across bands.
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Figure 6: Normalized histograms of the answers to the MOS tests
globally and as a function of α. We can see that the results for both
our method and the phase vocoder are similar, with a small overall
preference for ours (more “4”, less “2”, no “0”). For the two meth-
ods, most of the results fall in the range 3-4 and are concentrated
above the threshold of poor quality (2).

over average score of 4.35 using our method and tennis which gets
an under average score of 2.3 with the phase vocoder.

7.3.3. Comparative mean opinion scores

For each test, viewers are presented with three videos: an original
sport recording and two slow motions A and B, with a speed factor
randomly chosen among α = 1.5, 2 or 3. One of A or B is pro-
cessed using our method, the other with the phase vocoder, which
one is A or B is random. Viewers are asked to choose which video
has the best audio quality and how much better it is on a three-point
scale (slightly better, better or much better). Fifteen viewers par-
ticipated and each took 10 tests whose results are shown in Table
4 as a function of α.

Similarly to the MOS test, we observe on the histograms of
Figure 7 that our method is globally considered as slightly better
than the phase vocoder, although the mean and confidence inter-
vals from Table 4 indicate that the advantage is only really signif-
icant for α = 1.5. This does not seem to fit what we observe,
especially in the histogram for α = 3 which seems to exhibit
a relatively strong bias in favor of our approach. The skewness
parameter for that histogram, also given in Table 4 confirms the
asymmetry in our favor and therefore a possible inadequation of
the normal model.

Table 4: CMOS averaged results (with .95 confidence intervals).
The range of values is −3 ≤ CMOS ≤ 3. A positive value means
that our method was preferred over the phase vocoder. Medians
and skewnesses are also given as indicators of the bias of the his-
tograms of Figure 7.

overall α = 1.5 α = 2 α = 3
CMOS 0.6± 0.25 0.9± 0.44 0.4± 0.42 0.5± 0.4
med. 1 1 1 1
skew. −0.27 −0.18 −0.38 −0.53
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Figure 7: Histograms of the answers to the CMOS tests globally
and as a function of α. Positive values on the horizontal axis (1,
2 and 3) correspond to a preference for our approach, respec-
tively slightly better, better and much better, as given by the view-
ers. Likewise, negative values indicate a preference for the phase
vocoder. We can observe a small but clear bias in favor of our
method (e.g. the small amount of −3 overall).

Results considered on a sport-by-sport basis show a significant
slight bias towards our method over the phase vocoder for football
and tennis recordings. Our method is preferred for the other sports
as well but not significantly.

7.3.4. Discussions

Informal discussions with viewers highlighted that, although it
does not detect them, our approach handles transients much bet-
ter, as expected, and is favored over the phase vocoder whenever a
visually significant event (shoot, goalkeeper save, tennis service,
etc.) is missed or mishandled by the transient processing inte-
grated within the phase vocoder of Section 7.3.1. However, it
can also present discrepancies, such as residual musical noise in
crowd sounds or ripples in speech parts, when compared to the
phase vocoder which is smoother. Note also that informal tests
have shown that our method seems transparent or nearly transpar-
ent for α ≤ 1.25 whereas the phase vocoder can produce rever-
beration and smearing.

8. CONCLUSIONS

We presented a new method for time-scaling of audio recordings
from sports events, in order to add an audio channel to slow mo-
tion videos. Tests have shown that the quality is acceptable for
the viewers and similar or slightly superior to that obtained with
state of the art approaches. Contrary to these, our approach is
not based on sinusoidal and pseudo-periodical hypotheses and pre-
serves transient events from the input signal without having to ac-
tually detect them. However, the results for background noises
need to be improved, notably for large time-stretching factors. The
algorithm is fast enough to consider a realtime interactive imple-
mentation for which various delays and the amount of samples

needed in advance have to be carefully considered. However, slow
motion videos are usually a playback of a past action for which all
audio samples are already available. As such, the only delays to be
actually considered would be the duration of each computation.
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