
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

ROOM ACOUSTICS MODELLING USING GPU-ACCELERATED FINITE DIFFERENCE
AND FINITE VOLUME METHODS ON A FACE-CENTERED CUBIC GRID

Brian Hamilton, ∗

Acoustics and Audio Group
University of Edinburgh

b.hamilton-2@sms.ed.ac.uk

Craig J. Webb,

Acoustics and Audio Group
University of Edinburgh

c.j.webb-2@sms.ed.ac.uk

ABSTRACT

In this paper, a room acoustics simulation using a finite difference
approximation on a face-centered cubic (FCC) grid with finite vol-
ume impedance boundary conditions is presented. The finite dif-
ference scheme is accelerated on an Nvidia Tesla K20 graphics
processing unit (GPU) using the CUDA programming language.
A performance comparison is made between 27-point finite differ-
ence schemes on a cubic grid and the 13-point scheme on the FCC
grid. It is shown that the FCC scheme runs faster on the Tesla K20
GPU and has less numerical dispersion than best 27-point schemes
on the cubic grid. Implementation details are discussed.

1. INTRODUCTION

Room acoustics simulations are important for architectural acous-
tics, auralising virtual spaces, and artificial reverberation. Tra-
ditionally, these simulations have been carried out using image-
source [1] and ray-tracing methods [2], requiring simplifying as-
sumptions about room geometry or wave behaviour. Finite ele-
ment and boundary element methods [3, 4] have the potential to
simulate full wave behaviour for complex room geometries, but
these methods are not easily parallelisable and thus are less suited
to implementation on graphics processing units (GPUs). Other
methods offering full 3-D acoustical simulations such as the finite
difference (FD) [5, 6] and finite volume (FV) methods [7] can be
computationally heavy, but are well-suited for GPU programming
due to their explicit formulations [8, 9]. Computation times can
be long for large spaces at audio rates like 44.1 kHz, even with
state of the art GPU cards [10], so computational efficiency in the
numerical scheme is critical.

Within FD methods there are many choices for FD operators
and grids on which to approximate solutions to the 3-D wave equa-
tion [11]. The computational efficiencies of FD schemes differ and
determining the most suitable candidate for room acoustics simu-
lations has been the subject of many studies [11–14]. The inter-
polated wideband scheme (IWB) scheme, employing a 27-point
stencil on the cubic grid, has been shown to be computationally
efficient at minimising wave speed error [13] and has been used in
GPU-accelerated simulations [8, 15, 16]. Another candidate, and
the focus of this paper, is a 13-point scheme which can be used
on the cubic grid (the close-cubic packed (CCP) scheme) [13] or
on the face-centered cubic grid (FCC) [12, 14, 17, 18]. The 13-
point FD scheme on the FCC grid has recently been shown to be
more computationally efficient than 27-point schemes on the cubic

∗ This work was supported by the European Research Council, under
grant StG-2011-279068-NESS, and by the Natural Sciences and Engineer-
ing Research Council of Canada.

grid [14], but it has yet to be implemented on a GPU for large-scale
room acoustics simulations.

Frequency-dependent impedance boundary conditions are nec-
essary for realistic room acoustic simulations and they must be
coupled with the FD scheme on the interior such that the entire
scheme remains numerically stable. Passive locally-reacting bound-
ary conditions for the IWB scheme have been formulated [13]
and implemented in large-scale simulations [8, 15]. Recently, FV
methods have been employed to model locally-reacting frequency-
dependent impedance boundaries on unstructured grids for com-
plex geometries [19]. FV methods reduce to FD methods on regu-
lar grids and the impedance boundary conditions can be applied to
certain FD schemes employing nearest neighbouring points [19],
such as the 13-point scheme on the FCC grid. It is the purpose
of this paper to couple these FV boundary conditions to the 13-
point FD scheme on the FCC grid for a large-scale room acoustics
simulation using GPU acceleration.

The structure of this paper is as follows: in Section 2, we
present the room model and in Section 3, we introduce the FD
schemes. In Section 4, we discuss the discretisation of time and
space on grids of points and in Section 5, we present a practical
way to map the FCC grid to a cubic grid for room acoustics sim-
ulations. The FV impedance boundary conditions are presented in
Section 6, GPU implementation details are discussed in Section 7
and practical comparisons carried out on the Tesla K20 GPU are
presented in Section 8. Conclusions are given in Section 9.

2. ROOM ACOUSTICS MODEL

2.1. 3-D Wave Equation

Let us abbreviate ∂i
w = ∂i

∂wi for some variable w ∈ R and i ∈ N
(positive integers). We begin with the 3-D wave equation:(

∂2
t − c2∆

)
u = 0 , ∆ = ∂2

x + ∂2
y + ∂2

z , (1)

where c is the wave speed, ∆ is the 3-D Laplacian, t is time, and
u = u(t,x) is a solution to be approximated for x ∈ R3, x =
(x, y, z). In our model, u(t,x) represents a velocity potential [20]
and the pressure p and velocity field ν are given by:

p = ρ ∂tu (2)
ν = −∇u (3)

This part of the model will be approximated with FD methods.
To later incorporate finite volume methods at the boundaries we
note that we can also split the second-order wave equation into

DAFX-1

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

mailto:b.hamilton-2@sms.ed.ac.uk
mailto:c.j.webb-2@sms.ed.ac.uk


Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

two first-order vector equations representing conservation of mo-
mentum and mass [20]:

1

ρc2
∂tp = −∇ · ν , (4)

ρ∂tν = −∇p . (5)

2.2. Impedance Boundary Conditions

A room is not complete without walls, and modelling of frequency-
dependent absorption at the walls is necessary for realistic room
acoustics simulations. Over a volume V with boundary ∂V we use
the impedance boundary condition:

νn = Y0 (A∂tp+Bp+ Cg) , ∂tg = p , (6)

where Y0 = 1/ρc is the characteristic admittance of air, νn is the
normal velocity component at the boundary, and A = A(x), B =
B(x), C = C(x) are parallel stiffness, inertance, and resistance
parameters respectively [19]. The variable g = g(t,x) is part of
the stored energy at the boundary [19]. This part of the model will
be approximated with finite volume methods.

3. FINITE DIFFERENCE METHOD

3.1. Difference Operators

Let û = û(t,x) denote the approximation to u(t,x). We intro-
duce the time and space first-order difference operators:

δt±û =
±1

k
(û(t± k,x)− û(t,x)) , (7)

δv±û =
±1

h
(û(t,x± vh)− û(t,x)) , (8)

where k is the time-step, usually chosen to be 1/Fs where Fs is
an audio sampling rate like 44.1 kHz, h is the spatial step, and
v ∈ R3.

The standard approximation to ∂2
t in explicit FD schemes for

the wave equation is the FD operator:

δttû = δt+δt−û =
1

k2
(û(t+ k,x)− 2û(t,x) + û(t− k,x)) .

(9)

Let Ω ⊂ R3 be a finite set of equal-norm vectors and let |Ω|
denote its cardinality. We can build approximations to the Lapla-
cian using the following FD operator:

δ∆,Ωû = κ

|Ω|∑
i=1

δvi+δvi−û , (10)

where vi ∈ Ω, and κ will be chosen according to consistency con-
ditions. We call this a (2|Ω|+ 1)-point discrete Laplacian or sten-
cil. The 13-point stencil uses the six vectors:
ΩF = {êy ± êx, êy ± êz, êx ± êz}/

√
2 and κF = 1/2. A 27-

point stencil can be built using the three discrete Laplacians:

δ∆,α,Ωû = (α1δ∆,Ω1 + α2δ∆,Ω2 + α3δ∆,Ω3) û , (11)

where Ω1 consists of the standard unit vectors {êx, êy, êz} with
κ1 = 1, Ω2 =

√
2ΩF with κ2 = 1/4, and where Ω3 consists of

the four vectors {êy± êx± êz, êy∓ êx± êz} with κ3 = 1/4. We
require

∑
αi = 1 for consistency. Note that the 13-point stencil

is a special case of the 27-point stencil with α = (0, 1, 0) and a
scaled spatial step h′ =

√
2h. These stencils are featured in Fig. 1.

Figure 1: Vectors (points) used in 27-point stencil δ∆,α,Ω. Points
employed in δ∆,Ω1 , δ∆,Ω2 , δ∆,Ω3 are coloured black, red, and blue
respectively. The center point (green) is shared among the three
stencils. The 13-point stencil δ∆,ΩF is simply a scaled version of
δ∆,Ω2 .

3.2. Finite Difference Scheme for 3-D Wave Equation

Combining these operators we get a FD scheme for the 3-D wave
equation:

(δtt − c2δ∆,α,Ω)û = 0 , (12)

using the 27-point stencil, or the 13-point stencil as the special case
mentioned previously. The approximated solution û(t,x) can be
updated in time with the explicit recursion:

û(t+ k,x) = (c2k2δ∆,α,Ω + 2)û(t,x)− û(t− k,x) , (13)

given some initial conditions.

4. DISCRETISING TIME AND SPACE

The FD scheme will have a certain cutoff frequency in time and
space, due to the FD operators, which limits the temporal and spa-
tial bandwidth of the approximated solution û(t,x). Thus, we can
discretise time and space and reconstruct û(t,x) from a set of val-
ues {û(t,x) : t ∈ T k,x ∈ Gh} on temporal and spatial grids
T k and Gh. The minimum number of points required can be de-
termined using multidimensional sampling theory [21]. For time
we use the integer lattice (grid) Z scaled by the time-step k. For
space, we can use the cubic grid for the 27-point stencil, and we
have the choice between the cubic and FCC grids for the 13-point
stencil.

The FCC grid is shown in Fig. 2 in two unit cell orientations.
Either unit cell can be used to tile space and build the FCC grid.
Notice that the union of the cells in Figs. 2a and 2b makes the
cubic grid in Fig. 2c. It is then not hard to see that the 13-point
scheme (α = (0, 1, 0)) on the cubic grid operates on two disjoint
sets of points, decoupling into two subschemes on FCC subgrids.1

As such, to completely reconstruct û(t,x) in space at any given
time t we only need {û(t,x) : x ∈ Gh} where Gh is one FCC
subgrid, since the other subscheme carries no extra information
(bandwidth). This also means that the computational efficiency of
the 13-point scheme, reported in [13] on the cubic grid, can be

1The same observation has been made in the context of lattice Boltz-
mann simulations [22].

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

(a) (b) (c)

Figure 2: Two orientations of a unit cell in FCC grid. (a) face-
centered: vertices and centers of cube faces. (b) edge-centered:
center of cube and centers of edges. (c) Cubic grid with checker-
board colouring.

increased by a factor of two when employed on the FCC grid.2

Considering this feature, the 13-point scheme becomes more effi-
cient than 27-point schemes on the cubic grid when less than 8%
wave speed error is deemed critical, according to the data reported
in [13] (reproduced in Table 2). When simulating large acousti-
cal spaces it is important to keep this error low so that artifacts
(smearing of transients) remain inaudible, since they will accu-
mulate over time and space. See [14] for further analysis on the
numerical dispersion of these schemes.

If we fix the time-step k, there is a lower bound on how finely
we can discretise space for a given FD scheme such that numeri-
cal stability is ensured [24]. The condition on the spatial step for
numerical stability is h ≥ ck/λmax,α where λmax,α is the max-
imum Courant number of the scheme. While computational costs
will increase with smaller h, simulated bandwidth is highest when
h is kept to the minimum, as well as computational efficiency in
terms of minimising numerical dispersion [11,13,14]. The need to
satisfy both of these constraints is something particular to audio.

For the 27-point scheme, λmax,α is [11]:

λmax,α = min

(
1,

1√
2α1 + α2

,
1√

2α1 − α2 + 1

)
, (14)

as well as extra conditions on α [11]. Considering the scaled spa-
tial step h′, the 13-point scheme on the FCC grid has λmax =
ck/h′ =

√
1/2. Two other 27-point schemes of interest are the

IWB scheme, with α = (1/4, 1/2, 1/4), λ = 1 and an inter-
polated isotropic scheme (IISO2) with α = (5/12, 1/2, 1/12),
λ =

√
3/4 [13]. We will also compare these schemes in terms

of computation times to the “standard leapfrog” (SLF) 7-point
scheme with α = (1, 0, 0), λ =

√
1/3 [25].

We note that the optimal Courant number in the 13-point FD
scheme on the FCC grid is greater than the Courant number em-
ployed in its digital waveguide mesh implementation (λ =

√
1/3)

[12, 17, 18], which means that numerical dispersion will be better
with a FD implementation.

5. MAPPING TO A CUBIC GRID

The points on the FCC grid and vectors of the 13-point stencil must
be mapped to Z3 so that they can further be mapped to computer

2The same reasoning can be applied to the 9-point scheme α =
(0, 0, 1), which decouples into four subschemes on scaled body-centered
cubic (BCC) grids. While the computational efficiency reported in [13]
can be improved by a factor of four, the 9-point scheme on the BCC grid
is still not a good candidate for our problem, even if arguments can be
made about the BCC grid being optimal for sampling of space [23]. This
is further discussed in [14].

Figure 3: FCC grid constructed using four cubic grids

memory. The simplest method is to employ alternating points on
the cubic grid in a checkerboard fashion with one stencil orienta-
tion, as in Fig. 2c, but this is wasteful in memory use. Another
way to build the grid is:

Gh = {xm,h = Vmh ∈ R3 : m ∈ Z3} , (15)

where V is a generator matrix [26] made up of any three vectors
chosen from ΩF . In this way, the grid can be indexed using m
and the stencil vectors remapped to Z3 can be found with V −1.
However, generator matrices for the FCC grid [26] tend to gener-
ate points filling a parallelpiped volume of space [27]. This is im-
practical for room acoustics because memory will be wasted when
modelling a box-shaped room.

Another construction uses four cubic grids shifted by the vec-
tors {êx, êy, êz, êx+ êy + êz}, as shown in Fig. 3. This better fits
a rectangular volume and provides a straightforward way to update
the scheme since each subgrid has one set of stencil vectors with
respect to the other subgrids. The memory space could be parti-
tioned into four using this construction. In this paper, we construct
the FCC grid in a slightly different manner, similar to that in [22].
We use the following construction:

Gh =
{
xm,h = (m+myêy + ((mx +mz) mod 2)êy)h/

√
2
}
,

(16)
where m ∈ Z3. In other words, we take a cubic grid and scale
one dimension by two, then we shift in the same direction by the
modulo-two sum of the other two integer coordinates. Finally, we
scale the grid by h/

√
2 so that the grid spacing is h. Referring

to Fig. 3, this results in the black and green points having one
stencil orientation, and the blue and red another. In this way, we
do not need to partition the memory space and we have only two
orientations of stencils. However, some extra care must be taken
at walls and edges of a rectangular domain, and one half face of
points is discarded at one wall.

With this coordinate system for the FCC grid, we have the
following update recursion (λ = ck/h =

√
1/2):

û(t+k,x) = −û(t,x)−û(t−k,x)+
1

4

12∑
i=1

û(t,x+v′i) , (17)

where v′i = xm′
i,h

denotes the nearest neighbouring points onGh

and the set {m′i : i = 1, . . . 12} denotes the neighbouring points

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

(a) (b) (c)

Figure 4: (a) Voronoi cell of FCC grid: rhombic dodecahedron. (b) FCC grid of points. (c) FCC grid of cells.

indexed by the Z3 grid, which depends on whether x = xm,h

has (mx + mz) odd or even. For i ∈ {1, . . . , 8} we have m′i ∈
{±êx, êz± êx,−êz± êx,±êz} in common between the two ori-
entations. For i ∈ {9, . . . , 12} we have m′i ∈ {êy ± êx, êy ±
êz} for (mx + mz) even and m′i ∈ {−êy ± êx,−êy ± êz} for
(mx +mz) odd.

6. FINITE VOLUME IMPEDANCE BOUNDARIES

At the boundaries, we consider the FD scheme to be a special case
of a finite volume (FV) scheme on a regular grid of cells encom-
passing a volume V with boundary ∂V [19]. The grid of cells is
the Voronoi tessellation of the spatial grid of points (lattice). One
of the key differences with this approach is that there are no “ghost
points” [13] to consider, as the boundary is composed of the faces
of the boundary grid cells. The FCC grid has a Voronoi cell which
is the rhombic dodecahedron, as shown in Fig. 4a. This shape
permits a space-filling tessellation, as shown in Fig. 4c. For the
“staircase” approximation to a box-shaped room, the boundary ∂V
is the jagged outer surface in Fig. 4c. The FV method described
in [19] allows for fitted boundary cells that can conform to straight
walls, but for our purposes a staircase approximation is sufficient
since the simulated room volumes will be large in comparison to
the grid cells.

For the remainder of this section, it is assumed that x ∈ Gh

where Gh is the FCC grid with boundary ∂V . We have the fol-
lowing values for the volume of a cell, V , and the surface area of
one rhombic side, S, in terms of the grid spacing h (the inradius
of the cell is h/2) [26]:

V =
h3

√
2
, S =

h2

2
√

2
. (18)

We can use the following FD approximations to (2) and (5):

p̂ = ρδt−û (19)
ρδt−ν̂i = −δvi+p̂ , (20)

where ν̂i = ν̂i(t,x) is an approximation to ν(t,x)·vi for vi ∈ Υ,
and Υ = {−ΩF ∪ ΩF }. After integrating both sides of (4) over
a grid cell and applying the divergence theorem, the following FV
approximation to (4) can be obtained [19]:

V

ρc2
δt+p̂ = −S

12∑
i=1

qiν̂i − S(b)q(b)ν̂n,(b) , (21)

where qi = qi(x) is an indicator function taking on the value of
1 when an interior cell is adjacent along the vector vi ∈ Υ and 0
otherwise, S(b) = S(b)(x) is the total surface area of the boundary
cell on ∂V , q(b) = q(b)(x) is an indicator function taking on the
value of 1 when x is a boundary cell and 0 otherwise, and ν̂n,(b)

is an approximation to the velocity component of ν normal to the
boundary. Combining (18)-(21), the FV scheme reduces to the 13-
point FD scheme for the wave equation on the interior cells of the
FCC grid (cells where qi = 1, q(b) = 0) [19].

The boundary velocity component ν̂n,(b) is given by a passive
discretisation of the impedance boundary condition (6) [19]:

ν̂n,(b) = Y0 (Aδt+p̂+Bµt+p̂+ Cµt+ĝ) , (22)
δt+ĝ = µt+p̂ , (23)

with A,B,C non-negative for passivity [19] and where µt+ is the
following averaging operator:

µt+p̂ =
p̂(t+ k,x) + p̂(t,x)

2
. (24)

Combining (18)-(24) we get the following update at the boundary
cells in terms of û (the extra storage ĝ can be eliminated):

û(t+ k,x) =
1

γ

(
2β + cS

12∑
i=1

qiδvi+

)
û(t,x)− φ

γ
û(t− k,x) ,

(25)

where:

φ =
V

ck2
+ S(b)

(
A

k2
− B

2k
+
C

4

)
, (26)

β =
V

ck2
+ S(b)

(
A

k2
− C

4

)
, (27)

γ =
V

ck2
+ S(b)

(
A

k2
+
B

2k
+
C

4

)
. (28)

Finally, we have S(b) = 4S at a wall node and S(b) = 7S
at an edge. It is possible to not have “corner” cells, as in Fig. 4c,
where each corner of the approximated box is shared by three edge
cells.

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

6.1. Numerical Energy and Room Modes

A useful debugging tool for such numerical schemes is to mea-
sure the total numerical energy of the system [19]. A measure of
the stored numerical energy on the interior, hi = hi(t), is given
by [19]:

hi =
∑
x∈Gh

(
V

2ρc2
p̂ 2 +

ρSh

4

12∑
i=1

qiν̂ist−ν̂i

)
, (29)

where st− is the time-shift operator: st−ν̂i(t,x) = ν̂i(t − k,x).
The stored energy at the boundary, hb = hb(t), is given by [19]:

hb =
Y0

2

∑
x∈Gh

S(b)q(b)
(
Ap̂ 2 + Cĝ 2) . (30)

The total energy h = hi + hb should be non-increasing:

0 ≤ h(t) ≤ h(0) , t > 0 , (31)

and in the lossless case (B = 0), energy should be conserved,
h(t) = h(0) for all t, to numerical precision. To verify this, a sim-
ulation was conducted for a 0.1 m × 0.1 m × 0.1 m box with c =
344 m/s, a Kronecker delta initial condition, A = 2, B = 0, C =
4, and with Fs = 44.1 kHz. As seen in Fig. 5a, the normalised
variation in the total energy is negligible.

0 100 200 300 400 500 600 700 800 900 1000

−5

0

5

x 10
−15

en
er

g
y
 v

ar
ia

ti
o
n

time−steps

(a) Variation in total energy, (h(t)− h(0))/h(0)

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

frequency (Hz)

im
p
u
ls

e 
re

sp
o
n
se

 (
d
B

)

(b) Impulse response in low frequencies

Figure 5: Numerical energy and room modes

We can also check that the impulse response of our staircase-
approximated box-shaped room agrees with the analytical modes
of a box with reflective (phase-preserving) boundaries. To this end,
another simulation was run on a 1.45 m × 1.28 m × 1.32 m box
with A = B = C = 0, and with a Kronecker delta initial condi-
tion. As seen in Fig. 5b, the room modes from the simulation agree
with the low-frequency analytical modes (vertical lines). A series
of snapshots in time from another small simulation is displayed
in Fig. 8 to give an idea of the wave propagation in the combined
FD-FV scheme.

7. IMPLEMENTATION AND GPU ACCELERATION

This section details the implementation of the FCC 13-point scheme
with impedance boundaries, firstly in serial C code, and then using
Nvidia’s CUDA language to run large-scale simulations on graph-
ics processing units (GPUs).

7.1. Serial C code

To implement the scheme in serial C code, the 3-D grid is mapped
to linear memory in a standard row-major arrangement for each
Z layer. Only two state data grids are required, as a read then
overwrite procedure can be used to access the center point from
two time-steps ago. For both the interior and the boundaries, the
grid is calculated using separate updates for consecutive points in
linear memory. Fig. 6 shows the grid points used for updating the
interior of the scheme.

Figure 6: Grid points (FCC remapped to cubic grid) used by even
(left) and odd (right) updates.

There are nine points which are common to both (marked blue),
and four which differ. Similarly at the boundaries, we apply sepa-
rate updates to odd then even data points. Extra conditional state-
ments are required to identify the faces and edges.

7.2. GPU kernel design

At each time-step, updating the grid points is data independent,
and so can clearly benefit from parallel execution. The main con-
cern in terms of GPU efficiency is ensuring memory coalescing.
When consecutive CUDA threads access consecutive memory lo-
cations, data transfers are coalesced and occur much faster. For
computations which are limited by memory bandwidth, such as
room acoustics simulations with FD methods, this is the most im-
portant performance aspect.

In terms of the FCC scheme here, achieving memory coalesc-
ing requires some careful attention to the design of the CUDA
kernel. Ideally we want to update the grid with a single kernel
launch, with enough threads to cover the entire grid. However, as
previously detailed, consecutive points in memory use a different
update, and access different points. Simply applying a conditional
statement in the kernel would result in non-coalesced memory ac-
cess, and non-optimal performance.

To ensure fully coalesced access, the kernel is designed to pick
up all of the points required by both updates, the blue and both sets
of red points in Fig. 6. The eight red points are accessed, and then a
conditional statement calculates a partial sum based on the points
required, as shown in line 27 of the kernel code. The remaining
nine common points are then summed using a single update equa-
tion at line 30. The kernel also contains the boundary updates,

DAFX-5

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

1 _ _ g l o b a l _ _ void UpDate ( . . . )
2 {
3 / / g e t X, Y, Z from t h r e a d and b l o c k Id ’ s
4 i n t X = b l o c k I d x . x ∗ Bx + t h r e a d I d x . x ;
5 i n t Y = b l o c k I d x . y ∗ By + t h r e a d I d x . y ;
6 i n t Z = b l o c k I d x . z ∗ Bz + t h r e a d I d x . z ;
7

8 double ps , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 ;
9

10 / / I n t e r i o r P o i n t s
11 i f ( . . . ) {
12

13 / / g e t l i n e a r p o s i t i o n
14 i n t cp = Z∗ a r e a +(Y∗Nx+X ) ;
15

16 / / Load d i f f e r i n g sum p a r t s
17 s1 = u1 [ cp +1+Nx ] ;
18 s2 = u1 [ cp−1+Nx ] ;
19 s3 = u1 [ cp+Nx−a r e a ] ;
20 s4 = u1 [ cp+Nx+ a r e a ] ;
21

22 s5 = u1 [ cp+1−Nx ] ;
23 s6 = u1 [ cp−1−Nx ] ;
24 s7 = u1 [ cp−Nx−a r e a ] ;
25 s8 = u1 [ cp−Nx+ a r e a ] ;
26

27 i f ( (X+Z)%2==0) ps = s1 + s2 + s3 + s4 ;
28 e l s e ps = s5 + s6 + s7 + s8 ;
29

30 u [ cp ] = 0 . 2 5∗ ( u1 [ cp +1] + u1 [ cp−1]
31 +u1 [ cp−1−a r e a ] + u1 [ cp+1−a r e a ]
32 +u1 [ cp−1+a r e a ] + u1 [ cp +1+ a r e a ]
33 +u1 [ cp−a r e a ] + u1 [ cp+ a r e a ]
34 +ps )
35 −u1 [ cp]−u [ cp ] ;
36 }
37

38 / / Update b o u n d a r i e s
39 . . .
40 }

Figure 7: CUDA kernel for FCC scheme.

which are implemented using separate conditional statements as
per the serial C code. These are left out for brevity.

In terms of GPU memory design, rather than using a compli-
cated shared memory approach, the kernel accesses data using the
read-only data cache available on Kepler cards. In the parameters
of the kernel declaration, the data pointer is declared as:

const double * __restrict__ u1

No additional code elements are required to implement this cache
functionality, and it operates correctly even though the data point-
ers are swapped at each time iteration. This provides a significant
performance gain of around 15% over directly reading from global
memory.

7.3. Performance

In order to benchmark the system, a standard simulation was com-
puted using both the serial C version and the CUDA version. This
consisted of a grid size of 800x520x470 (195,520,000 points) com-
puted for 44,100 time-steps, using double precision floating-point
arithmetic. Serial C code was tested on an Intel Xeon E5-2620
with -O3 compiler optimisation and the CUDA code was tested on
an Nvidia Tesla K20. The resulting times were: serial C code - 30
hours, CUDA - 38.5 minutes, a speed-up of 46x. A simulation of
this size was not fully run in MATLAB since after 100 time-steps
it was estimated that 44,100 time-steps would take 30 days, even
with vectorised code.

8. PRACTICAL COMPARISONS

8.1. Computation times

In this section, we conduct some experiments using GPU accel-
eration to compare the computation times for the FCC 13-point
scheme, the IWB scheme and IISO2 27-point schemes, and the
SLF 7-point scheme. The purpose of these tests is to see if the
time taken to compute a certain grid size and number of time-steps
aligns with some measure of computational costs of the schemes.
Analysing computational cost usually begins with the computa-
tional density of a scheme, which is the number of points, or up-
dates, per unit space and time. The densities of specific operations
(additions, multiplications, memory reads) are then obtained by
multiplying the computational density by the number of specific
operations carried out at each point-wise update. For an N -point
stencil usingM shells of points, the number of multiplies isM+1,
the number of additions is N , and the number of memory reads is
N + 1, at each point-wise update. However sometimes multipli-
cations can be swapped for additions (subtractions), depending on
the values ofα and λ, as in (17). The density of the memory reads
is also known as the memory bandwidth.

The densities of the spatial grids are σ/h3, where σ = 1 for
the cubic grid and σ =

√
2 for the FCC grid. The computational

density of a scheme on a specific grid is then σ(h3k)−1. Fixing
the Courant number λ and the wave speed c, we can write the
computational density as (cσ/λ)h−4. Thus, to put schemes on an
equal footing we can use the grid spacing h = 4

√
σ/λh′ with a

common spatial step h′ so that each scheme has the density ch′−4.
Courant numbers are chosen at the stability limit for the reasons
stated in Section 4.

We set the computational densities of the four schemes to be
equal and compare the times taken to simulate the wave propaga-
tion in a 512 m3 room for 0.2 s using 1012 updates (h′ = 13.7 mm,
c = 344 m/s) in time and space using double floating-point preci-
sion. As a point of reference, the IWB is run with Fs = 25.1 kHz.
We also simulate the same sized space for 0.1s (0.5x1012 updates)
and a 256 m3 room for 0.1s (0.25x1012 updates). Since the interior
updates are the bulk of the computational load (for boundary con-
ditions which are not too complex) we employ Dirichlet boundary
conditions: û(t,x) = 0 for x ∈ ∂V . We use a spatially raised
cosine initial condition with zero initial velocity. The floating-
point operations per second (FLOPS) and memory bandwidth is
different for each scheme (IWB and IISO2 are equivalent in this
respect), which should translate to different computation times.

For the comparison tests, each of the four schemes was imple-
mented with only an interior update with a non-updated halo at the
boundaries (fixed boundaries). Each CUDA kernel was designed
in the same way, using a 3D thread block of size 32x4x2 and is-
suing enough threads to cover the entire data grid. Data was ac-
cessed using the read-only data cache as described in the previous
section. The simulations were performed on a single Nvidia Tesla
K20 card. We list the computation times for these simulations in
Table 1.

We see that the 7-point SLF scheme and the 13-point FCC
scheme respectively take (roughly) 80% and 90% of the time taken
for the 27-point IWB and IISO2 schemes. The number of ad-
ditions and multiplications carried out at each point is not suffi-
cient to create a bottleneck in the GPU execution because the the-
oretical maximum FLOP rate of the Tesla K20 card is 1.17 tera-
FLOPS at double-precision [28]. Counting the number of addi-

DAFX-6

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

Table 1: Computation times (in seconds) of schemes

# updates SLF FCC IISO2 IWB

1.00× 1012 256.6 282.0 321.6 321.1
0.50× 1012 128.3 141.0 160.8 160.6
0.25× 1012 64.0 70.4 80.3 80.2

tion and multiplication operations performed in the GPU kernel,
the 27-point schemes are using less than 20% of the maximum
FLOP rate. Thus, we can attribute these differences to memory
bandwidth. The fact that the times do not scale linearly with the
relative memory bandwidths indicates that the GPU cache is also
having an effect. For large problems, such as room acoustics sim-
ulations, the computation time for a given scheme on a GPU scales
linearly with the number of grid points and number of time-steps
computed. This is confirmed in Table 1, so we can conclude that
for the same computational density the execution time is lower for
schemes with lower memory bandwidth (generally, for schemes
which employ fewer points). Now we must relate this to some
measure of accuracy in the sound produced.

The accuracy of a FD approximation is generally defined in
terms of Taylor series expansions [24], but these schemes are all
second-order accurate, and for audio we are more interested in
minimising the wave speed error across a wide range of spatial or
temporal frequencies. Previous studies have compared the com-
putational efficiencies of different schemes in terms of minimising
wave speed error across a range of wavenumbers [12–14]. We
will refer to the relative computational efficiency measure devised
in [13] for the interior FD scheme. This measure gives the compu-
tational density in the SLF scheme required to keep the wave speed
error below some threshold up to some critical frequency (in Hz)
in all directions, relative to the computational density required to
achieve the same in another scheme. These numbers [13] are listed
in Table 2 and we have taken the liberty to increase the efficiency
for the FCC scheme by a factor of two for the reasons stated in
Section 4, but this is confirmed in another study [14].

Table 2: Relative computational efficiencies of schemes [13]

SLF FCC IISO2 IWB

2% error 1.00 11.26 8.67 7.01
4% error 1.00 9.30 7.14 7.07
8% error 1.00 6.92 5.31 6.99

Table 2 tells us that for the same computational density, the
FCC scheme will have a lower worst-case directional wave speed
error than the IWB and IISO2 schemes, until 8% wave speed error.
We have yet to see any tests conducted to relate this measure to ac-
tual perception, but we suspect that 8% wave speed error is too
optimistic for large-scale room acoustics. It is true that the IWB
scheme has no wave speed error for plane waves travelling along
grid axes [13], but this is also the case for the 13-point scheme
along the same directions (relative to the cubic grid) [13,14]. Sim-
ilarly, the SLF scheme has no wave speed error for plane waves
travelling along grid diagonals [11, 13] (the space diagonals of a
cubic cell, as opposed to the side diagonals). In any case, the wave
propagation should be uniform in all directions, as described by
spherical wave solutions to (1) [29], so we consider the worst-case
direction to be critical. With the relative computational efficiencies

in Table 2, and the data in Table 1, we can conclude that less disper-
sion is achieved for less computation time with the FCC scheme
than the other schemes, when less than 8% wave speed error is
desired in every direction.

8.2. Use of finite memory

The discussion above does not put a constraint on memory use,
but we are actually limited to 5GB per card, which translates to
roughly 300 million grid points at double-precision (two states per
point), or 600 million at single-precision. We can make another
comparison if time is not an issue and we only want the best possi-
ble sound from a given sized virtual room. Since the grid density is
σ/h3, we can use h = h′/ 3

√
σ to equalise the schemes for number

of points in a given sized space. The computational density then
becomes (σ7/3/λ)ch′−4, which gives

√
3 ≈ 1.73, 22/3 ≈ 1.59,√

4/3 ≈ 1.33, and 1 for the SLF, FCC, IISO2, and IWB schemes
respectively. As the computational density is higher for the FCC
scheme than the 27-point schemes, the dispersion will certainly
be less (below 8% wave speed error), since we know it is already
better for equal computational density. With equal memory use,
the SLF has roughly 1.09 times the computational density of the
FCC scheme, but the FCC scheme is nearly seven times more ef-
ficient for an 8% threshold in the wave speed error, as seen in Ta-
ble 2. Thus, we can conclude that for equal memory use, the FCC
scheme has less numerical dispersion than the other FD schemes
on the cubic grid.

Using the full 5GB of memory on the Tesla K20 card, a simu-
lation was run with the FCC scheme for a 540 m3 room with Fs =
44.1 kHz. It took 7.35 hours to simulate a four second room im-
pulse response, and there was a 70x speed-up over serial C code
(on a single core). At double precision, 5GB allowed for a 270 m3

room with Fs = 44.1 kHz, and this simulation took 3.78 hours,
with a 53x speed-up over serial C code (on a single core). Audio
examples of these simulations are available at http://www2.ph.
ed.ac.uk/~s0956654/Site/VirtualRoomAcoustics.html.

9. CONCLUSIONS

In this paper, a room acoustics model with frequency-dependent
absorption at the walls was implemented. The interior sound field
was approximated with a finite difference scheme on a face-centered
cubic (FCC) grid and the boundary conditions were derived from
finite volume methods. The computation of the scheme was accel-
erated using CUDA programming on an Nvidia Tesla K20 GPU
card and there were significant speed-ups over serial C code run
on a single core. The discretisation of the 13-point finite difference
scheme was discussed and it was shown that the FCC grid is more
efficient (in theory) at minimising numerical dispersion, below an
8% threshold. Practical tests on the GPU showed that the 13-point
scheme on the FCC grid runs faster than 27-point schemes on a cu-
bic grid for equal computational densities. This was attributed to
the lower memory bandwidth of the FCC scheme. Considering the
practical efficiency of the FCC scheme and the additional theoret-
ical efficiency, it can be concluded that the 13-point scheme on the
FCC grid is better-suited to large-scale room acoustics simulations
than 27-point schemes on cubic grids. Future work will include
the use of fitted boundary cells to simulate complex geometries,
the addition of air viscosity to the room model, and investigating
the use of multiple GPU cards in parallel.

DAFX-7

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://www2.ph.ed.ac.uk/~s0956654/Site/VirtualRoomAcoustics.html
http://www2.ph.ed.ac.uk/~s0956654/Site/VirtualRoomAcoustics.html


Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

Figure 8: Snapshots of û(t,x) on x = 0 plane for 0.5 m × 0.5 m × 0.5 m box with A = 1, B = 10, C = 2 at 44.1 kHz and with c =
344 m/s after 10, 20, 60, 80, and 180 time-steps. Input is a raised cosine point source.

10. REFERENCES

[1] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” J. Acoustical Society of
America, vol. 65, p. 943, 1979.

[2] M. Vorländer, “Simulation of the transient and steady-state
sound propagation in rooms using a new combined ray-
tracing/image-source algorithm,” J. Acoustical Society of
America, vol. 86, p. 172, 1989.

[3] F. Ihlenburg, Finite element analysis of acoustic scattering.
Springer, 1998, vol. 132.

[4] R. D. Ciskowski and C. A. Brebbia, Boundary element meth-
ods in acoustics. Computational Mechanics Publications
Southampton, Boston, 1991.

[5] L. Savioja, T. J. Rinne, and T. Takala, “Simulation of room
acoustics with a 3-D finite difference mesh,” in Proc. Int.
Computer Music Conf. (ICMC), Danish Institute of Electroa-
coustic Music, Denmark, 1994, pp. 463–466.

[6] D. Botteldooren, “Finite-difference time-domain simulation
of low-frequency room acoustic problems,” J. Acoustical So-
ciety of America, vol. 98, pp. 3302–3308, 1995.

[7] D. Botteldooren, “Acoustical finite-difference time-domain
simulation in a quasi-Cartesian grid,” J. Acoustical Society
of America, vol. 95, p. 2313, 1994.

[8] L. Savioja, “Real-time 3D finite-difference time-domain sim-
ulation of low-and mid-frequency room acoustics,” in Proc.
Digital Audio Effects (DAFx), vol. 1, Graz, Austria, 2010,
p. 75.

[9] C. J. Webb and A. Gray, “Large-scale virtual acoustics simu-
lation at audio rates using three dimensional finite difference
time domain and multiple GPUs,” in Proc. Int. Cong. Acous-
tics (ICA), Montréal, Canada, 2013.

[10] C. J. Webb, “Computing virtual acoustics using the 3D fi-
nite difference time domain method and Kepler architecture
GPUs,” in Proc. Stockholm Musical Acoustics Conf. (SMAC),
Stockholm, Sweden, 2013.

[11] S. Bilbao, “Wave and scattering methods for the numeri-
cal integration of partial differential equations,” Ph.D. thesis,
Stanford University, 2001.

[12] G. R. Campos and D. M. Howard, “On the computational
efficiency of different waveguide mesh topologies for room
acoustic simulation,” IEEE Trans. Speech and Audio Pro-
cessing, vol. 13, no. 5, pp. 1063–1072, 2005.

[13] K. Kowalczyk and M. van Walstijn, “Room acoustics sim-
ulation using 3-D compact explicit FDTD schemes,” IEEE
Trans. Audio, Speech, and Language Processing, vol. 19,
no. 1, pp. 34–46, 2011.

[14] B. Hamilton and S. Bilbao, “On finite difference schemes for
the 3-D wave equation using non-Cartesian grids,” in Proc.
Sound and Music Computing (SMC) Conf., Stockholm, Swe-
den, 2013.

[15] J. Sheaffer, B. M. Fazenda, D. T. Murphy, and J. A. S. Angus,
“A simple multiband approach for solving frequency depen-
dent problems in numerical time domain methods,” in Pro-
ceedings of Forum Acusticum, 2011, pp. 269–274.

[16] T. Tsuchiya, Y. Iwaya, and M. Otani, “Large-scale sound
field rendering with graphics processing unit cluster for
three-dimensional audio with loudspeaker array,” in Proc.
Int. Cong. Acoustics (ICA), Montréal, Canada, 2013.

[17] J. A. Laird, “The physical modelling of drums using digital
waveguides,” Ph.D. thesis, University of Bristol, 2001.

[18] M.-L. Aird, “Musical instrument modelling using digital
waveguides,” Ph.D. thesis, University of Bath, 2002.

[19] S. Bilbao, “Modeling of complex geometries and bound-
ary conditions in finite difference/finite volume time domain
room acoustics simulation,” IEEE Trans. Audio, Speech, and
Language Processing, vol. 21, no. 7, pp. 1524–1533, Jul.
2013.

[20] P. M. Morse and K. U. Ingard, Theoretical acoustics.
Princeton University Press, 1968.

[21] D. P. Petersen and D. Middleton, “Sampling and reconstruc-
tion of wave-number-limited functions in N-dimensional Eu-
clidean spaces,” Information and control, vol. 5, no. 4, pp.
279–323, 1962.

[22] K. Petkov, F. Qiu, Z. Fan, A. E. Kaufman, and K. Mueller,
“Efficient LBM visual simulation on face-centered cubic lat-
tices,” IEEE Trans. Visualization and Computer Graphics,
vol. 15, no. 5, pp. 802–814, 2009.

[23] N. Röber, M. Spindler, and M. Masuch, “Waveguide-based
room acoustics through graphics hardware,” in Proc. Int.
Computer Music Conf. (ICMC), 2006.

[24] J. Strikwerda, Finite difference schemes and partial differen-
tial equations. Society for Industrial Mathematics, 2004.

[25] G. E. Forsythe and W. R. Wasow, Finite-difference methods
for partial differential equations. New York: Wiley, 1960.

[26] J. Conway and N. J. A. Sloane, Sphere packings, lattices and
groups. Springer-Verlag, 1988.

[27] N. W. Ashcroft and N. D. Mermin, Solid State Physics.
Saunders College, Philadelphia, 1976.

[28] “Nvidia Tesla K-series datasheet,” Nvidia Corp., Santa
Clara, California, 2012.

[29] S. W. Rienstra and A. Hirschberg, “An introduction to acous-
tics,” Eindhoven University of Technology, 2013.

DAFX-8

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013


	1  Introduction
	2  Room Acoustics Model
	2.1  3-D Wave Equation
	2.2  Impedance Boundary Conditions

	3  Finite Difference Method
	3.1  Difference Operators
	3.2  Finite Difference Scheme for 3-D Wave Equation

	4  Discretising Time and Space
	5  Mapping to a Cubic Grid
	6  Finite Volume Impedance Boundaries
	6.1  Numerical Energy and Room Modes

	7  Implementation and GPU acceleration
	7.1  Serial C code
	7.2  GPU kernel design
	7.3  Performance

	8  Practical Comparisons
	8.1  Computation times
	8.2  Use of finite memory

	9  Conclusions
	10  References



