
Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-1

 APPROACHES FOR CONSTANT AUDIO LATENCY ON ANDROID

Rudi Villing, Victor Lazzarini,
Department of Electronic Engineering,

Maynooth University
Sound and Digital Music Research Group,

Maynooth University
Ireland Ireland

rvilling@nuim.ie vlazzarini@nuim.ie

Dawid Czesak, Sean O'Leary Joseph Timoney
Department of Electronic Engineering,

Maynooth University
Sound and Digital Music Research Group,

Maynooth University
Ireland Ireland

dczesak@nuim.ie jtimoney@nuim.ie

ABSTRACT

This paper discusses issues related to audio latency for realtime
processing Android OS applications. We first introduce the prob-
lem, determining the difference between the concepts of low la-
tency and constant latency. It is a well-known issue that pro-
grams written for this platform cannot implement low-latency
audio. However, in some cases, while low latency is desirable, it
is not crucial. In some of these cases, achieving a constant delay
between control events and sound output is the necessary condi-
tion. The paper briefly outlines the audio architecture in the An-
droid platform to tease out the difficulties. Following this, we
proposed some approaches to deal with two basic situations, one
where the audio callback system provided by the system software
is isochronous, and one where it is not.

1. INTRODUCTION

The support for realtime audio on the Android platform has been
shown to suffer from significant latency issues [1]. Although
support for lower latency audio paths has been provided in later
versions of the operating system, this provision can vary signifi-
cantly from device to device. One of the difficulties here, as iden-
tified by its developers, is that there is no uniformity in the de-
ployment of the system, which has to be able to adapt to a variety
of vendor-designed hardware set-ups. Its competitor, iOS, on the
other hand, has been built to run specific devices, which have
much less variance, and, for this reason, it can deliver a better
support for realtime audio to developers.

While low latency is critical for certain applications, for others, it
is possible to design systems around a moderate amount of audio
delays. In this case, the next requirement tends to be constant la-
tency. In other words, we might not be worried if a given sound
event is to be delivered a certain number of milliseconds in the
future, but we would like to be able to predict with a certain de-
gree of precision what this delay will be. Generally speaking,
constant latency is guaranteed in a working full-duplex audio
configuration, with respect to the input signal, since any modula-
tion of this delay would be associated with sample dropouts.

The situation is, however, more complex when we are trying to
synchronise audio output to external control inputs, operating
asynchronously to the audio stream (fig.1). This situation typical-
ly arises, for instance, when trying to synchronise touch events,
or responses to sensors, with specific parameter changes (e.g.
onsets, pitch changes, timescale modifications). In this case,
constant latency is not a given: it depends on the audio subsystem
implementation. On Android, the audio subsystem is vendor-
implemented, and, as noted, can vary significantly from device to
device. For certain devices, achieving constant latency with re-
gards to an asynchronous control is not much more than a matter
of using a common clock, as the audio subsystem callback mech-
anism is tightly chained to the sample stream output (itself syn-
chronised to a regular clock). On other devices, the situation is
more complex, as there is no guarantee that the callback func-
tions will occur with only small amounts of jitter (with regards to
a common system clock). Furthermore, in these cases, stream
time is not reported with a good degree of accuracy.

Figure 1. Event-to-sound latency

In this paper we will look at approaches to obtaining constant
audio output latency with regards to external asynchronous con-
trol events. Constant latency is required when we need to esti-
mate the exact time of the change of parameters in the sound
stream in response to a control input. For instance, if we want to
try and synchronise musical beats to a step detection algorithm,
we will need to know how the time between the sending of a
tempo adaptation command and the appearance of the effect at
the output.

The paper is organised as follows: an overview of the Android
audio architecture is provided, which will identify the difficulties
with latency control, and identify the various sources of delays in
the system. This will be followed by an examination of ap-
proaches to achieving constant latency in the two cases men-
tioned above: isochronous and anisochronous callback mecha-

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-2

nisms. The paper will demonstrate how it is possible to minimise
latency jitter in these two situations, describing the algorithms
employed and their results. The paper concludes with a brief dis-
cussion of the applications for the principles outlined here and
some indications of future work.

2. ANDROID AUDIO SYSTEMS

The audio implementation in Android is built on a number of
layers [2]. The lowermost components are not exposed to devel-
opers, and they can only be manipulated indirectly via the top-
most application programming interfaces (APIs), of which there
are a few. High-level development for Android uses a version of
the Java language, and the simplest APIs are provided as part of
the Software Developer Kit (SDK). The most flexible of these is
AudioTrack, which provides a blocking-type audio writing func-
tionality (synchronous), but it is still considered not enough low-
level for any serious audio application.

For this, Android provides a C API based on the OpenSL ES
1.0.1 specification [3] in their Native Developer Kit (NDK). The
NDK is a collection of C/C++ APIs that can be used to build dy-
namic modules for Java-based applications, whose functionality
is accessed through the Java Native Interface. The NDK allows
developers to port large portions of C/C++ code, and in the case
of audio applications, to bypass the performance problems asso-
ciated with Java garbage collection. However, it is important to
note that both the Java AudioTrack and the NDK OpenSL ES
APIs use the same underlying audio implementation. The docu-
mentation is clear in saying that using the latter does not guaran-
tee better performance in terms of audio latency, although in
some systems a "fast" audio mixer signal path might be available
to NDK-based applications [4].

2.1. OpenSL ES

The OpenSL ES API provides the means to open audio streams
for input and output, and to access these asynchronously via a
callback mechanism. This method is generally the standard in
audio APIs across platforms, where the developer provides the
code to fill in audio buffers at the times requested by the system.

For the developer, this gets exposed via an enqueue mechanism:
after the device is initialised and opened, the developer starts the
process by enqueuing a single buffer, and registering a callback.
This is invoked by the system, according to the specification,
when a new buffer is required, and so the callback will include
code to generate the audio and to enqueue it.

The specification does not say anything in relation to the timing
of these callbacks. In others words, depending on the implemen-
tation, these can either be relied upon to happen at regular times
(isochronous behaviour) or not (anisochronous). Depending on
this, different strategies are required for the implementation of
constant latency.

OpenSL also provides some means of polling the system for the
current stream time. However, it is not clear from the specifica-
tion how this should be implemented, and to which point in the
audio chain it refers. In reality, we have observed that the infor-
mation obtained is not reliable across different devices, so it is
not always usable.

2.2. Lower levels

The implementation of OpenSL ES sits on top of the AudioTrack
C++ library, which is also the backend of the Java AudioTrack
API, as noted above. Although the two libraries share the name,
they are actually distinct, the Java API occupying the same level
as OpenSL on top of the C++ library. The following is a descrip-
tion of the lower-level implementation in Android version 5.0
(fig.2).

The actual code implementing the OpenSL exposed functionality
is a thin layer. The enqueueing code simply places a pointer to
the user-provided memory in a circular buffer. The data in this
memory location is consumed by an AudioTrack function, which
copies it into its own buffer. Once all supplied data is read, it is-
ssues the user-supplied callback, which should enqueue more
data. The OpenSL specification asks for users to implement dou-
ble buffering of audio data, ie. enqueueing one buffer while fill-
ing a second one. However, the implementation is clear: the
enqueueing is only requested when the buffer data has been cop-
ied completely. Thus double buffering is not really a necessity.

AudioTrack shares its buffer memory with the next lower level
service, AudioFlinger. This is responsible for mixing the audio
streams in its own playback thread and feeding the Hardware
Abstraction Layer (HAL), which is the vendor-implemented part
of the code that communicates with the audio drivers running in
the Linux kernel. Some devices implement a feature provided by
AudioFlinger to reduce latency, a "fast mixer track", which,
when available, is used if the developer employs a specific buffer
size and sample rate dictated by the hardware, via OpenSL. The
presence of this feature can be enquired via a Java call provided
by the AudioTrack API, which also allows developers to obtain
the native parameters for it. Surprisingly, it is not possible to do
this via the NDK.

The consumption of audio data is ultimately linked to the HAL
implementation, and so the timing behaviour of the callback
mechanism is influenced by this. The HAL also is supposed to
supply the information regarding stream time, which is exposed
by the OpenSL ES, thus its reliability is related to how well this
is implemented there.

Figure 2. The Android audio stack

2.3. Achieving low and constant latency

It is clear from this discussion, that any approach to reducing la-
tency is highly dependent on the hardware involved. Some rec-
ommendations have been provided, such as using the native
buffer size and sample rates, but these are not guaranteed to have
significant effect on all devices. Avoiding the interference of the

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-3

Java garbage collector is also important for constant latency,
which in practice means migrating all relevant code from the
SDK level to the NDK. In general, an analysis of a device's be-
haviour in relation to its callback timing appears to be needed for
a full assessment of its particular latency improvement potential
(both in terms of low and constant characteristics).

3. CONSTANT LATENCY APPROACHES

To achieve approximately constant latency, we first evaluate the
most basic approach using OpenSL ES, namely enqueueing
sound data in the OpenSL buffer queue as soon as possible after
the request occurs. Thereafter, we examine approaches which
instead estimate the play head position in the output stream and
enqueue sound data at a fixed delay relative to that play head po-
sition.

All positions are defined relative to the start of the audio data
stream. We define the enqueued position as the position within
the data stream corresponding to the last sample enqueued to
date. We define the true play head position as the position in the
data stream corresponding to the sound that is currently being
output from the device. In Android devices the delay between the
true play head position and the enqueued position ranges from a
few tens of milliseconds to more than 100 ms for some devices
[1]. In general, if this delay is constant it should be easier to
achieve constant latency between sound request and sound out-
put.

To date, we have not encountered any method for measuring this
latency in an absolute manner. To estimate the latency some au-
thors measure the audio loopback delay, based on a round-trip
path (input to output): an audio signal is fed to the input and the
time it takes for it to appear at the output is measured. This can
be achieved via the Larsen effect [5], or via a custom loopback
audio connection. From this, it is estimated that the output laten-
cy is half of this time [6]. Nevertheless, it is not guaranteed that
the audio processing path is symmetrical and therefore that the
output latency is equal to the input latency.

Other approaches, which are more appropriate to the issue of
constant latency, as discussed in sect. 1, include measuring the
delay between a touch event on the Android device (or some ex-
ternal input) and the corresponding sound output (as illustrated
by fig.1). However, even here there is a difficult to quantify (and
usually variable) delay involved in receiving and processing the
source event before a sound request is ever issued. Therefore, for
this work, we developed an alternative approach based on the
relative time at which sound requests were issued and the relative
time at which sound outputs occurred.

3.1. Evaluation methodology, equipment and materials

Two different Android devices were used in this work: A Sony
Xperia Z2 and a Motorola MotoG (first generation). Both devices
were running Android 4.4.4. The most relevant audio properties
of both devices are shown in Table 1. These devices were chosen
as exemplars of a high end device (the Xperia Z2) and a mid-
range device (the MotoG). As there are a great variety of An-
droid devices and capabilities, this work with just two devices
should be considered a preliminary examination of the problem
space.

Table 1: Key Audio Properties

Device Low
latency

Native
sample rate

Native buffer size
(frames) / duration

(ms)
Xperia Z2 No 48000 960 / 20

MotoG No 44100 1920 / 43.5

A custom Android app was developed which included a C based
NDK component and a java component. The NDK component
implemented the sound engine as a thin layer on top of OpenSL
ES and was responsible for all timing measurements (measured
using clock_gettime specifying CLOCK_MONOTONIC). The
Java component implemented test runs which consisted of a se-
quence of 500 sound requests issued at anisochronous intervals
between 400–500 ms apart. (This interval was chosen so that
even substantial latency jitter would not create any doubt about
which sound request and which sound output correspond to one
another.) The sound engine logged the precise time (in microsec-
onds) at which each request was made and stored this in a log file
along with other data required for subsequent processing.

Each sound request resulted in production of a short, 10 ms, 1000
Hz tone pip (with instant attack and release, limited only by the
analogue hardware response). The audio output of the Android
device was attached to the line input of a USB sound device
(Griffin iMic) and recorded as a RIFF-Wave file (mono PCM, 16
bits, 44100 Hz) on a PC. This soundfile was then post-processed
with threshold based onset detection to determine the times
(within the audio file) at which tone pips occurred.

It is not possible to directly synchronize the clock used to meas-
ure sound request times with that used to measure sound onset
times using standard Android devices. Therefore it was necessary
to convert from raw times using these unsynchronized clocks to
times that can be compared. To achieve this, all raw request
times from the log file were made relative to the time of the first
request (by subtracting the first request time from each of them).
Similarly all raw sound onset times from the audio file were
made relative to the time of the first sound onset (by subtracting
the first sound onset time from each of them). After this calcula-
tion the first request and sound onset time are both zero and this
allows subsequent request and onset times to be compared. The
initial real world latency between the first request and the first
sound onset cannot be measured (because the clocks cannot be
synchronised) and appears as zero. If the latency is constant, all
subsequent sound onsets occur at precisely the same time offsets
as the corresponding requests and the time difference between
them should be zero. In contrast, if there is latency jitter, the
sound onset times will differ from the request times by an
amount equal to the jitter.

In the subsequent evaluations it was noticed that there was a
slight mismatch between the clock used to time requests on the
Xperia Z2 and the sample clock in the USB microphone audio
input to the PC. This mismatch caused the two clocks to drift
apart by 1-2 ms over the duration of a test run. Therefore Xperia
Z2 plots shown in the following sections have been de-trended to
compensate for the drift which is unrelated to the latency algo-
rithms being evaluated.

3.2. Latency using the Next Buffer approach

The most basic approach to approximating constant latency with
OpenSL ES is to enqueue audio data as soon as possible after it is
requested. In other words:

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-4

 (1)
where insertPos is the insertion position of the sound in the data
stream and enqueuedPos is the end of data stream position after
the most recent callback preceding the request has completed.

In general the Next Buffer approach can be expected to yield at
least one buffer duration jitter as the request may occur just be-
fore a callback is due, resulting in a very short request to enqueue
delay, or just after a callback has completed, resulting in a longer
request to enqueue delay. For small buffer sizes (for example 20
ms) this jitter may be acceptable, but for larger buffer sizes (for
example the 43 ms of the MotoG) the jitter can become audible.

Furthermore, if OpenSL callbacks occur at isochronous intervals,
then two requests occurring within one buffer duration of each
other will never be enqueued more than one buffer apart (even if
they occur just before and just after a callback). If, however,
callbacks do not occur at isochronous intervals (that is, some in-
ter-callback intervals are shorter than others) then it is possible
that two requests occurring within one buffer duration of each
other in real time may be enqueued more than one buffer apart
resulting in jitter that is even greater than one buffer duration in
this case.

The results for the Xperia Z2 are shown in Figure 3.

Figure 3 Relative latencies using Next Buffer on the
Xperia Z2: (a) histogram, (b) values. Dashed lines show
two standard deviation boundaries.

In this case the latency jitter is reasonable and limited to a range
that is just larger than one buffer duration (-10.7 to 11.4 ms).
Closer investigation showed that OpenSL callback times were
nearly isochronous for this device.

Figure 4 shows the MotoG results and in this case the latency
jitter is much larger than the Z2.

Figure 4 Relative latencies using Next Buffer on the Mo-
toG: (a) histogram and (b) values. Dashed lines show two
standard deviation boundaries.

In fact the latency jitter for the MotoG is even larger than one
buffer duration (95% of the values were within a 58 ms range).
This range is really too large and can result in audible jitter. The
main cause for the jitter appears to be that the callback is not in-
voked at regular intervals on the MotoG. Instead a typical se-
quence of callback intervals measured in milliseconds might be:
40, 60, 20, 60, 40, 40, 80, 30, and so on.

Therefore it appears that the Next Buffer approach is only suita-
ble if two conditions are satisfied by the device: (1) the native
buffer size is relatively small, and (2) callbacks are invoked at
isochronous intervals. For devices which do not satisfy these re-
quirements, such as the MotoG, another approach is required.

3.3. Latency using the OpenSL position

Rather than attempting to enqueue a sound as soon as possible
after the request and suffering the jitter that results it would be
better if it was possible to enqueue the sound such that it was
output a constant latency after the request. If the current play
head position is known, then constant latency can be achieved by
adding the sound to the data stream at some fixed delay relative
to the play head position. This fixed delay must be large enough
that the desired insert position of the sound is never earlier than
the already enqueued position despite any callback jitter.

As discussed previously, the OpenSL ES API defines a function
to read the current play head position and this is direct estimate
of the play head position which may be used to calculate an ap-
propriate insert position for the requested sound data as follows:
 (2)

where requestSLPos is the OpenSL position at the time of the
request and the fixed delay (which was determined empirically
for each device) guarantees that the insertion position is never
earlier than the end of data already enqueued. This fixed delay
does not appear in subsequent plots due to the relative nature of
the times used.

Although the relative latencies for the Xperia Z2 using the Next
Buffer approach were already quite good, we decided to evaluate
the achievable latency jitter using the OpenSL position also. The
results are shown in Figure 5.

insertPos enqueuedPos=

insertPos requestSLPos fixedDelay= +

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-5

Figure 5 Relative latencies using OpenSL position on the
Xperia Z2: (a) histogram, (b) values. Dashed lines show
two standard deviation boundaries.

It is clear that inserting sounds a fixed delay after the OpenSL
position (measured at the time of request) has substantially re-
duced the latency jitter (95% of the values are in 5.6 ms range)
relative to the Next Buffer approach.

When this latency approach was applied to the MotoG the results
improved somewhat relative to the NextBuffer approach but
were still much worse than the Xperia Z2 as can be seen in Fig-
ure 6.

In this case, 95% of the latencies are contained within an 36.8 ms
range (compared to a 58 ms range previously). This is still a rela-
tively large range and, unlike the Xperia Z2, there are a number
of outlier values which substantially depart from the typical
range.

Figure 6 Relative latencies using OpenSL position on
the MotoG: (a) histogram, (b) values. Dashed lines show
two standard deviation boundaries.

Closer examination of OpenSL positions on the MotoG indicated
that the intervals between OpenSL positions on consecutive re-
quests did not match the intervals between the real time of those
requests very well. Further investigation indicated that the API
call to read the OpenSL position appears to read a cached posi-
tion value which is not always up to date rather than reading the
real position from the low level hardware or driver.

In some cases reading the OpenSL position twice 3 ms apart sug-
gested that the position had not advanced at all whereas at other
times a similar pair of requests separated by just 3 ms of real time
indicated that OpenSL position had changed by as much as 30
ms. Therefore a better approach is still required for the MotoG
and similar devices. As noted in section 2, the implementation of
the position polling in Android devices cannot be relied on, and
thus this approach is not general enough for all devices.

3.4. Latency using the Filtered Callback Time

Results to date indicated that the interval between callbacks on
the MotoG was not even approximately constant. Nevertheless
the mean callback interval precisely matches the buffer duration.
This is to be expected: if the mean callback interval were any
larger it would mean that the buffer level (the difference between
the true play head position and the enqueued position) would
gradually decrease and underflow as new buffers would be added
more slowly than they were consumed. Similarly if the callback
interval were any smaller than the buffer duration, the buffer lev-
el would increase until overflow occurred. Therefore, the fact
that the callback intervals are distributed around a predictable
mean value suggests a possible approach to achieving constant
latency.

The callback intervals recorded for the MotoG are suggestive of
a low level task which polls the state of the low level audio buff-
ers approximately once every 20 ms and initiates a callback if the
buffer level is less than some threshold. We assume that, for var-
ious reasons (including the mismatch between the polling rate
and the buffer duration), the buffer level is different for consecu-
tive callbacks and therefore there is variable latency between the
true play head position and the next data enqueued by the
callback. Our approach is to estimate the times at which
callbacks would have been invoked if they were invoked at the
same buffer level each time and therefore invoked at isochronous
intervals.

The basic approach is to record the times at which callbacks oc-
cur and filter these to estimate the time at which a constant laten-
cy callback would have occurred.

The technique used to estimate the filtered callback time was
double exponential smoothing [7] as defined by the following
standard equations:

 (3)

 (4)

where s(n) defines the smoothed output (the filtered callback
time) at time n, x(n) defines the input (the callback time), and
b(n) defines the trend in the data (corresponding to the smoothed
interval between callbacks in this case). The parameters α and β
determine the smoothing factors and rate of convergence of the
filter.

We initialize s(0) to be x(0) and b(0) to be the native buffer dura-
tion. On each callback, (3) provides an estimate of the filtered
callback time based on the linear trend up to that point. Thereaf-
ter (4) updates the value of the trend. The trend should not
change much over time but using these equations allows the al-
gorithm to adapt to slight mismatches between the system clock
used by Android and the sample clock used by the audio hard-
ware. (We previously used simple exponential smoothing [7]
with a fixed estimated interval between callbacks but preliminary
results showed that the two clocks soon drifted audibly apart us-
ing this approach.)

The filtered callback time is calculated at the start of each
callback before any new data has been enqueued. Therefore the
play head position at the start of the callback may be estimated
(save for a constant offset) as

[]() () (1) (1) (1)s n x n s n b nα α= + − − + −

[]() () (1) (1) (1)b n s n s n b nβ β= − − + − −

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-6

 (5)

where enqueuedPos is the end of data stream position after the
preceding callback completed, cbTime is the time at which the
current callback was invoked, and filteredCBTime is the time at
which the current callback should have been invoked if it were
invoked exactly when the buffer level drained to its mean level.
This estimate of the play head position incorporates a constant
offset (the mean buffer level) which should be subtracted to get a
more accurate estimate of the true play head position. In our ap-
proach, this offset is incorporated as part of the fixed delay added
later in the algorithm.

In the sound request a new estimate of the play position estimate
is made as follows:

 (6)

where reqTime is the time at which the request was made and
other values are as already defined based on the most recent
callback preceding the request. Therefore this step accounts for
the time that has elapsed since the play position was last estimat-
ed. Thereafter, the insertion point may finally be determined as

 (7)

Using the filtered callback time technique to achieve low latency
on the Xperia Z2 yielded results that were essentially identical to
those obtained using the OpenSL position. For that reason they
are not shown here. The MotoG results, however, did differ from
those obtained using the OpenSL position as shown in Figure 7.

Figure 7 Relative latencies using Filtered Callback Time
on the MotoG: (a) histogram, (b) values. Dashed lines
show two standard deviation boundaries.

These results show a clear improvement over those obtained us-
ing the Next Buffer and OpenSL position techniques. In this case
95% of the relative latencies are within a 16 ms range resulting in
jitter that should be inaudible to most, if not all, listeners. The
results also indicate a number of outlier values, but these oc-
curred at the start of the test run during the convergence period of
the filter.

Despite the reduction in relative latency jitter that has been
achieved there is still some residual jitter remaining. The detailed
sources of this residual jitter are currently unknown but it is pos-
sible that at least some of it is due to scheduling jitter within the

operating system since there are several interacting threads in-
volved in the process of audio output.

4. CONCLUSIONS AND FUTURE WORK

The work described in this paper described the motivation for
and difficulty in achieving constant latency on Android devices
as many devices, even recent devices, do not implement the low
latency feature now supported by the Android operating system.

We made two main contributions: we measured the relative la-
tency jitter achieved by two Android devices using OpenSL ES
and we proposed two schemes which specifically aimed to re-
duce this latency jitter and approach constant latency output of
audio events.

The commonly used Next Buffer scheme was investigated and
found to be sub-optimal in achieving constant latency for all de-
vices (although for low latency devices it may be sufficient). Us-
ing the Open SL position to achieve constant latency worked
well for one phone (the Xperia Z2) but badly for another (the
MotoG) and we conclude that the success of this scheme is high-
ly dependent on the quality of the OpenSL ES implementation on
the device. Finally we proposed a novel scheme based on filter-
ing the callback times to estimate the play head position and
showed that this scheme worked quite well even when the under-
lying OpenSL ES implementation appeared to have several
shortcomings (as was the case for the MotoG).

Notwithstanding the successes reported in this paper, preliminary
investigations with additional Android devices have indicated
that there seem to be quite a variety of different OpenSL ES im-
plementations and buffer strategies used by different device
manufacturers. Consequently, it appears that even the techniques
described above must be supplemented by additional techniques
if constant latency is to be achieved on all devices. In the future,
as part of our ongoing work, we plan to investigate additional
techniques and a method of selecting the best technique for a par-
ticular device (if no single technique works for all devices).

5. ACKNOWLEDGMENTS

This research was supported by BEAT-HEALTH, a collabo-
rative project (FP7-ICT) funded by the European Union. For
more information, please see http://www.euromov.eu/beathealth/.

6. REFERENCES

[1] G, Szanto and P. Vlaskovits, “Android’s 10 Millisecond
Problem: The Android Audio Path Latency Explainer” ,
Available at http:// superpowered.com/androidaudiopathla-
tency/ #axzz3bzkezdMg" Accessed June 3, 2015

[2] Android Open Source Project. Android Source Code. Avail-
able at https://source.android.com. Accessed April 29,
2015.

[3] Khronos Group Inc., The OpenSL ES 1.0.1 Specification.
Available at https://www.khronos.org/registry/sles/specs/
OpenSL_ES_Specification_1.0.1.pdf.. September 2009.

[4] "OpenSL ES for Android". Android NDK Documentation,
"file://android-ndk-r10/docs/Additional%20library%20docs/
opensles/index.html". Available from http://developer.an-
droid.com/ndk/downloads/index.html

()cbPlayPos enqueuedPos cbTime filteredCBTime= + −

()playPos cbPlayPos reqTime cbTime= + −

insertPos playPos fixedDelay= +

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 – Dec 3, 2015

 DAFX-7

[5] A. Larsen, “Ein akustischer Wechselstromerzeuger mit reg-
ulierbarer Periodenzahl für schwache Ströme”. Elektrotech.
Z., ETZ 32, pp. 284–285, 1911.

[6] Android Open Source Project, "Audio Latency Measure-
ments". Available at https://source.android.com/devices/
audio/latency_measurements.html. Accessed June 11, 2015.

[7] NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/. Accessed June
11, 2015

