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ABSTRACT

This paper describes black-box modeling of distortion circuits.
The analyzed distortion circuits all originate from guitar effect
pedals, which are widely used to enrich the sound of an electric
guitar with harmonics. The proposed method employs a block-
oriented model which consists of a linear block (filter) and a non-
linear block. In this study the nonlinear block is represented by
an extended parametric input/output mapping function. Three dis-
tortion circuits with different nonlinear elements are analyzed and
modeled. The linear and nonlinear parts of the circuit are analyzed
and modeled separately. The Levenberg–Marquardt algorithm is
used for iterative optimization of the nonlinear parts of the cir-
cuits. Some circuits could not be modeled with high accuracy, but
the proposed model has shown to be a versatile and flexible tool
when modeling distortion circuits.

1. INTRODUCTION

Virtual analog modeling has widely been done before. The fo-
cus in virtual analog modeling of electric guitar equipment lies
on recreating an analog reference device as close as possible. In
[1–7] this has been done with great success by analyzing the ana-
log reference circuit and transferring the circuit into a mathemat-
ical model, which is able to recreate the original’s characteristics.
This circuit-based approach achieves very convincing results and
the digital model is mostly indistinguishable from the analog refer-
ence device for the human ear. But this precise approach also has
drawbacks. To create the digital model the circuit diagram has to
be known, as well as the characteristic curves of every nonlinear
circuit element, e.g. diodes, transistors, transformers or vacuum
tubes. If no circuit diagram is obtainable, time-consuming reverse
engineering of the circuit has to be performed, as described in e.g.
[8].

Another drawback of this method is the computational effort
which arises due to nonlinear circuit elements. For every nonlinear
circuit element at least one nonlinear equation has to be solved per
time step. Depending on the nonlinear solver and the initial param-
eter set, this can drastically influence the computational load of the
digital model. Although Holmes et al. described a method for im-
proving the nonlinear solver in [9], the computational effort is still
high, especially for complex circuits with multiple nonlinearities.

Alternative approaches for modeling of distortion circuits are
found in [10] and [11]. Block-oriented models are used to repre-
sent the distortion circuit. A block-oriented model generally con-
sists of linear blocks and static nonlinear blocks. Some common
topologies have conventional names, like Hammerstein model (static
nonlinearity followed by a filter in series), Wiener model (lin-
ear filter followed by a static nonlinearity in series) or Wiener–

Hammerstein model (filter followed by static nonlinearity followed
by filter). In [10] a parallel, generalized polynomial Hammerstein
model is used. Each parallel branch represents the different har-
monic components of the reference system. In [11] principal com-
ponent analysis is used to reduce the complexity of the model pre-
sented in [10].

In [12] a completely parametric Wiener–Hammerstein model
is used to automatically identify distortion guitar effect pedals.
The structure of the used Wiener–Hammerstein model is the series
connection of a parametric filter followed by a nonlinear block,
which is also used in this work, followed by another parametric
filter. The filters are identified by iterative parameter optimization,
using low-level noise as input signal. To find the initial parame-
ter set for the nonlinear part of the model, a time-consuming grid
search is performed.

As in [12] the basic idea behind this work is to analyze and
model nonlinear distortion circuits, without knowledge of the cir-
cuit itself. Only input/output measurements are performed to ad-
just the parameters of a block-oriented, nonlinear model to recre-
ate the characteristics of the analog reference device. In this work,
only parts of distortion circuits should be modeled, which use dif-
ferent electronic components to create distortion. In this work the
Wiener–Hammerstein model from [12] could be reduced to an ex-
tended Wiener model (filter followed by nonlinear block), because
all chosen circuit parts did not have any filter at the output. The
aim of this work is to analyze how well such a simple model can
recreate the behavior of the circuits with an automated optimiza-
tion procedure.

Section 2 describes the analyzed distortion circuits and Sec. 3
explains the topology of the extended Wiener model. Sections 4
and 5 describe the modeling process. Section 6 compares the iden-
tified models to the reference circuits and Sec. 7 concludes the pa-
per.

2. HARDWARE

Three different distortion circuits were analyzed in this work. The
first one was a simple diode clipper with pre-amplification of the
input signal, the second one a BJT distortion stage of an Electro
Harmonix - Big Muff Pi

TM
and the operational amplifier based

distortion stage of an Ibanez - Tube Screamer
TM

. All circuits were
simulated with a spice circuit simulator, LTSpice [13].

2.1. Diode Clipper

The circuit of the diode clipper can be seen in Fig. 1. It is an ex-
tension of the diode clipper circuit from [14] with an additional
non-inverting amplifier.
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Vin Vout

R1

R2

R3

C1 D1 D2

R1 90 kΩ C1 10 nF
R2 10 kΩ D1 1N4148
R3 2.2 kΩ D2 1N4148

Figure 1: Circuit of the diode clipper with pre-amplification.

The input signal is amplified by the non inverting amplifier
with a factor of 1 + R1/R2 = 10 and the resulting amplified sig-
nal passes through a low-pass RC circuit with cut-off frequency
fc = 1/(2πR3C1) ≈ 7.23 kHz and finally through the anti-
parallel 1N4148 diodes. The supply voltage of the operational
amplifier was set to a relatively high value of±30 V to avoid addi-
tional clipping. The simulated operational amplifier was a TL072.

2.2. Big Muff Distortion Stage

The distortion stage of the Big Muff can be seen as an extended
BJT transimpedance gain stage as described in [15]. It was also
modeled in [7], using wave digital filters.

Vin

Vout

R1

R2 R3

R4

R5

C1

C2

C3
D1

D2

V+

Q1

R1 10 kΩ C1 100 nF
R2 100 kΩ C2 560 pF
R3 150 Ω C3 1µF
R4 470 kΩ D1 1N914
R5 10 kΩ D2 1N914
Q1 RC4558

Figure 2: Circuit of a Big Muff transimpedance gain stage.

Fig. 2 shows the circuit around the NPN transistor. In addition
to the feedback from collector to base via R4 and C2, there are
two anti-parallel diodesD1,D2 as well as the capacitorC3. These
diodes introduce further clipping in addition to the clipping of the
BJT circuit itself. The supply voltage was set to V+ = 9 V.

2.3. Tube Screamer Distortion Stage

The Tube Screamer is based on an operational amplifier gain stage,
also described in [15–18]. The input signal is amplified and addi-

tionally distorted by two anti-parallel diodes in the feedback path
from output to negative input of the op-amp.

Vin Vout

R1

R2

R3

C1

C2C3

D1

D2

Vbias

R1 10 kΩ C1 1µF
R2 551 kΩ C2 51 pF
R3 4.7 kΩ C3 47 nF
D1 1N4001 D2 1N4001

Figure 3: Circuit of a Tube Screamer
operational amplifier gain stage.

Fig. 3 shows the circuit with resistor R2 which is a poten-
tiometer in the Tube Screamer circuit. It takes values fromR2,min ≈
51 kΩ to R2,max = 551 kΩ. In this work the potentiometer was al-
ways set toR2,max to maximize the amplification of the operational
amplifier and thus the distortion of the output signal. The bias volt-
age was set to Vbias = 4.5 V, which is half the supply voltage of
the operational amplifier. The used op-amp was a general-purpose
amplifier RC4558 by Texas Instruments.

3. MODEL TOPOLOGY

The digital model which was chosen to represent these distortion
circuits is an extended Wiener model. It consists of a linear time
invariant block followed by a nonlinear block. Fig. 4 shows the
block diagram of the extended Wiener model. In this work the LTI

xin(n) xout(n)
LTI

Filter
NL

Mapping Function

Figure 4: Block diagram of a Wiener model.

block is represented by a FIR filter, but it could be easily modified
to include any other LTI system e.g. state-space systems or IIR fil-
ters. The nonlinear block consists mainly of a mapping function,
mapping input amplitude to output amplitude. Figure 5 illustrates
the function principle of a static, memory-less mapping function.
Each input sample is processed by the nonlinear equation, creating
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Figure 5: Function principle of a static mapping curve.

a distorted output signal. Some extensions have been made to the
mapping function (see Sec. 5.2). Especially the side-chain with
low-pass filter leads to a nonlinear block which is not memory-
less anymore. So the model is not a Wiener model in the classical
sense, it is an extended Wiener model with distortion-circuit spe-
cific refinements.

4. MODELING: LINEAR PART

The linear part of all circuits was measured with exponential sine
sweeps, as described in [19]. The sweep is described in terms of
start frequency ω1 = 2πfstart/fs, stop frequency ω2 = 2πfstop/fs
and amplitude A,

xsw(n) = A · sin
(
ω1 · (L− 1)

log (ω2/ω1)
·
(
e(

n
L−1

log(ω2/ω1)) − 1
))

,

(1)
where L is the total length of the sweep in samples. An inverse-
filter signal to the sweep can be created which fulfills the condition

xsw(n) ∗ xinv(n) ≈ c · δ(n− n0). (2)

This means that the sweep convolved with the inverse filter yields
a Dirac delta function which is only shifted in time and scaled by
some factor c. Due to the assumption that very low signal levels
will pass through the linear region of the distortion circuits, the
maximum amplitude of the sweep was set to A = 0.01 V, to en-
sure that no nonlinear distortion occurs while measuring the output
signal. The output sweep ysw(n) is recorded and convolved with
the inverse filter

xinv(n) = xsw(L− 1− n) · (ω2/ω1)
−n
L−1 (3)

to get the impulse response of the system

h(n) =
1

c
· xinv(n) ∗ ysw(n). (4)

When using this technique h(n) does not only contain the linear
response of the system. It also contains the impulse responses for

higher order harmonics, as described in [10]. Therefore the im-
pulse response has to be segmented in time-domain and is nor-
malized to a maximum magnitude of 0 dB in frequency-domain.
Afterwards it is saved and directly used as FIR filter coefficients in
the digital model.

This methods performs better than the iterative parameter op-
timization approach based on white noise, described in [12]. The
small-signal impulse response is directly measured and used in the
model, instead of iteratively adapting several filters to approximate
the frequency response of the circuit.

5. MODELING: NONLINEAR PART

Modeling of the nonlinear part is done by creating a reference sig-
nal, in this case the output voltage of each circuit to a specific
(known) input signal. Afterwards it is compared to the output of
the digital model to compute the error between both signals ac-
cording to a cost function. This cost function has to be minimized
to find the optimal set of parameters for the given reference signal.

5.1. Input Signal

When designing the input signal it is important to consider the
influence of the parameters on the output. The nonlinear block
in the extended Wiener model is frequency independent, which
means that it is not necessary for the input signal to excite more
than one frequency. But it is most important to excite all possible
amplitudes of the input signal, so their modification by the refer-
ence system can be observed. A single frequency sine wave with
logarithmically rising amplitude was used as the input signal,

xnl(n) = a(n) · sin
(

2πf0n

fs

)
. (5)

The fundamental frequency was set to f0 = 1000 Hz. The am-
plitude scaling function a(n) is logarithmically increasing from a
start value of a(1) = 1 · 10−5 to the largest value a(N) = 1, with
N as the total amount of samples.

5.2. Parametric Nonlinear Block

The parametric nonlinear block is based on a mapping function,
described in Sec. 3. It was already used in [12] to model distortion
pedals. Figure 6 shows the nonlinear block. Its main component is

x(n) y(n)

gpre

gbias

gdry

gwet gpost

Mapping
Function

|x| LPF

m(x)

Figure 6: Nonlinear mapping function with extensions.

the mapping function, which is a combination of three hyperbolic
tangent functions. The combination of the three functions, with
the amplitude of the signal x as input, is shown by (6).
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m(x) =


tanh(kp)−

[
tanh(kp)2−1

gp
tanh(gpx− kp)

]
if x > kp

tanh(x) if − kn ≤ x ≤ kp
−tanh(kn)−

[
tanh(kn)2−1

gn
tanh(gnx+ kn)

]
if x < −kn

(6)
The additional terms for x > kp and x < −kn are needed to en-
sure thatm(x) has a continuous derivative at the connection points
kn and kp. Besides the mapping function, the nonlinear block has
a pre-gain gpre to scale the input signal and a post-gain gpost to
scale the output. The side-chain envelope detector, consisting of
absolute value calculation and low-pass filtering with a cut-off fre-
quency of fc,LP = 5 Hz, and a dry/wet mixing stage. Note that the
dry gain parameter is calculated automatically by gdry = 1− gwet.
The envelope subtraction from the direct signal is used to emu-
late the signal-dependent bias-point shift which occurs for vacuum
tubes or transistors. It is an adapted version of the so called ‘tube
stage’ from [20], but to avoid feedback, it is constructed in a feed-
forward loop. Please note that this extension prevents the nonlin-
ear block from being memoryless, because the output is dependent
on the previous values of the input signal. This leads to a total
amount of eight parameters, four gains and four parameters for the
mapping function, which are combined in the parameter vector

p =
(

gpre gbias kp kn gp gn gwet gpost

)T
. (7)

With gwet = 1− gdry.

5.3. Parameter Optimization

The nonlinear block is initialized with a parameter set that only
introduces a slight distortion for high signal levels. To improve
the robustness of convergence during optimization, the parameters
are optimized in three different steps. The used algorithm is the
gradient-based Levenberg–Marquardt optimization procedure [21,
22].

5.3.1. Levenberg–Marquardt

Consider a reference system which produces output ysys(n) (after
A/D conversion) and the corresponding digital model which pro-
duces output ymod(n,p), depending not only on the input signal
x(n), but also on the parameter vector p. The residual

res(n,p) = ysys(n)− ymod(n,p) (8)

describes the difference of reference system and digital model.
The Levenberg–Marquardt algorithm is a combination of the

gradient-descent and the Gauss–Newton methods. The parameter
vector p is updated by,

∆p =
(
JTJ + λ · diag(JTJ)

)−1

· grad(p) . (9)

J is the Jacobi matrix, where each column represents the derivative
of the residual with respect to the parameter vector p,

J =



∂res(1,p)
∂p1

· · · ∂res(1,p)
∂pM

∂res(2,p)
∂p1

· · · ∂res(2,p)
∂pM

...
. . .

...

∂res(N,p)
∂p1

· · · ∂res(N,p)
∂pM


(10)

withM as the total number of parameters andN as the total length
of the residual. The gradient

grad(p) = JT ·
[
res(1,p) · · · res(N,p)

]T (11)

describes in which direction of each entry in the parameter vec-
tor we have to descend to minimize the error between reference
system and digital model.

For large values of λ the algorithm behaves more like gradient-
descent, while for small values of λ the algorithm behaves more
like Gauss–Newton [23]. Although Gauss-Newton is an efficient
method there exist cases where the algorithm needs a long time to
converge into the minimum, or does not converge at all. If λ is
initially set to a relatively small value and the cost function does
not decrease, e.g.

C(p) < C(p + ∆p),

λ is increased to get quicker convergence with the gradient-descent
method.

If the current step was successful, e.g.

C(p) > C(p + ∆p),

the parameter vector for each iteration k is updated,

pk+1 = pk + ∆pk,

and λ is decreased to make use of the advantageous properties of
the Gauss–Newton algorithm near the solution.

5.3.2. Cost Function

The choice of the cost function is crucial for the robustness of the
optimization process. The straight-forward approach would be to
simply calculate the difference of digital model output and analog
reference output in time-domain, as shown by (8). But if the phase
characteristic of reference and model is not matched perfectly, the
time-domain error is quite high, which does not necessarily repre-
sent the human perception of the difference between the two sig-
nals. To neglect any phase shift between reference system and
digital model the cost function is designed to match the envelopes
of both systems. The envelopes are calculated for positive and
negative signal amplitudes separately, because the nonlinear map-
ping function, described in Sec. 5.2 is able to shape positive and
negative amplitudes independently. To calculate the envelope the
signals are half-wave rectified and low-pass filtered by a second
order IIR low-pass with a cut-off frequency of fc = 5 Hz. To
calculate the envelope for negative amplitudes the signals are mul-
tiplied with −1 before half-wave rectification.

Since the Levenberg Marquardt algorithm is gradient-based,
convergence into a local minimum is possible when the initial set
of parameters is too far from the global minimum of the cost func-
tion. This is why the main optimization procedure is divided into
three parts.

1. Optimize parameters for positive amplitudes (while ignor-
ing parameters which change negative amplitude)

2. Optimize ignored parameters from step 1. for negative am-
plitudes

3. Refine all parameters for positive and negative amplitudes
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Another benefit of matching the signals’ envelopes is a robust iden-
tification. The output of the digital model depends on fewer param-
eters in step one and two than in step three. In step one, for exam-
ple, the parameters kn and gn can be ignored, because they only
influence negative amplitudes. If the initial parameter set leads to a
slightly nonlinear mapping function, the Levenberg–Marquardt al-
gorithm always matches the envelopes satisfactorily. If this is done
for positive and negative amplitudes, the parameter vector will be
close to the optimal solution when starting the refinement in step
three.

6. RESULTS

In this section the results of the modeling process are presented
and each digital model is compared to the corresponding reference
system.

6.1. Metrics Definition

To rate the result of the optimization, a recorded guitar track was
played back through both systems and the percentage of error en-
ergy or ‘error to signal ratio’ (ESR) was calculated. It is defined as
the ratio of error energy to the energy of the reference output,

ESR =
Eres

Esys
=

∞∑
n=−∞

|ysys(n)− ymod(n,p)|2

∞∑
n=−∞

|ysys(n)|2
. (12)

Another way to calculate the difference is via the correlation co-
efficient, which describes the linear dependence of two random
variables. The computation of the correlation coefficient is shown
by

ρ(A,B) =
cov(A,B)

σAσB
, (13)

where A = ysys(n) and B = ymod(n,p) are the random variables
(in our case reference and model output), cov(A,B) is the covari-
ance of A and B and σA,B is the standard deviation of the random
variables.

6.2. Modeling Results

The results of the modeling process are shown in Table 1. The
diode clipper obtained the best results with an error to signal ratio
of only ESR = 5.78% and a correlation coefficient of ρ = 0.9983.
The informal listening test proved that there is no noticeable differ-
ence between the output of the circuit and the digital model. The

Circuit ESR ρ(A,B)

Diode Clipper 0.0578 0.9983

Big Muff 0.0901 0.9578

Tube Screamer 0.1832 0.9062

Table 1: Results of the modeling process.

results for the other circuits are not as good. The Big Muff BJT
gain stage has an ESR = 9.01% and a correlation coefficient of
ρ = 0.9578, which already leads to a slightly perceivable differ-
ence between the signals. This can be explained by the feedback

path from the collector of the NPN transistor to its base (see Fig. 2).
This feedback path is not modeled in the extended Wiener model,
so the result of the modeling process is only an approximation of
the real circuit.

The Tube Screamer has an ESR= 18.32% and a correlation
coefficient of ρ = 0.9062, which also leads to a small notice-
able difference between digital model and circuit output. This dif-
ference can also be explained by the simplicity of the extended
Wiener model. In the original circuit, there is a feedback path
from operational amplifier output to its negative input. This could
be modeled by a parallel path to the mapping function with a filter,
whose frequency response is unknown, because only the global
frequency response can be measured, without detailed measure-
ments of the analog circuit.

Figure 7 shows the mapping function of the digital model af-
ter the optimization procedure is finished. It can be seen that the
diode clipper circuit has no dry signal at the output of the nonlinear
block, because the slope of the mapping function at x(n) = −1
and x(n) = 1 is zero.
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(c) Tube Screamer

Figure 7: Nonlinear mapping functions m(x) after optimization.

The Big Muff circuit has a little dry signal mixed together with
the wet signal, which can be explained as a ‘compensation’ of the
missing feedback path in the model. The Tube Screamer has a lot
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of dry signal mixed together with the distorted wet signal, which
confirms the assumption that the circuit can be modeled with a
parallel dry signal, which can be mixed with the distorted signal.

All mapping functions look symmetrical, which is due to us-
ing the same model for the two diodes in each Spice simulation,
leading to the same shape for positive and negative amplitudes.
Only in the Tube Screamer circuit there is a slight difference be-
tween the shape of positive amplitudes and negative amplitudes,
which is also visible in the mapping function, Fig. 7 (c), because
the transition from steep middle part of the mapping function to
higher amplitudes is a little softer for negative amplitudes.

The time-domain signals for each reference circuit and their
comparison to the corresponding model are shown in Fig. 8. The
input signal was a self-recorded riff played on a stratocaster-type
electric guitar using the humbucker bridge-pickup. The guitar was
directly connected to an RME - Fireface 800 audio interface. For
the diode clipper, the digital model waveform is very close to the
waveform of the reference signal, which leads to no perceivable
difference between the two signals. With a rising ESR value for
Big Muff and Tube Screamer the waveform of the digital model
differs more and more from the reference output. Generally, it can
be observed that the difference in the waveforms is proportional to
the input amplitude, because for the first 500 samples of the test
signal, all models are close to the reference signal, while for higher
input amplitudes (sample 600 to 2000) the model is not accurate
enough to recreate the more complex reference circuits.

In addition to these scores, an informal listening test was con-
ducted. The participants of the test were five experienced researchers
in virtual analog modeling, who should test if they are able to hear
a difference between digital model and reference signal. In case
of the diode clipper none of the participants was able to hear a
difference between simulation and reference. For Big Muff and
Tube Screamer, the results were not as convincing, since every test
subject was able to hear a difference. Nevertheless all of the par-
ticipants confirmed that the overall characteristic of the reference
device could be captured by the corresponding digital version.

6.3. Listening Examples

To give the reader an impression of the model and compare it to the
reference system some listening examples were created. The input
signal consists of single notes, played by an electric guitar and
decaying guitar chords as well as decaying single notes, played
by an electric bass-guitar. No effect has been used to alter the
signals before or after processing them with the digital model or
the reference circuit simulation. The listening examples can be
found on-line at [24].

7. CONCLUSION

Three distortion circuits have been modeled by an extended Wiener
model, consisting only of one linear time-invariant block (filter)
and an extended nonlinear mapping block, which maps input am-
plitudes to output amplitudes. The modeling was very successful
for the diode clipper circuit, because it matches the model topol-
ogy. Although the model is not able to emulate more complex
circuits perfectly, it is able to recreate the reference circuit to a
satisfying degree, given its simplicity. To really capture all the
characteristics of a distortion circuit, especially for bigger, more
complex circuits, the model needs to be expanded. A serial ap-
proach, concatenating several simple models, to refine the results
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Figure 8: Time-domain response to a recorded guitar input for all
three circuits.

would be conceivable. Another expansion could be a feedback
path with a unit delay, which allows more possibilities of shaping
the waveform.
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