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ABSTRACT

This article is concerned with the accurate simulation of passive

nonlinear dynamical systems with a particular attention paid on

aliasing reduction in the pass-band. The approach is based on the

combination of Port-Hamiltonian Systems, continuous-time state-

space trajectories reconstruction and exact continuous-time anti-

aliasing filter realization. The proposed framework is applied on

a nonlinear LC oscillator circuit to study the effectiveness of the

method.

1. INTRODUCTION

The need for accurate and passive-guaranteed simulation of non-

linear multi-physical systems is ubiquitous in the modelling of

electronic circuits or mechanical systems.

Geometric numerical integration [1] is a very active research

field that provides a theoretical framework for structure and invari-

ant preserving integration of dynamical systems. Port-Hamiltonian

Systems (PHS) [2] [3] that focus on the energy storage functions

and power continuous component interconnections belong to this

field and offer a well adapted framework to preserve the system

energy (resp. passivity). In the context of nonlinear physical au-

dio systems, it has been applied successfully to the modelling of

the wah-wah pedal [4], Fender Rhodes [5], brass instruments [6]

and the loudspeaker nonlinearities [7]. Automatic generation of

the system equations from a graph of components has been inves-

tigated in [8]

However the presence of aliasing errors in the numerical sim-

ulation is annoying for three reasons. First it causes audible in-

harmonic audio artefacts. Second it deteriorates the accuracy of

the numerical scheme leading to poor convergence rate. Third it

requires the use of significant oversampling. This problem is even

more pronounced in the case of systems such as sustained instru-

ments that rely on nonlinearities to achieve auto-oscillation.

Aliasing errors in the context of finite elements simulation

and some alternatives have been discussed in [9] (ch 11). Anti-

aliased waveform generation without oversampling has been pro-

posed in [10]. Static nonlinearity anti-aliasing has also been pro-

posed in [11] [12] by combining exact anti-derivatives and finite-

differences.

Continuous-time input reconstruction has been used in [13] to

simulate the frequency response of LTI systems with higher accu-

racy. It is also central in collocation-based Runge-Kutta methods
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that rely on non-uniform polynomial interpolation of the vector

field. Splines and in particular uniform B-splines [14] [15] [16],

[17] also offer a particularly interesting framework to represent

and manipulate piecewise continuous-time signals through their

digital representations using the standard tools of linear algebra

and digital signal processing.

In this article, we try to combine the geometric and the signal

processing viewpoints: we choose a physically informed piece-

wise smooth polynomial reconstruction model based on a discrete

sequence of points generated by a passive-guaranteed simulation

method.

The paper is organized as follows. We first recall some results

about Port-Hamiltonian systems in Section 3, then we consider

passive numerical methods in section 4, we talk about piecewise-

continuous trajectory reconstruction in section 5 and continuous-

time filtering of piecewise polynomials in section 6. Finally we

apply our method to a non linear LC oscillator circuit in section 7.

2. PROBLEM STATEMENT

2.1. Objective

The objective is to simulate nonlinear passive physical audio sys-

tems in such a way that:

(i) The nonlinear dynamics is accurately reproduced,

(ii) The power balance decomposed into its conservative, dissi-

pative and source parts is satisfied,

(iii) The observation operator is designed to reduce the aliasing

induced by the nonlinearities.

2.2. Approach

To address this problem, the following strategy is adopted.

First, trajectories are approximated in the continuous-time do-

main by smooth parametric piecewise-defined functions, such that

the three following properties are fulfilled:

(P1) Regularity: functions and junctions are Ck with k ∈ N,

(P2) Accuracy: the approximation has accuracy order p,

(P3) Passivity: the power balance is globally satisfied for each

frame.

Second, the anti-aliased output is built a posteriori in three steps:

1. Observe the output from the approximated dynamics in the

continuous-time domain,

2. Apply a continuous-time anti-aliasing filter in order to re-

spect the Shannon-Nyquist sampling theorem,

3. Sample the filtered trajectories to convert them back to discrete-

time.
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2.3. Methodology

In this article, we restrict ourselves to piece-wise continuous glob-

ally C1 polynomial trajectories of the form

x̂(t) =

∞∑

n=−∞

x̂n

(
t− tn

h

)

rect]0,1]

(
t− tn

h

)

, t ∈ R (1)

with x̂ ∈ R
N , x̂n(τ), τ ∈ [0, 1] being a local polynomial model

of order r, tn = hn, n ∈ Z and h being the time step parameter.

The continuity hypothesis (P1) is expressed mathematically by.

x̂
(ℓ)
n+1(τ) = x̂

(ℓ)
n (τ) ∀n ∈ Z, ℓ ≤ k (2)

For property (P2) the local approximation error between the exact

solution and its approximation is defined by

e(h) = x(t0 + h)− x̂(t0 + h) (3)

provided that x(t0) = x̂(t0) and it is required that for some p.

e(h) = O(hp+1) (4)

Finally to express property (P3) we require the power-balance

E
′(t) = −Pd + Pe (5)

where Pd and Pe are respectively the dissipated and external power

and E′(t) is the instantaneous energy variation of the system.

3. PORT-HAMILTONIAN SYSTEMS

In this article, nonlinear passive physical audio systems are de-

scribed under their Port-Hamiltonian formulation. The theory of

Port-Hamiltonian Systems (PHS) [2] [3] extends the theory of Hamil-

tonian mechanics to non-autonomous and dissipative open sys-

tems. It provides a general framework where the dynamic state-

space equations derives directly from an energy storage function

and power-conserving interconnection of its subsystems.

3.1. Explicit differential form

Consider a system with input u(t) ∈ U = R
P , with state x(t) ∈

X = R
N and output y(t) ∈ Y = R

P with the structured state-

space equations [2]

{
x′ = (J(x)−R(x))∇H(x) +G(x)u = f(x,u)
y = G(x)Tu

(6)

where H gives the stored energy of the system

E(t) = (H ◦ x)(t) (7)

with H ∈ C1(X,R+), ∇ being the gradient operator, J = −JT a

skew-symmetric matrix and R = RT � 0 a positive-semidefinite

matrix. The energy variation of this system satisfies the power-

balance given by the derivative chain rule

E
′(t) = ∇H(x)Tx′

(8)

which can be decomposed as

E
′(t) = Pc − Pd + Pe (9)

with.

Pc = ∇H(x)TJ(x)∇H(x) = 0 (10)

Pd = ∇H(x)TR(x)∇H(x) ≥ 0 (11)

Pe = ∇H(x)TG(x)u (12)

The Pc term is null because J is skew-symmetric: it represents

conservative power exchange between storage components in the

system. The Pd term is positive because R ≥ 0: it represents

the dissipated power. Finally the term Pe represents the power

brought to the system by the external ports.

Equation (9) express the system’s passivity property: with ex-

ternal inputs switched off (u = 0) the energy can either be constant

(conservative case Pd = 0) or decaying (dissipative case Pd > 0).

3.2. Component-based approach and semi-explicit DAE form

More generally, PHS can be expressed in Differential Algebraic

Equation form. When we consider physical systems containing

N energy-storage components, M dissipative components and P
external interaction ports described by

Pc the stored energy level en and its variation law defined by

e′n = ∇Hn(xn)x
′
n for the state variable xn.

Pd the dissipated power qm(w) ≥ 0 with the component’s flux

and effort variables being in algebraic relation of a single

variable w.

Pe the external power upyp brought to the system through this

port with up being the controllable input of the system and

yp being the observable output.

For a storage component, en = Hn(xn) gives the physical energy

storage law. If x′
n is a flux (resp. effort) variable then ∇Hn(xn)

is the dual effort (resp. flux) variable.

Similarly, for a dissipative component, the power is qm =
Rm(wm) so that if wm is a flux (resp. effort) variable then z(wm) =
Rm(wm)

wm
is the effort (resp. flux) and gives the dissipation law.

We then consider a passive system obtained by interconnection

of these components given by





x′

w

−y





︸ ︷︷ ︸

b

= S(x,w)





∇H(x)
z(w)
u





︸ ︷︷ ︸

a

(13)

with S = −ST being skew-symmetric, H(x) =
∑N

i=1 Hn(xn)

and z(w) = [z1(w1), . . . , zm(wm)]T .

The S matrix represents the power exchange between compo-

nents: since S = −ST we have a · b = aTSa = 0 which again

leads to the power balance1.

∇H(x) · x′

︸ ︷︷ ︸

Pc=E′(t)

+ z(w) ·w
︸ ︷︷ ︸

Pd

− u · y
︸︷︷︸

Pe

= 0 (14)

The explicit form (6) can be found by solving the second row of

(13). The S matrix represents a Dirac structure [2] that expresses

the power-balance and can be constructed from a component con-

nection graph [8] [18].

1The minus sign in −y in Eq. (13) is used to restore the receiver con-
vention used for internal components.
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4. PASSIVE NUMERICAL INTEGRATION

Whereas most numerical schemes concentrate their efforts on the

the temporal derivative or the numerical integration quadrature,

discrete gradient methods preserve the energy (resp. passivity)

given by the power-balance (9), (14) in discrete-time by providing

a discrete equivalent of the chain rule derivation property E′(t) =
∇H(x)Tx′. A discrete gradient [19] ∇H is required to satisfy the

following conditions.

H(x+ δx)−H(x) = ∇H(x, δx)T δx (15)

∇H(x, 0) = ∇H(x) (16)

In this article, we will focus on the average vector field [20].

4.1. Average Vector Field

In the general case, the AVF method is defined by.

δxn

δt
=

∫ 1

0

f(xn + τδxn)dτ, xn+1 = xn + δxn (17)

When the matrices J(x),R(x),G(x) are approximated by con-

stant matrices J̄, R̄, Ḡ, we obtain the separable structure-preserving

approximation of (17)

δxn

δt
= (J−R)∇H(xn, δxn) +Gūn (18)

with the discrete gradient being defined by

∇H(x, δx) =

∫ 1

0

∇H(x+ τδx)dτ (19)

and it satisfies the discrete power balance

δE = ∇HT δx

δt
= ∇HT (J−R)∇H+∇HT

Gu

= 0− Pd + Pe

Then, by the fundamental theorem of calculus, for mono-variant

components, i.e. separable Hamiltonians of the form H(x) =
∑N

i=1 Hi(xi), we have for each coordinate:

∇Hi(xi, δxi) =

{ Hi(xi+δxi)−Hi(xi)
δxi

δxi 6= 0

∇H(xi) δxi = 0
(20)

which satisfies the discrete gradient conditions (15)-(16). For non-

separable Hamiltonians, a discrete-gradient can also be uniquely

defined, see [21] for more details.

To summarize, this method relies on two complimentary ap-

proximations: the differential operator dx
dt

→ δx
δt

and the vector

field f → f to achieve energy (resp. passivity) conservation. The

discrete PHS equivalent of (6) is given by the numerical scheme.







δxn

δt
=
(
J−R

)
∇H(xn, δxn) +Gun

yn = G
T
∇H(xn, δxn)

xn+1 = xn + δxn

(21)

4.2. Accuracy order

As shown in [22], the AVF has accuracy order p = 2, it is a B-

series method, is affine-covariant and self-adjoint. When approxi-

mated as in Eq (19) by evaluating matrices J,R,G for x∗ = xn

the accuracy is only of order 1. Order 2 is achieved when either

J,R,G are independent of x or when evaluated at the mid-point

x∗ = xn + δxn

2
in the conservative case. It is also possible to re-

store the accuracy order p = 2 in the general case using a Runge-

Kutta refinement [21].

4.3. Implicit resolution

The discrete system is implicit on δxn and admits a unique so-

lution when H is convex. In the general case, an iterative solver

is required (typically a fixed-point or Newton iteration), but when

the Hamiltonian is quadratic we can avoid the need for an itera-

tive resolution. Furthermore, when the Hamiltonian is convex the

method can also be made non-iterative by quadratization of the

Hamiltonian [21].

Proof. When the Hamiltonian is quadratic of the form H(x) =
1
2
xTQx, the discrete gradient reduces to the mid-point rule

∇H(x, δx) =

∫ 1

0

Q(xn + δxnτ)dτ = Q

(

xn +
1

2
δxn

)

the implicit dependency on δx can thus be solved by matrix inver-

sion

δxn = δt

(

I −
δt

2
A

)−1
(
Axn +Gun

)
(22)

with A = (J−R)Q

5. PIECEWISE-CONTINUOUS TRAJECTORIES
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x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

Figure 1: Example of a cubic trajectory with conservative end-

points. The affine trajectory used to compute the average vector

field is shown (in green), the associated cubic interpolated ap-

proximation (in blue), its control polygon (in red), and the exact

manifold (in dashed black).

Given the sequence of points {xn} obtained by a passive-

guaranteed method, we would like to reconstruct piece-wise Ck-

continuous polynomial trajectories informed by the system dy-

namics.
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The idea is to exploit the dynamic equation at each junction

point xn where the approximation is known to be O(hp+1).
Indeed, if we had the samples of the exact trajectory, by the

Weierstrass approximation theorem, arbitrarily close polynomial

approximations converging uniformly to the exact solution could

be obtained by computing its derivatives to any desired order.

Since we only have an approximation of order p = 2, we

restrict ourselves to a regularity k = 1. This gives four constraints

x̂(0) = xn, x̂(1) = xn+1, x̂
′(0) = f(xn), x̂

′(1) = f(xn+1)

that can be satisfied by a cubic polynomial (r = 3). We choose to

represent it using the Bézier form,

x̂(τ) =

3∑

i=0

XiB
3
i (τ), B

n
i (t) =

(

n

i

)

(1− t)n−i
t
i

(23)

with {Xi} being its control polygon and Bn
i (t) being the Bern-

stein polynomial basis functions, because they have important ge-

ometric and finite differences interpretations [23].

This choice immediately leads to the following equations,

X0 = xn X1 = xn +
1

3
f(xn) (24)

X3 = xn+1 X2 = xn+1 −
1

3
f(xn+1) (25)

where the internal control points X1,X2 are computed from the

end points xn,xn+1 by first order forward / backward prediction

using the derivative rule.

x̂
′(t) =

n−1∑

i=0

DiB
n−1
i (t), Di = n(Xi+1 −Xi) (26)

An example trajectory is shown in Figure 1.

6. ANTI-ALIASED OBSERVATION

Given an observed signal ũ(t) = y(t) belonging to the class of

piecewise polynomials, in order to reject the non-band-limited part

of the spectrum, we would like to apply an antialiasing filter oper-

ator given by its continuous-time ARMA transfer function H(s),
then sample its output ỹ(t) to get back to the digital domain.

Since our anti-aliasing filter will be LTI, we will make use

of exact exponential integration and decompose its output on a

custom basis of exponential polynomial functions.

Without loss of generality we only consider single-input single-

output filters (SISO) since we can always filter each observed out-

put independently.

6.1. State-space ARMA filtering of polynomial input

We want to filter the trajectory by an ARMA filter given by its

Laplace transfer function

H(s) =
Y (s)

U(s)
=

b0s
N + b1s

N−1 + . . .+ bN

sN + a1sN−1 + . . .+ aN

(27)

This filter can be realized in state-space form as

x̃
′ = Ax̃+Bũ (28)

ỹ = Cx̃+Dũ (29)

Common choices are the observable and controllable state-space

forms.

Furthermore when the denominator can be factored with dis-

tinct roots, it is possible to rewrite the transfer function using par-

tial fraction expansion as.

H(s) = c0 +
c1

s− λ1
+ . . .+

cN

s− λN

(30)

which leads to the canonical diagonal form

A =






λ1

. . .

λN




 B =






1
...

1




 (31)

C =
[
c1 . . . cN

]
D =

[
c0
]

(32)

6.2. Exact exponential integration

The exact state trajectory is given by the integral

x̃(t) = x̃h(t) + x̃e(t) = e
At

x̃0 +

∫ t

0

e
A(t−τ)

Bũ(τ)dτ (33)

as the sum of the homogeneous solution to the initial conditions

x̃h and the forced state-response with zero initial conditions x̃e

given by the convolution of the input with the kernel eAt.

Furthermore when A is diagonal we have

e
At =






eλ1t

. . .

eλN t




 (34)

which greatly simplifies the computation of the exponential map.

In that case (33) can be evaluated component-wise as

x̃
i(t) = e

λitx̃
i
0 +

∫ t

0

e
λi(t−τ)

ũ(τ)dτ i ∈ {1 . . . N} (35)

where we used the notation xi to detonate the i-th coordinate of

the vector x

6.2.1. Polynomial input

With ũ(t) being a polynomial of degree K in monomial2 form and

coefficients ũk

ũ(t) =

K∑

k=0

ũk
tk

k!
(36)

we can expand the forced response x̃e in (35) as a weighted sum

∫ t

0

e
λi(t−τ)

(
K∑

k=0

ũk

tk(τ)

k!

)

dτ =

K∑

k=0

ũkϕk+1(λi, t) (37)

with the basis functions {ϕk} being defined by the convolution

ϕk(λ, t) =

∫ t

0

e
λ(t−τ) τk−1

(k − 1)!
dτ k ≥ 1 (38)

One of the main advantages of using a polynomial input (rather

than a more general model) lies in the fact that these basis func-

tions can be integrated exactly, avoiding the need of a quadrature
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Figure 2: Normalized ϕ-functions for k ∈ {0 . . . 4}. The real

parts of the impulse (blue), step (red), ramp (green), quadratic

(magenta) and cubic (black) responses are shown for a complex

pole λ = i2π (left plot) and a real pole λ = −5 (right plot) over

the unit interval t ∈ [0, 1].

approximation formula. See Appendix 12 for a detailed derivation

and a recursive formula, and Figure 2 for their temporal shapes.

Using those we can decompose the local state trajectories as.

x̃
i(t) = x̃

i
0ϕ0(λi, t) +

K∑

k=0

ũkϕk+1(λi, t) (39)

We note that the initial condition is equivalent to an impulsive

input x̃i
0δ(t). This filtering scheme can thus be generalized to non

polynomial impulsive inputs.

6.2.2. Numerical update scheme

Since we only wish to sample the trajectory on a fixed grid tn ∈
Z, we just need to evaluate the local state trajectory x(t) and the

output y(t) at t = 1 to finally get the following numerical scheme

x̃
i
n+1 = x̃

i
nϕ0(λi) +

K∑

k=0

ũk,nϕk+1(λi, 1) (40)

ỹn+1 =

N∑

i=1

cix̃
i
n+1 + c0ũn(1) (41)

where the coefficients ϕk(λi, 1) can be pre-computed and the com-

ponents x̃i
n+1 evaluated in parallel.

6.3. Filter examples

6.3.1. Low-pass filter of order 1

We consider a first order low-pass filter with transfer function

H(s) = a
s+a

. The temporal response to a piecewise polynomial

input {t2, 1− t, 0, 1} is shown in Figure 3 for a ∈ {1, 3, 6, 10}.

6.3.2. Butterworth Filter of order 3

To further illustrate the non-band-limited representation capacity

of piece-wise polynomials, and the effectiveness of the filtering

scheme, we have shown in Figure 4 the response of a third-order

Butterworth filter with cutoff ωc = π to a triangular input signal.

Its Laplace transfer function for a normalized pulsation ωc = 1

is given by H(s) = 1
(s2+s+1)(s+1)

with poles λ1 = −1−i
√
3

2
,

λ2 = −1+i
√
3

2
, λ3 = −1 and coefficients c0 = 0, c1 = −3+i

√
3

6
,

c2 = −3−i
√

3
6

, c3 = 1.

2We use the monomial form here instead of Bernstein polynomials be-
cause this is the one that leads to the most straightforward and meaningful
derivation.

0 1 2 3 4
samples

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Exact continuous-time responses of a first order low-

pass filter to a polynomial input (in blue).

0 2 4 6 8 10
samples

1.0

0.5

0.0

0.5

1.0

Figure 4: Exact continuous-time response of the order 3 Butter-

worth filter with cutoff pulsation ωc = π to a triangle input at the

Nyquist frequency.

7. APPLICATION: NONLINEAR LC OSCILLATOR

In order to illustrate the proposed method, we consider the sim-

plest example having non linear dynamics. For that purpose, we

use a parallel autonomous LC circuit with a linear inductor and a

saturating capacitor with the Hamiltonian energy storage function

given by

H(q, φ) =
ln(cosh(q))

C0
+

φ

2L
(42)

where the state q is the charge of the capacitor and φ the flux in the

inductor. Its circuit’s schematic is shown in figure 5 and its energy

storage law are displayed in 6

L

+

−

VL

IL

C(q)

+

−

VC

IC

Figure 5: A nonlinear LC oscillator circuit

By partial differentiation of the Hamiltonian function H by re-

spectively q and φ we get the capacitor’s voltage and the inductor’s

current, while applying the temporal derivative on q, φ gives the

capacitor’s current and inductor’s voltage.

VC = ∂qH =
tanh(q)

C0
IC = q

′
(43)

IL = ∂φH =
φ

L
VL = φ

′
(44)

DAFX-91



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

2 1 0 1 2
0.0

0.5

1.0

1.5

2.0
Hamiltonian

Hφ

Hq

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0
Gradient

∇φH

∇qH

Figure 6: Respective energy storage functions (left plot) and their

gradients (right plot), of the nonlinear capacitor (in red) and lin-

ear inductor (in blue), for C = 1, L = 1.
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Figure 7: Comparison of simulated orbits with discrete points (in

blue) computed using the AVF method, reconstructed cubic trajec-

tory (in green) and reference trajectory computed at 10x sampling

rate (in red).

This gives the Branch Component Equations.

Applying Kirchhoff Current and Voltage Laws gives the con-

straints IC = −IL, VC = VL. We can summarize the previous

equations with the conservative autonomous Hamiltonian system.

x
′ = J∇H(x) (45)

with.

x =

[
q
φ

]

, J =

[
0 −1
1 0

]

, ∇H =

[
∂qH
∂φH

]

(46)

Its state space and temporal trajectories are shown in Figure 7.

We can see that the numerical scheme preserves the energy since

the discrete points lie exactly on the orbit of the reference trajec-

tory. The reconstructed state-space trajectory also shows a good

match with the reference for most of the interpolated segments,

except around transition regions at the bottom and top.

The spectrum of the flux φ is shown in Figure 8. One can see

that the reference spectrum contains harmonics above twice the

representable bandwidth where they pass below -90 dB.

The ZOH and FOH spectrums contains spectral images of the

non bandlimited spectrum that decay respectively at -6dB/oct and

-12dB/oct. Their aliased components in the audio bandwidth start

around -80 dB at the Nyquist frequency and decay slowly toward

approximately -100 dB at low frequencies.

Contrary, our method, informed by the dynamic, exhibits both

reduced aliasing in the audio bandwidth and sharpened spectrum
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Figure 8: Continuous-time spectrum of the nonlinear LC circuit

flux φ for a fundamental frequency of 500 Hz and a sampling fre-

quency of 44.1 kHz. The 10x oversampled reference is compared

to the AVF method’s discrete output with zero-order hold (ZOH),

first-order hold (FOH), the proposed method (proposed cubic) and

its 12th order Butterworth filtered spectrum (proposed + AA). The

Nyquist frequency is materialized in blue and the multiples of the

sampling rate in red.

around the Nyquist frequency. It also has a higher spectral images

decay rate thanks to its C1 regularity. Its aliased components start

at -85 dB at the Nyquist frequency and decay much faster to reach

-100 dB at about 14 kHz where they reach a kind of aliasing noise

floor caused by higher harmonics fold-back.

Finally, as expected, the 12th-order Butterworth half-band low-

pass filter removes components above the Nyquist frequency thanks

to the piecewise continuous cubic input.

8. DISCUSSION

First, we highlight the fact that the vector field approximation in

(17) acts as a first-order antialiasing filter: it is a projection of the

vector field on a rectangular kernel. It prevents high-order spec-

tral images from disturbing the low frequency dynamic during the

numerical simulation and it is consistent with the underlying piece-

wise linear approximation model.

Second, the numerical scheme is energy-preserving. From a

signal processing perspective, the lowpass filtering effect on the

vector field is compensated by the finite difference approximation

of the derivative. This is a direct generalization of the mid-point /

bilinear methods to nonlinear differential equations.

Third, using the fact that the trajectory approximation has ac-

curacy order p = 2 at the junctions, we can re-exploit the dif-

ferential equation to reconstruct an informed C1-continuous cubic

trajectory. It exhibits reduced aliasing in the passband and better
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high-frequency resolution.

We observe that on the studied example, our method man-

ages to reduce aliased components that are folded once into the

audio band. However components caused by multiple folding of

the spectrum cannot be removed anymore. This is related to the

Papoulis generalized sampling expansion [24] who states that a

band-limited function can be perfectly reconstructed from its val-

ues and derivatives sampled at half the Nyquist rate.

Some difficulties arise when trying to generalize the above

ideas to higher order trajectories and filtering kernels. First, the

line-integral (17) is no longer computable in closed form when the

trajectory model is non-affine. Second, higher order kernels have

longer temporal support which can lead to non-causal integrals.

9. CONCLUSION AND PERSPECTIVES

Our main contribution is an approach based on smooth piecewise

defined trajectories coupled with a guaranteed-passive simulation.

The method proceeds in three steps: 1) an energy-preserving pas-

sive numerical scheme is applied, 2) Ck-continuous trajectories

are reconstructed, 3) Exact continuous time lowpass filtering and

sampling is performed. We have proposed a first instance of this

method using the class of piecewise polynomials with regularity

k = 1 and accuracy order p = 2 that exhibits reduced aliasing.

Further work will concern increasing the regularity k and ac-

curacy order p, merging the numerical scheme and the interpola-

tion steps by considering energy-preserving methods with a built-

in regular continuous model and considering other classes of mod-

els such as rational and exponential functions.

In this regard, exponential integrators [25] that integrate the

linear part of the dynamic exactly (as we have done in section 6)

and rely on approximations for the nonlinear part are of great in-

terest.

Finally we would like to further investigate the link between

multi-stages / multi-derivatives general linear methods, their accu-

racy orders, numerical dispersion and internal bandwidth, and to

analyze their behavior and representation capabilities within the

framework of Reproducing Kernels Hilbert Spaces and general-

ized sampling theory [26] [27] [28].
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12. APPENDIX: ϕ-FUNCTIONS

The ϕ-functions, that appear when doing exact integration of an

LTI system with polynomial input given in monomial form, are

defined by the convolution integral

ϕk(λ, t) =

∫ t

0

e
λ(t−τ) τk−1

(k − 1)!
dτ k ≥ 1 (47)

and by definition

ϕ0(λ, t) := e
λt

(48)

For λ = 0 it is immediate that

ϕk(λ = 0, t) =
tk

k!
(49)

12.1. Recurrence relation

We first prove that they satisfy the recurrence formula

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ
λ 6= 0 (50)

Proof. Using integration by parts

∫ b

a

u(τ)v′(τ)dτ = [uv]ba −

∫ b

a

u
′(τ)v(τ)dτ

with [a, b] = [0, t], u(τ) = eλ(t−τ), v′(τ) = τk−1

(k−1)!
and its prim-

itive v(τ) = τk

k!
gives

ϕk(λ, t) =

[

e
λ(t−τ) τ

k

k!

]t

0

+ λ

∫ t

0

e
λ(t−τ) τ

k

k!
dτ

=
tk

k!
+ λϕk+1(λ, t)

which after using (49) and identification gives

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ

12.2. Explicit form

Using (50) recursively for λ 6= 0, the first basis functions are given

by

ϕ0(λ, t) = e
λt

(51)

ϕ1(λ, t) =
eλt − 1

λ
(52)

ϕ2(λ, t) =
eλt − (1 + λt)

λ2
(53)

ϕ3(λ, t) =
eλt − (1 + λt+ (λt)2

2!
)

λ3
(54)

ϕ4(λ, t) =
eλt − (1 + λt+ (λt)2

2!
+ (λt)3

3!
)

λ4
(55)

this suggests the following explicit form

ϕk(λ, t) =
1

λk

(

e
λt −

k−1∑

n=0

(λt)n

n!

)

, λ 6= 0 (56)

Proof. It is immediate to verify that (56) is satisfied for k = 0.

Then assuming that (56) is true for some k ∈ N and using the

recurrence (50) we prove

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ

=
1

λk+1

(

e
λt −

k−1∑

n=0

(λt)n

n!

)

−
1

λ

tk

k!

=
1

λk+1

(

e
λt −

k∑

n=0

(λt)n

n!

)

that (56) is also true for k + 1. By induction (56) is thus satisfied

for all k ∈ N.

The ϕ-functions represent thus the tail of the truncated taylor

series expansion of eλt up to a scaling factor. This is clear when

rewriting (56) as

e
λt =

k−1∑

n=0

(λt)n

n!
+ λ

k
ϕk(λ, t) (57)
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