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ABSTRACT

In this paper a new technique is introduced that allows for the vari-

able step-size simulation of wave digital filters. The technique

is based on the preservation of the underlying network variables

which prevents fluctuation in the stored energy in reactive network

elements when the step-size is changed. This method allows for

the step-size variation of wave digital filters discretized with any

passive discretization technique and works with both linear and

nonlinear reference circuits. The usefulness of the technique with

regards to audio circuit simulation is demonstrated via the case

study of a relaxation oscillator where it is shown how the variable

step-size technique can be used to mitigate frequency error that

would otherwise occur with a fixed step-size simulation. Addi-

tionally, an example of how aliasing suppression techniques can

be combined with physical modeling is given with an example of

the polyBLEP antialiasing technique being applied to the output

voltage signal of the relaxation oscillator.

1. INTRODUCTION

The physical modeling of analog reference systems is typically

done using three main paradigms: wave digital filters (WDFs)

[1–5], state space filters [6–8] and port-Hamiltonian [9] modeling.

The WDF technique was developed in the 1970s with the digitiza-

tion of classical ladder/lattice filters in mind. A need to retain the

passivity of the original reference circuits was required so that the

simulations would be stable under finite numeric conditions.

Since the early days of WDFs, the theory has evolved con-

siderably in part due to interest from the physical modeling com-

munity in modeling historic audio circuits. The interest from this

community has led to the development of new techniques that

allow for the simulation of circuits containing complex topolo-

gies [4, 10, 11] and multiple/multiport nonlinearities [3, 12, 13].

There are also many interesting case studies of the simulation of

reference circuits containing nonlinear network elements includ-

ing distortion circuits containing diodes [14–16], tube amplifiers

containing triodes [17–20] and circuits containing operational am-

plifiers (op amps) [14, 21].

The digital synthesis of classic analog waveforms and the an-

tialiasing techniques needed to reduce their aliasing in the digital

domain is another important thread of research. While there are

a large number of techniques for synthesizing these signals, one

of main methods involves bandlimiting the analog versions of the

waveforms (or their derivatives) and either directly sampling the

bandlimited version or forming approximate correction functions

from it using polynomial interpolation [22–24]. A variant of the

latter technique has also been applied to antialiasing in nonlinear

waveshaping [25, 26]. Recently, a new antialiasing technique has

been introduced in [26] and expanded upon in [27] that is based

upon the differentiation of the antiderivatives of memoryless non-

linearities. The idea of combining physical modeling and antialias-

ing techniques has been suggested in [27].

To motivate the use of the variable step-size simulation method

as well as provide an example of how physical modeling and an-

tialiasing techniques can be combined, we study a square wave

oscillator circuit commonly known as a relaxation oscillator. This

circuit comes from a larger class of more complex oscillator cir-

cuits and was chosen to study due to its simplicity as well as two

challenges that its simulation presents: significant frequency error

which occurs when running the simulation with a fixed step-size

and the need for an antialiasing method to suppress the aliasing

present in the output waveform.

These two challenges are addressed as follows. First, the fre-

quency error is reduced using the new variable step-size WDF sim-

ulation technique. Secondly, antialiasing of the output waveform

is accomplished using the polyBLEP method [24] where domain

knowledge of the circuit is used to estimate the exact location of

the discontinuities in the output waveform.

In Section 2, a previous variable step-size WDF technique is

reviewed and the new method is presented. The case study of the

relaxation oscillator is given in Section 3. The circuit and its com-

ponents are described in detail in Section 3.1. Section 3.2 explains

how the WDF model of the circuit is derived and, in particular,

how the op amp is implemented. The issues encountered when

running the simulation with a fixed step-size are detailed in Sec-

tion 3.3 and the way in which the new variable step-size technique

is used to counter them is presented in Section 3.4. The technique

in which polyBLEP is used to suppress output signal aliasing ap-

pears in Section 3.6 which is followed by the concluding thoughts

in Section 4.

2. VARIABLE STEP-SIZE SIMULATION

Historically, WDFs were formulated to run at a fixed step-size us-

ing voltage waves [1] which are defined:






a =
1

2
(v + i)

b =
1

2R
(v − i)

(1)

where a is called the “incident” wave, b is called the “reflected”

wave and R is a free variable called the port resistance which is

used to tune the system to eliminate delay free loops. A tech-

nique for simulating WDFs with a variable step-size was presented

in [28] where it was shown that varying the step-size of an RLC

circuit (Figure 1) discretized with the trapezoidal method led to

an increase in energy in a zero-input simulation when it should

have been passive. Their solution to the problem was to run the
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Table 1: Reactive Elements

Element Laplace Domain Wave Domain Port Resistance

capacitor v(s) = i(s)/(sC) b[n] = a[n− 1] R = T/(2C)

inductor v(s) = sLi(s) b[n] = −a[n− 1] R = 2L/T

variable step-size simulation on an equivalent circuit where the

inductor was replaced with a network equivalent gyrator and ca-

pacitor pair. They stated that the equivalent circuit corresponded

to discretization using the Gauss (midpoint) method and demon-

strated that it exhibited the expected behavior of the reference cir-

cuit. Since their method depends on the replacement of inductors

with network equivalent devices it is unclear whether the method

will be guaranteed to work for all possible reference circuits.

In this section we introduce a new technique which allows

WDFs discretized with any passive discretization technique, in

particular the trapezoidal method, to be simulated with variable

step-sizes. The development of the new technique was motivated

by the fact that it was not obvious how the technique from [28] can

be used with the relaxation oscillator circuit presented in the case

study in Section 3. In Section 2.1, the general technique will be

introduced and described. Later, in Section 3.4, it will be shown

how varying the step-size fails to work with the example circuit

and how the new technique can be used to mitigate the encoun-

tered issues.

2.1. Variable Step-Size WDF Simulation Technique

The variation of step-size in a WDF discretized with the trape-

zoidal rule (or other passive discretization technique) requires care-

ful consideration due to the intricate relationship between the sam-

pling rate and reactive network elements. Looking at the definition

of wave variables (Equation (1)) and the port resistance values for

reactive elements (Table 1) it is clear that the wave variables of

these elements are directly coupled to the sampling rate.

The stored energy of a passive network is given by [28]:

w
T

k+1Gwk+1 −w
T

k Gwk ≤ x
T

k Gxxk, (2)

where wk is the vector of state values at time k, G is the diagonal

matrix of the corresponding port conductances, xk is the vector of

source values and Gx is the diagonal matrix of source port con-

ductances. In the case of zero input, Equation (2) implies that the

stored energy will monotonically decrease towards zero. While

Equation (2) is guaranteed to hold for passive networks under a

fixed step-size, potential issues arise when one varies the step-size

which changes the corresponding port resistances and the meaning

of the stored energy.

Therefore, when changing the step-size it is not sufficient to

just update the sampling rate, port resistances and matrices relat-

ing to the R-type adaptor. It is also necessary (unless the technique

from [28] can be used) to convert the wave variables to the repre-

sentation that is consistent with the network variables and the new

step-size before continuing the simulation.

The new step-size variation technique is based on maintaining

the consistency of the network variables across step-size changes.

Doing so ensures that the stored energy and the instantaneous power

remain consistent as well. To do so, after changing the step-size

and updating the port resistances, we then convert the stored en-

ergy by performing a wave variable transformation. Similar to the

development of generalized C matrices in [29], the process is as

C

LR

−

+vin

Figure 1: RLC Circuit Schematic.

follows to convert wave quantities a, b from sampling period Tk

and port resistance Rk to new wave quantities â, b̂ with sampling

period Tk+1 and port resistance Rk+1. From the definition of volt-

age waves (Equation (1)), voltage and current are given in terms of

the original wave quantities and port resistance by:






v =
a+ b

2

i =
a− b

2Rk

We then define the new wave quantities in terms of voltage, current

and the new port resistance by:
{
â = v +Rk+1i

b̂ = v −Rk+1i

Combining these two sets of equations in matrix form yields the

following conversion matrix:
[
â

b̂

]
=

1

2Rk

[
Rk +Rk+1 Rk −Rk+1

Rk −Rk+1 Rk +Rk+1

] [
a
b

]
(3)

In practice, however, b̂ does not get used as the reflected waves

of both inductors and capacitors only depend on â. Through this

transformation, both the power and the energy stored in the unit

delays is preserved across step-sizes.

As a demonstration of the validity of this method, it was ran on

the example RLC circuit used in [28] (Figure 1). The inductor in-

cident waves from the simulation are shown in Figure 2 computed

without correcting the wave quantities (as shown in the original

paper), computed with our technique and also computed with a

fixed step-size. As seen in the fixed step-size simulation trace, the

traces should be exponentially decaying sinusoids. This correct

behavior is seen in the trace of the simulation using the proposed

technique. The trace is exponentially growing, however, when the

wave quantities are not corrected.

To reiterate the process of correcting the wave variables, the

following steps must be taken any time the sampling rate is altered:

1. Store the wave variables for all reactive elements and ele-

ments that appear above them in shared subtrees.

2. Readapt those network elements with the port resistance

corresponding to the new sampling rate.

3. Convert the stored wave variables using the conversion ma-

trix of Equation (3).

4. Update the relevant network elements with the converted

wave variables.

5. If the structure contains an R-type adaptor, update S, H,

E, F, M and N using the updated port resistance values.

6. If wave quantities need to be output, convert them to a sin-

gle unified representation (such as the one relating to audio

rate).
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Figure 2: Inductor incident waves from RLC circuit [28].

3. RELAXATION OSCILLATOR CIRCUIT CASE STUDY

3.1. Circuit Description

The circuit to be modeled is called a relaxation oscillator [30] and

is also known as an astable multivibrator circuit [31]. It contains

the following components: a resistor R1, a capacitor C1, a voltage

divider (R2 and R3) and an op amp. Throughout this paper it is

assumed that R2 = R3 and that the op amp operates from rail-to-

rail. The circuit schematic is shown in Figure 3.
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Figure 3: Relaxation Oscillator Schematic.
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Figure 4: Traces of the op amp input voltage, op amp output volt-

age and the capacitor voltage.

The basic operation of the circuit is to behave as a comparator

whose output swings high or low based on the whether the input

voltage to the op amp is above or below a certain threshold value.

Table 2: Relaxation Oscillator Circuit Component Values

R1 R2 R3 C1 Vmax

10 kΩ 10kΩ 10kΩ 1/(2 log(3)R1F0) F 9V

The comparator is configured as a Schmitt trigger by means of the

positive feedback path between vout and iin. Assuming that the op

amp is powered with a rail voltage of ±Vmax and that it begins with

the op amp in positive saturation, the capacitor begins charging to-

wards +Vmax with the time constant defined by R1C1. When the

capacitor reaches Vmax/2, the op amp flips over to negative satu-

ration and the capacitor begins discharging towards −Vmax. This

behavior is illustrated in Figure 4 starting at sample number 50.

The period and frequency of oscillation are given by the fol-

lowing equations [31]:

{
T0 = 2 log(3)R1C1

F0 = 1/T0

(4)

The component values used during all simulations are given in

Table 2. The capacitor value was used to control the frequency of

oscillation and thus set based on the desired simulation frequency

F0 per Equation (4).

3.1.1. Op Amp Modeling

Operational amplifiers are very important devices in audio circuit

design. Since, on the component level, op amps are composed of

many passive electrical devices and potentially dozens of transis-

tors, they are often modeled during design and simulation using

simplified models. Depending on the level of detail needed, vari-

ous techniques can be used to model op amps. More complicated

linear “macromodels” are built up using linear one-ports (resistors,

capacitors and dc sources) and two-ports (controlled sources) and

can account for a variety of observed op amp behaviors. In the vir-

tual analog context these models may be too complex when only

one particular aspect of the model is needed. In the context of the

relaxation oscillator the op amp behaves as a comparator. Based on

the difference in voltage between the positive and negative termi-

nals of vin the op amp output goes into either positive or negative

saturation.

A comparator may be represented ideally as a two-port nonlin-

ear voltage-controlled voltage source (VCVS). This two-port de-

vice enforces two network constraints. The first is the nonlinear

function vout = Vmax sgn(vin) and the second is the no input cur-

rent criteria iin = 0. We call vout, iin the dependent variables and

vin, iout the independent variables and let

xC = [vin iout]
T

and y
C
= [iin vout]

T . (5)

From this we define the nonlinear relationship as

y
C
= f(xC) =

[
0

Vmax sgn(vin)

]
. (6)

This particular comparator model was chosen to enforce an instan-

taneous transition between ±Vmax which exactly matches the step

discontinuity which the polyBLEP method is designed to work

with (see Section 3.6).
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3.2. WDF Model of the Circuit

We form the WDF model using the techniques from [3, 4]. Ei-

ther by visual inspection or via graph theoretic techniques, the

schematic is rearranged as in Figure 5a so that all series and par-

allel subtrees are separated from the two-port nonlinearity by the

remaining complex connections which are collectively called the

R-type adapter.
The techniques of [3] are used to determine the scattering be-

havior of the R-type adaptor which is represented by the matrix S.
The following system of equations fully describes the relationship
between the R-type adaptor and the two-port nonlinearity:



















y
C

= f(xC)

xC = EaE + Fy
C

bE = MaE + Ny
C

with

E = C12(I + S11HC22)S12

F = C12S11HC21 + C11

M = S21HC22S12 + S22

N = S21HC21

(7)

where

S =

[
S11 S12

S21 S22

]
, H = (I−C22S11)

−1

and aE = [a3 a4 a5 a6] is the vector of incident waves from the

R-type adaptor.
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Figure 5: Relaxation Oscillator Rearranged Schematic and WDF.

As discussed in Section 3.1.1, the input variables, output vari-

ables and comparator model of the op amp are given by Equa-

tions (5) and (6). We then use the definition of voltage waves

(Equation (1)) and the signal flow relationship of the nonlinear

device quantities: [
xC

b

]
= C

[
y
C

a

]

where

b =

[
b1
b2

]
and a =

[
a1

a2

]
,

to determine the generalized conversion matrix C [29]:

C =

[
C11 C12

C21 C22

]
=





−R1 0 1 0
0 −G2 0 G2

−2R1 0 1 0
0 2 0 −1





where R1 and G2 refer to the port resistance and port conductance

of ports 1 and 2, respectively.

3.2.1. Numerical Solution of the Nonlinearity

In [5] it was shown how, in general, nonlinearities can be solved

using iterative techniques. In the case of this particular circuit,

however, the nonlinear relationship is modeled as a step disconti-

nuity for which iterative techniques struggle to converge quickly if

at all. Through inspection of the WDF equations representing the

nonlinearity it was found that they are formed in such a way that a

quasi-analytic solution can be determined.

From Equation (7), we get the following complete description

of the nonlinear system of equations to be solved:

xC = EaE + Ff(xC) (8)

where, for this particular circuit, E is a 2 × 4 matrix and F is a

2 × 2 matrix. We use domain knowledge of the circuit to sim-

plify the nonlinear system of equations. Since a3, a4 and a6 are

the incident waves relating to the resistors, which are always zero,

and since iin is also zero, the following simplified expression is

obtained:
[
vin

iout

]
=

[
e13a5 + f12Vmax sgn(vin)
e23a5 + f22Vmax sgn(vin)

]
.

The values of vout and iout are dependent on the value and sign of

vin and the constant values from the E and F matrices. Therefore,

the nonlinearity can be solved algorithmically using the following

pseudocode:

Algorithm 1: Nonlinearity Solver

1 if n− 1 < 1
2 initialize sgn_vin to ±1
3 else

4 sgn_vin← sgn(vin[n− 1])
5 end if

6
7 vin[n]← e13a5[n] + f12Vmax · sgn_vin

8 xC ← EaE [n] + F · [0 Vmax sgn(vin[n])]
T

9

10 if EaE [n] + F · [0 Vmaxsgn_vin]
T − xC 6= 0

11 sgn_vin← −sgn_vin
12 vin[n]← e13a5[n] + f12Vmax · sgn_vin

13 xC ← EaE [n] + F · [0 Vmax sgn(vin[n])]
T

14 end if

15

16 y
C
← [0 Vmax sgn(vin[n])]

T

17 return xC , y
C

The algorithm determines the correct values for vin and vout

by guessing the sign of vin (using the sign of the previous value

of vin) and checking whether or not the result is consistent with

Equation (8). If it is consistent, then that is the correct value of vin

and it can be used to calculate xC and y
C

. Otherwise, the sign is

flipped and then the only other possible solution is calculated.

3.3. Problems Resulting from the Fixed Step-size Simulation

3.3.1. Simulation Error

By running the simulation with a fixed step-size at a variety of

frequencies and then analyzing the spectrum of the output voltage

of the op amp it was determined that a noticeable amount of fre-

quency error was occurring in the simulation. Upon more detailed

analysis of the circuit output, it was determined that the majority of

the error was occurring around the location of the discontinuities

in the component voltages.

As shown in Figure 6, there are two related error scenarios.

In the first, as seen in Figure 6a, it is possible that the error leads

to the simulation running at a lower frequency than desired due

to an overshoot at the first transition of the capacitor voltage. In

the second scenario, Figure 6b, the opposite situation occurs and
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(a) Capacitor voltage error when simulation frequency is less than the
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Figure 6: Capacitor voltage error scenarios.

the simulation runs at a higher frequency than desired. In both

Figure 4 and Figure 6, the simulation was run at 44.1 kHz sam-

pling rate with a desired period of 101 samples with the average

period of the simulations being 102 and 100 for Figures 6a and 6b,

respectively.

3.3.2. Simulation Frequency

It was determined experimentally that the overshoot/undershoot

error identified in Section 3.3.1 causes the fundamental period T0

of the simulation to become “phase-locked” to an even integer

length period. In the lucky case that T0 was an even integer, it

was found that the fundamental period of simulation T̂0 was equal

to T0 and so the simulation did not contain any frequency error.

For any other choice of T0, however, two possible values of T̂0

were observed:

T̂+

0 = floor(T0)− (floor(T0) mod 2) (9a)

T̂−

0 = ceil(T0) + (ceil(T0) mod 2) (9b)

The phase-locking of the frequency that occurred from these errors

occurred immediately such that T̂0 was the observed period of os-

cillation for every period of the simulation beginning with the first

complete period.

Since it is not possible to derive an analytic expression for

the actual simulation frequency error, we derive an expression for

the worst case error in order to investigate the general behavior of

the maximum possible frequency error. The worst case frequency

error curve in cents can be derived using the following formula:

∆Fmax = 1200max

(∣∣∣∣∣log2

(
F̂−

0

F0

)∣∣∣∣∣ ,

∣∣∣∣∣log2

(
F̂+

0

F0

)∣∣∣∣∣

)

(10)

where {
F̂+

0 = Fs/T̂
+

0

F̂−

0 = Fs/T̂
−

0

where Fs is the sampling rate. Equation (10) gives the worst case

frequency error estimation as determined by the largest possible

rounding error occurring in the simulation period.

A portion of the resulting curve is shown in Figure 7a. The

minimum points on the curve corresponding to an error of one

sample occur at odd integer periods which are equal distance from

the nearest even integer periods. From those points, the error curve

increases in either direction approaching a theoretical limit of two

samples (indicated by open circles). Finally, at the even integer

period values, there is no error in the period which is notated by

the solid black dots. The dotted red line shows the maximum error

limit which was used in the computation of the frequency error

curves shown in Figure 7b.

Hypothetically assuming that a frequency error of six cents is

imperceptible at all frequencies, the worst case error curves (Fig-

ure 7b) given an idea of the level of oversampling necessary for

the fixed step-size simulation error to fall below that level. It is

also evident that the maximum possible simulation error is fre-

quency dependent and clearly increasing with frequency. Thus,

the amount of oversampling necessary to mitigate the worst case

error is coupled to the desired frequency of simulation.

3.4. Variable Step-size Simulation of the Oscillator WDF

Variable step-size ODE solvers typically utilize an automatic step-

size selection algorithm [28, 32]. The step-size is determined by

estimating the amount of simulation error that would result from

continuing to use the current step-size and then either increasing

or decreasing the step-size based on the result of that error calcu-

lation.

Since the majority of the simulation error in the fixed step-size

simulation of the relaxation oscillator occurs in the region of the

discontinuities in the simulation voltages and the accuracy of the

simulation frequency is coupled to the amount of oversampling

performed, it would be highly desirable to limit oversampling to

just those regions and to also have control over the rate of over-

sampling. This would have the benefit of reducing the computa-

tional cost as compared to just oversampling the simulation with a
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Figure 7: Worst Case Period and Frequency Error.

fixed step-size and would allow the user to control the amount of

maximum possible frequency error in the simulation. To accom-

plish this, domain knowledge of the circuit is used to predict the

occurrence of discontinuities and oversampling is performed only

in that region.

3.4.1. Detection of Discontinuity Regions

As seen in Figure 4, the step discontinuities in the op amp out-

put voltage occur whenever the op amp input voltage crosses zero

which also corresponds to the point where the capacitor changes

state. Thus, we use the input voltage and an extrapolation for-

mula based on its theoretical behavior to predict the occurrences

of zero-crossings and, therefore, of the step discontinuities.

This is done using the following extrapolation formula:

v̂in[n+1] = −

(

sgn(vin[n])Vmax

2
+ vin[n]

)(

1− e
−T

R1C1

)

+vin[n], (11)

where vin is the input voltage of the op amp and sgn is the signum

function.

The formula represents the theoretical charge and discharge

exhibited in the input voltage of the op amp. Therefore, the detec-

tion of the discontinuities is expected to be highly accurate so that

the simulation can be ran at the higher sampling rate for a limited

number of samples.

3.4.2. Extrapolation and Variable Step-size Algorithm

Algorithm 2 gives pseudocode for the extrapolation and step-size

modification routine used in the simulation. The algorithm detects

if a zero-crossing will happen in the op amp input voltage during

the next two future samples. If so, the system is updated to the

higher sampling rate and runs the equivalent of three original rate

samples at the higher rate. Only the higher rate samples corre-

sponding to lower rate samples are stored (with wave quantities

converted to the lower rate representation) so that the output of the

simulation always corresponds to the base sampling rate. Finally,

the system returns to running at the original sampling rate until the

next discontinuity is detected. It is enforced that the higher sam-

pling rate is an integer multiple of the base sampling rate so that

interpolation can be avoided during decimation.

Algorithm 2: Extrapolation/Step-Size Algorithm

1 vin_nm1← vin[n− 1]
2 extrapolate vin_n from vin_nm1 using Equation (11)
3 extrapolate vin_np1 from vin_n using Equation (11)
4 if vin_n · vin_np1 ≤ 0:
5 nSamps = 3
6 K ← the oversampling factor

7 k ← nSamps ·K
8 Update system to new sampling rate

9 for i = 1 : k
10 iterate system 1 sample

11 if i mod K = 0

12 save system values as (n + i/K − 1)-th values

13 convert saved wave quantities using Eq. (3)
14 end if

15 Update system back to original sampling rate

16 end if

It should be noted that anti-aliasing is not performed at the

decimation stage. This is because the anti-alias filtering of vout will

change the dynamics of the system, through modification of the

output voltage, affecting the energy stored in the capacitor there-

fore affecting the frequency of oscillation. In order for the simula-

tion frequency to be as accurate as possible, which corresponds to

the simulation error being as small as possible, we allow the alias-

ing to occur within the simulation. How to suppress the aliasing

inherent in the output voltage is the subject of Section 3.6.

3.5. Variable Step-size Method with the Relaxation Oscillator

Simulation

In Section 2, a new technique was introduced for the variable step-

size simulation of a WDF. The need for the technique arose from

the fact that the relaxation oscillator is a nonlinear circuit and also

does not contain any inductors. Therefore, it was unclear how the

technique from [28] could be implemented with this particular cir-

cuit. If the Gauss method is equivalent to the trapezoidal rule for

any circuit that does not contain inductors, then variable step-size

simulation without using the technique presented in Section 2 will

lead to large fluctuations in the energy stored in the delay registers

of the capacitor.

This can be clearly seen in Figure 8 which shows the inci-

dent waves and stored energy of the capacitor from three different

simulations. The desired fundamental period of the simulation was

100.25 samples so that a fixed step-size simulation run at 8× over-

sampling would yield an output waveform with no frequency er-

ror. The corrected and uncorrected traces show the incident waves

of the capacitor when trapezoidal discretization is used with and

without the technique proposed in Section 2. The figure shows

that large fluctuations in stored energy occur when the step-size
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Figure 8: Incident waves and the stored energy in the capacitor

for the relaxation oscillator circuit run with a fixed step-size and

different variable step-size methods.

is changed without using the new technique. Conversely, when

the new technique is used, the incident waves and energy perfectly

match the corresponding traces from the fixed step-size simulation.

3.6. Aliasing Suppression in the Output Signal

Due to the use of the ideal comparator VCVS characteristic to

model the op amp behavior, the output voltage of the op amp is a

square wave that instantaneously switches between ±Vmax. Thus,

the presence of step discontinuities in the output waveform results

in a similar amount of aliasing as arises from trivial synthesis of

a square waveform. To minimize the aliasing, we use the poly-

BLEP [24] antialiasing technique.

In the original method, the square wave is generated using a

phase accumulator which allows for an exact calculation of the

location of the discontinuities. This fractional delay value is then

used to determine the exact placement of samples of the polyBLEP

residual function which are added to one or more samples of the

output waveform before and after each discontinuity.
The WDF simulation of the example circuit in this paper does

not lend itself to a simple determination of the phase of the op
amp output voltage. We use a method based on the extrapolation
technique developed in Section 3.4.1 for determining the fractional
delay of the occurrence of each discontinuity. During the higher
rate processing, after the polarity of the input voltage has flipped,
a version of Equation (11) is used to determine the fractional delay
in terms of the higher sampling rate:

dxK = 1 +R1C1KFs log

(

sgn(vin[i− 1])Vmax

sgn(vin[i− 1])Vmax + 2vin[i− 1]

)

.

From this, the fractional delay is expressed in terms of the

original sampling rate by adding the distance to the next lower rate

sample:

d =
(K − i) mod K

K

to the appropriately scaled fractional delay value:

dx =
dxK

K
+ d

where i and K are as defined in Algorithm 2.

Depending on the chosen polyBLEP method, a number of vout

samples before and after the step discontinuity have to be altered

to include the polyBLEP residual amount for the chosen scheme.

This is done exactly the same way as in the original paper.

Due to the effect that the polyBLEP residual has on the dy-

namics of the simulations, the polyBLEP residual is applied to a

separate output signal path so that it does not affect the internal

dynamics of the simulation. Thus, the modified output voltage is

not fed back through the feedback path of the circuit.

Third-order Lagrange polynomial polyBLEP residual functions

were used to reduce the aliasing for a simulation run with a fun-

damental frequency of 100π at a sampling rate of 44.1 kHz with

a higher rate of 16 × Fs for a frequency error of 9.7e−4 cents.

The result of applying the polyBLEP residual function to the out-

put voltage is shown in Figure 9 where the upper image shows the

spectrum of the original output voltage and the lower image shows

the spectrum of the output voltage with the polyBLEP residual ap-

plied. Clearly, the aliasing in the spectrum of the output voltage

with polyBLEP residuals applied is falling off at a much steeper

rate than the original waveform’s spectrum. It is also evident that

the amplitude of the higher harmonics in the spectrum of the alias

suppressed waveform are falling off more quickly than the theoret-

ical amplitudes. This can be fixed using a high shelf equalization

filter. Example filter coefficients are given in [24].
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Figure 9: Spectrums of the output voltages of a simulation run

without polyBLEP (top) and with (bottom). The theoretical ampli-

tude of the harmonics are indicated by asterisks.

4. CONCLUSION

In this paper a new technique was introduced for the variable step-

size simulation of wave digital filters. A conversion of the wave

variable quantities of reactive network elements is performed any

time that the sampling rate is changed. Our method is novel in that

it ensures that the network variables are preserved which enforces

that the energy stored in the reactive elements is preserved as well.
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In [28], the variable step-size simulation of WDFs discretized

with the trapezoidal rule was identified as an open problem. By

identifying the relationship between wave variables and network

variables it has been shown how the correct behavior can achieved

in a WDF model which directly discretizes the reactive elements

and does not use network component equivalencies. The valid-

ity of the technique holds regardless of the discretization tech-

nique being used to discretize the reactive network elements. With

WDFs, however, it is well known that passive discretization tech-

niques must be used.

Through the case study of a relaxation oscillator circuit, the

need for the new variable step-size technique was demonstrated.

The variable step-size WDF simulation technique was used to mit-

igate frequency error related to the discontinuities in the device

voltages. An extrapolation formula was used to estimate the oc-

currence of future zero crossings in the input voltage of the op

amp. This allowed the system to be switched to the higher simu-

lation rate for a short duration of three base rate samples encom-

passing the occurrence of the step discontinuity in the op amp out-

put voltage. It was also demonstrated how physical modeling and

antialiasing techniques can be combined to yield an accurate and

alias-reduced simulation of the relaxation oscillator circuit. The

polyBLEP antialiasing technique was used and the oversampling

from the variable step-size technique had the additional benefit of

improving the estimate of the fractional delay thus further improv-

ing the accuracy of the polyBLEP method.

5. REFERENCES

[1] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.

[2] G. De Sanctis and A. Sarti, “Virtual analog modeling in the wave-
digital domain,” IEEE Trans. Audio, Speech, Language Process., vol.
18, no. 4, pp. 715–727, May 2010.

[3] K. J. Werner, V. Nangia, J. O. Smith III, and J. S. Abel, “Resolving
wave digital filters with multiple/multiport nonlinearities,” in Proc.

18th Int. Conf. Digit. Audio Effects, Trondheim, Norway, Nov. 30 –
Dec. 3 2015, pp. 387–394.

[4] K. J. Werner, J. O. Smith III, and J. S. Abel, “Wave digital filter adap-
tors for arbitrary topologies and multiport linear elements,” in Proc.

18th Int. Conf. Digit. Audio Effects, Trondheim, Norway, November
30 – December 3 2015, pp. 379–386.

[5] M. J. Olsen, K. J. Werner, and J. O. Smith III, “Resolving grouped
nonlinearities in wave digital filters using iterative techniques,” in
Proc. 19th Int. Conf. Digit. Audio Effects, Brno, Czech Republic,
Sept. 5–9 2016, pp. 279–286.

[6] D. T. Yeh, J. S. Abel, and J. O. Smith, “Automated physical mod-
eling of nonlinear audio circuits for real-time audio effects—part I:
Theoretical development,” IEEE Trans. Audio, Speech, Language

Process., vol. 18, no. 4, pp. 728–737, 2010.

[7] M. Holters and U. Zölzer, “A generalized method for the derivation
of non-linear state-space models from circuit schematics,” in Proc.

23rd European Signal Process. Conf., Nice, France, Aug. 31 – Sept.
4 2015, pp. 1073–1077.

[8] M. Holters and U. Zölzer, “A k-d tree based solution cache for the
non-linear equation of circuit simulations,” in Proc. 24th European

Signal Process. Conf., Budapest, Hungary, Aug. 29 – Sept. 2 2016,
pp. 1028–1032.

[9] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx,
Modeling and Control of complex Physical Systems: The Port-

Hamiltonian Approach, Springer Berlin Heidelberg, 2009.

[10] D. Fränken, J. Ochs, and K. Ochs, “Generation of wave digital struc-
tures for networks containing multiport elements,” IEEE Trans. Cir-

cuits Syst. I, Reg. Papers, vol. 52, no. 3, pp. 586–596, Mar. 2005.

[11] T. Schwerdtfeger and A. Kummert, “A multidimensional signal pro-
cessing approach to wave digital filters with topology-related delay-

free loops,” in IEEE Int. Conf. Acoust., Speech, Signal Process.,
Florence, Italy, May 4–9 2014, pp. 389–393.

[12] S. Petrausch and R. Rabenstein, “Wave digital filters with multiple
nonlinearities,” in Proc. 12th European Signal Process. Conf., Vi-
enna, Austria, Sept. 6–10 2004, vol. 12, pp. 77–80.

[13] T. Schwerdtfeger and A. Kummert, “Newton’s method for
modularity-preserving multidimensional wave digital filters,” in
IEEE 9th Int. Workshop Multidimensional (nD) Syst. (nDS), Vila
Real, Portugal, Sept. 7–9 2015.

[14] R. C. D. Paiva, S. D’Angelo, J. Pakarinen, and V. Välimäki, “Emula-
tion of operational amplifiers and diodes in audio distortion circuits,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 10, pp. 688–
692, Oct. 2012.

[15] D. T. Yeh and J. O. Smith, “Simulating guitar distortion circuits using
wave digital and nonlinear state-space formulations,” in Proc. 11th

Int. Conf. Digit. Audio Effects, Espoo, Finland, Sept. 1–4 2008, pp.
19–26.

[16] K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith III, and A. Sarti,
“An improved and generalized diode clipper model for wave digital
filters,” in Proc. 139 Int. Audio Eng. Soc., New York, NY, Oct. 29 –
Nov. 1 2015.

[17] W. R. Dunkel, M. Rest, K. J. Werner, M. J. Olsen, and J. O. Smith III,
“The Fender Bassman 5F6-A family of preamplifier circuits—a wave
digital filter case study,” in Proc. 19th Int. Conf. Digit. Audio Effects,
Brno, Czech Republic, Sept. 5–9 2016, pp. 263–270.

[18] J. Pakarinen and M. Karjalainen, “Enhanced wave digital triode
model for real-time tube amplifier emulation,” IEEE Trans. Audio,

Speech, Language Process., vol. 18, no. 4, pp. 738–746, May 2010.

[19] M. Karjalainen and J. Pakarinen, “Wave digital simulation of a
vacuum-tube amplifier,” in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process., Toulouse, France, May 14–19 2006, vol. 5.

[20] S. D’Angelo, J. Pakarinen, and V. Välimäki, “New family of wave-
digital triode models,” IEEE Trans. Audio, Speech, Language Pro-

cess., vol. 21, no. 2, pp. 313–321, Feb. 2013.

[21] K. J. Werner, W. R. Dunkel, M. Rest, M. J. Olsen, and J. O. Smith III,
“Wave digital filter modeling of circuits with operational amplifiers,”
in Proc. 24th European Signal Process. Conf., Budapest, Hungary,
Aug. 29 – Sept. 2 2016, pp. 1033–1037.

[22] T. Stilson and J. Smith, “Alias-free digital synthesis of classic analog
waveforms,” in Proc. Int. Comput. Music Conf., Hong Kong, China,
Aug. 19–24 1996, pp. 332–335.

[23] Eli Brandt, “Hard sync without aliasing,” in Proc. Int. Comput. Music

Conf., Havana, Cuba, Sept. 17–23, 2001, pp. 365–368.

[24] Vesa Välimäki, Jussi Pekonen, and Juhan Nam, “Perceptually in-
formed synthesis of bandlimited classical waveforms using inte-
grated polynomial interpolation,” J. Acoust. Soc. America, vol. 131,
no. 1, pp. 974–986, 2012.

[25] F. Esqueda and V. Välimäki, “Rounding corners with BLAMP,” in
Proc. 19th Int. Conf. Digit. Audio Effects, Brno, Czech Republic,
Sept. 5–9 2016, pp. 121–128.

[26] J. D. Parker, V. Zavalishin, and E. Le Bivic, “Reducing the aliasing of
nonlinear waveshaping using continuous-time convolution,” in Proc.

19th Int. Conf. Digit. Audio Effects, Brno, Czech Republic, Sept. 5–9
2016, pp. 137–144.

[27] S. Bilbao, F. Esqueda, J. D. Parker, and V. Välimäki, “Antiderivative
antialiasing for memoryless nonlinearities,” IEEE Signal Process.

Lett., 2017, to be published, DOI 10.1109/LSP.2017.2675541.

[28] Dietrich Fränken and Karlheinz Ochs, “Automatic step-size control
in wave digital simulation using passive numerical integration meth-
ods,” AEU – Int. J. Electron. Commun., vol. 58, no. 6, pp. 391–401,
2004.

[29] K. J. Werner, M. J. Olsen, M. Rest, and J. D. Parker, “Generalizing
root variable choice in wave digital filters with grouped nonlineari-
ties,” in Proc. 20th Int. Conf. Digit. Audio Effects, Edinburgh, U. K.,
Sept. 5–9 2017.

[30] Paul Horowitz and Winfield Hill, The Art of Electronics, Cambridge
University Press, Cambridge, UK, second edition, 1980.

[31] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Ox-
ford University Press, Inc., New York, NY, USA, 6th edition, 2009.

[32] R. L. Burden and D. J. Faires, Numerical Analysis, Brooks/Cole,
Cengage Learning, Boston, MA, 9th edition, 2010.

DAFX-207


	1  Introduction
	2  Variable Step-size Simulation
	2.1  Variable Step-Size WDF Simulation Technique

	3  Relaxation Oscillator Circuit Case Study
	3.1  Circuit Description
	3.1.1  Op Amp Modeling

	3.2  WDF Model of the Circuit
	3.2.1  Numerical Solution of the Nonlinearity

	3.3  Problems Resulting from the Fixed Step-size Simulation
	3.3.1  Simulation Error
	3.3.2  Simulation Frequency

	3.4  Variable Step-size Simulation of the Oscillator WDF
	3.4.1  Detection of Discontinuity Regions
	3.4.2  Extrapolation and Variable Step-size Algorithm

	3.5  Variable Step-size Method with the Relaxation Oscillator Simulation
	3.6  Aliasing Suppression in the Output Signal

	4  Conclusion
	5  References

