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ABSTRACT

Concatenative sound synthesis (CSS) entails synthesising a

“target” sound with other sounds collected in a “corpus.” Recent

work explores CSS using non-negative matrix factorisation (NMF)

to approximate a target sonogram by the product of a corpus sono-

gram and an activation matrix. In this paper, we propose a num-

ber of extensions of NMF-based CSS and present an open MAT-

LAB implementation in a GUI-based application we name NiM-

FKS. In particular we consider the following extensions: 1) we

extend the NMF framework by implementing update rules based

on the generalised β-divergence; 2) We add an optional monotonic

algorithm for sparse-NMF; 3) we tackle the computational chal-

lenges of scaling to big corpora by implementing a corpus pruning

preprocessing step; 4) we generalise constraints that may be ap-

plied to the activation matrix shape; and 5) we implement new

modes of interacting with the procedure by enabling sketching

and modifying of the activation matrix. Our application, NiM-

FKS and source code can be downloaded from here: https:

//code.soundsoftware.ac.uk/projects/nimfks.

1. INTRODUCTION

Given a dataset of digitally recorded sound material called a “cor-

pus”, the goal of concatenative sound synthesis (CSS) is to con-

catenate, or mix together, this sound material to approximate a

“target” sound according to some criteria [1–7]. This criteria is

typically in terms of distance within a descriptor space, e.g., fea-

tures like spectral centroid and MFCCs, but can also involve con-

siderations of context, e.g., concatenation cost and/or transforma-

tion cost [4, 7]. The motivations of CSS can be creative [2, 5, 8],

and also to achieve high-quality sound synthesis [9, 10].

Recent work of Driedger et al. [3] explores the use of non-

negative matrix factorization (NMF) for CSS. NMF [11] is an it-

erative procedure that attempts to express a non-negative matrix

V ∈ R
N×M
+ as a product of two other non-negative matrices,

V ≈ WH. The idea is to represent each column of V as a lin-

ear combination of the columns of W ∈ R
N×K
+ , by the weights

in H ∈ R
K×M
+ . As such, the columns of W are referred to as

templates and the rows of H as activations. In audio applications,

it is common for V to be the magnitude or energy spectrogram

(sonogram) [12], which is non-negative. NMF has found applica-

tion in several areas of audio processing, e.g., polyphonic music

transcription [12] and source separation [13–15].

In their CSS research, Driedger et al. [3] proposes to adapt

NMF with additional constraints to enforce particular characteris-

tics in the activation matrix H. In particular, these modifications

aim to reduce repetition, suppress simultaneity, and preserve con-

text of sound material in the corpus. As a follow-up, Su et al. [16]

extends on this work to create a certain "8-bit music" and contrast

different methods of NMF when used for CSS. They develop a

simple time-domain synthesis method to avoid sonic artifacts in

the inversion of complex STFT, a technique we also develop here

as an option in our application (see Sec. 3.1).

The work we present here makes several contributions to NMF

for CSS. First, we propose a generalisation of existing procedures

and introduce some extensions. Namely, we generalise the NMF

framework and the post-processing constraints, by using the gen-

eralised β-divergence as an optimisation objective and a general

convolution kernel respectively. As an additional constraint on

the activation matrix, we implement a monotonic algorithm to en-

force sparsity constraints in the NMF optimisation [17]. Second,

we address computation issues with NMF that makes it unsuit-

able for very large corpora (i.e. dictionary martix W). In order

to overcome this limitation, we introduce a pruning strategy as a

pre-processing step in which only a subset of the corpus frames are

selected to be used in the NMF procedure (i.e. reducing the dimen-

sionality of W). Third, we present an open MATLAB Graphical

User Interface (GUI), thereby making these techniques accessible.

In addition, we propose and implemented other modes of interact-

ing with the procedure, e.g., editing or “sketching” the activation

matrix H. To encourage further research and applications, we de-

sign our application NiMFKS to facilitate the integration of new

modules through separation of concerns between the interface and

implementation details and modular design with individual com-

ponents responsible for different parts of the synthesis. Essentially

one can simply plug-in desired NMF algorithms and modify exist-

ing ones without breaking the application.

2. PRIOR WORK

NMF aims to find non-negative matrices W and H such that V ≈
WH. This takes the form of an optimisation problem where the

factorisation attempts to minimise a reconstruction error function,

which we denote D(V||WH). Common choices when applying

NMF to audio data are Euclidian distance and Kullback-Leibler

(KL) divergence [12–15].

Driedger et al. [3] use the KL divergence. At each iteration,

after the NMF update, Driedger et al. [3] introduces subsequent

updates to the activations to avoid particular behaviours, e.g., en-

couraging diagonal structures over horizontal and vertical ones. To

suppress horizontal structures (e.g., corpus unit repetitions), they
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modify H after the NMF update at iteration l of L according to

[H]km ←

{

[H]km, [H]km = max{[HT
ek]m−r:m+r}

[H]km(1− l+1
L

), else
(1)

where ek is the kth standard vector, and r ∈ {0, 1, ...m} describes

the number of columns to the right and left of the mth activation

column over which one wishes to reduce repeated non-zero values.

To suppress non-zero values in each column of H, i.e., dis-

courage too many templates from being active simultaneously, they

modify H according to

[H]km ←

{

[H]km, [H]km ∈ maxp{Hem}

[H]km(1− l+1
L

), else
(2)

where maxp{·} returns the subset of p ∈ {0, 1, ...m} largest val-

ues of its vector argument.

To promote diagonal structures, i.e., continuity of the corpus

units, Driedger et. al. [3] process the activation matrix after its

full update in iteration l by filtering. This can be expressed as a

two-dimensional convolution between H and a diagonal kernel

H← H ∗G (3)

where ∗ is convolution, and G = Ic (identity matrix of size c) in

Driedger et al. [3].

The application of these constraints removes the NMF algo-

rithm’s convergence guarantee. Thus the sequence of updates (1)

to (3) is repeated until a user-specified stopping criteria, such as

number of iterations. In summary, this NMF approach to CSS

requires the specification of the following parameters: the total

number of iterations L, the horizontal neighbourhood r, the verti-

cal magnitude neighbourhood p, the filter kernel size c, and finally

the parameters involved in computing the STFT and its inverse.

3. EXTENSIONS

We now present our three extensions to the application of NMF

to CSS: 1) time-domain synthesis; 2) sparse NMF; and 3) pruning

large corpora.

3.1. Time-domain synthesis

Given a magnitude spectrogram, or the product WH in the present

case, the Griffin-Lim algorithm [18] can be used to project back to

the time-domain. If we have the corpus as a time-domain wave-

form, then we can simply window, scale, and add the correspond-

ing waveforms to create the synthesis. Since the mth row of H

specifies the activation of the mth column of W, the time domain

synthesis is achieved by concatenating the corresponding portions

of the corpus waveform scaled by their activation (i.e. elements

of H). This approach to synthesis circumvents the restrictions on

window shape and overlap for invertibility inherent to the Griffin-

Lim algorithm [18], and also makes possible the use of other kinds

of features, e.g., chroma. It can be parallelised to make it faster.

3.2. Sparse NMF

The generalised β-divergence offers a family of divergences that

are parametrised by β [19, 20]. It is defined as follows:

Dβ(x||y) =















xβ

β(β−1)
+ yβ

β
− xyβ−1

β−1
β ∈ R\{0, 1}

x log
(

x
y

)

− x+ y β = 1

x
y
− log

(

x
y

)

− 1 β = 0

(4)

When β = 2, this becomes the Euclidean distance; the Kullback-

Leibler (KL) divergence for β = 1, and the Itakuro-Saito (IS)

divergence for β = 0. In our case, we denote the β-divergence

of V and WH as Dβ(V||WH). In this case, we apply (4) to

each element of the two matrices, and then sum over all elements.

Fevotte and Idier [21] show that one of the possible multiplicative

update rules using β-divergence is given by

H← H⊙
W

T
[

V ⊙ (WH)(β−2)
]

WT (WH)(β−1)
(5)

where ⊙ denotes the element-wise multiplication, and exponenti-

ation as well as division are element-wise.

As an extension of Driedger et al. [3], we implement spar-

sity constraints in the NMF update, which effectively restrict both

polyphony and the corpus diversity within the NMF framework.

There exist a number of algorithms for applying sparsity constraints

on the activation matrix because it has proven useful for a variety

of audio and music tasks, see for example [22, 23]. In our imple-

mentation, we use the penalty introduced in [17], notated Υ here,

so that the cost function we minimise with respect to H, W is:

Dβ(V||WH) + λΥ (6)

where λ is a parameter to control the weight of the penalty. In

order for the regulariser Υ to enforce a sparsity constraint, it is

common to set 0 < β ≤ 1. Typically, the closer β is to 0, the

stronger the sparsity constraint will be. We set β = 0.5 in our

application by default, as it enforces strong sparsity constraints, so

that the templates that only account for little variance in the tar-

get matrix and their corresponding activation tend to zero during

the NMF updates. By virtue of the multiplicative updates, com-

ponents of zero magnitude remain zero for the remaining updates

and are therefore effectively pruned out of the model [17]. The

corresponding update rule for H is [17]:

H← H⊙





W
T
(

V ⊙ (WH)[−
3

2
]
)

WT (WH)[−
1

2
] + λΨH





ϕ

(7)

where ΨH = H
−1/2 is a term resulting from the application of

the penalty Υ with β = 0.5 and ϕ = 2
3

is a term ensuring the

descent of the cost function at each iteration.

3.3. Working with Large Corpora

Optimisation approaches applied to CSS [3, 4, 7], carry far higher

computational costs than “greedy” approaches, e.g., Catepillar [2]

and MATConcat [5]. With the templates W fixed, NMF need only

iteratively update the activations H. Using the Euclidean distance,

the computational complexity of each iteration is then O(K2M).
The KL divergence carries a higher complexity. These increase
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Figure 1: The corpus pruning algorithm removes those corpus

frames that are dissimilar from any of the frames in the target.

Algorithm 1 describes the procedure.

even more when we include the constraints detailed in section 2.

Hence, the complexity is linear in the duration of the target, but

quadratic in the duration of the corpus. This imposes limits on the

size of the corpus one can work with in NMF for CSS, which can

affect the quality of the results.

Algorithm 1: Corpus template pruning: Given two se-

quences of vectors in the same space RN —W from the cor-

pus and V from the target — and three user-specified param-

eters — γ, ρmin, θ — produce a subset of the index intoW
according to the dissimilarity function d : RN×RN → R+.

1 function Prune (W,V, γ, ρmin, θ);
Input :

1. W = (wk ∈ R
N )k∈K, K = {1, . . . ,K} (sequence of

corpus frames)

2. V = (vm ∈ R
N )m∈M,M = {1, . . . ,M} (sequence of

target frames)

3. γ ≥ 0 (similarity pruning parameter)

4. ρmin ∈ [0, 1) (relative energy pruning parameter)

5. θ > 0 (comparisons parameter)

Output: Kpruned ⊆ K (pruned index intoW)

2 Kremain ← {k ∈ K : ‖wk‖2 > maxl∈K ‖wl‖2ρmin)};
3 Mremain ← {m ∈M : ‖vm‖2 > maxl∈M ‖vl‖2ρmin)};
4 Kpruned ← ∅;
5 whileMremain is not empty do

6 m←Mremain(1) (first element of set);

7 D ← (d(vm,wk) : k ∈ Kremain) (dissimilarities of the

target frame to remaining corpus frames);

8 J ← {k ∈ Kremain : d(vm,wk) < (1 + γ)minD}
(indices of corpus frames acceptably similar to the

target frame);

9 Kpruned ← Kpruned ∪ J (store indices of corpus frames);

10 Kremain ← Kremain\J (remove indices of corpus frames

from further consideration);

11 Mremain ← {m
′ ∈Mremain : d(vm,wm′) > θ}

(indices of target frames that acceptably dissimilar

from current target frame);

12 end

13 return Kpruned;

To address this complexity issue, we propose preprocessing a

corpus by pruning. Figure 1 depicts the basic concept. Frames in

the target (left) and corpus (right) are colour coded by their con-

tent. Pruning keeps only the corpus frames that are measured sim-

ilar enough to the target frames. We then execute NMF with an W

built by concatenating the remaining templates. This assumes that

the dissimilar corpus frames would not have been used in approx-

imating V anyway.

The template pruning algorithm is shown in Algorithm 1. The

user must specify three parameters, and a dissimilarity function.

The dissimilarity function we use is the cosine distance

d(v,w) := 1−
v
T
w

‖v‖2‖w‖2
. (8)

The parameter γ ≥ 0 controls the severity of the pruning pro-

cedure, with smaller values proucing a higher degree of pruning.

For γ = 0, only one corpus frame will be kept for each target

frame considered. The parameter θ > 0 controls the number of

comparisons between target frames and corpus frames. As θ → 0
every target frame is considered, but this can be unnecessary when

there is high similarity between target frames. As θ grows, we

potentially consider fewer and fewer target frames in the prun-

ing. Finally, the parameter ρmin ∈ [0, 1) controls a preprocessing

pruning procedure, removing the indices of the corpus and target

frames that have norms that are too small. The effects of this are

bypassed if ρmin = 0; and if ρmin → 1, only the frame with the

largest norm is kept.

After pruning, we use the columns of W indexed byKpruned to

create a W
′, and then use NMF as described above to find a H

′

such that V ≈W
′
H

′. We then upsample the activation matrix H
′

to form H having a size commensurate with the original problem.

This involves distributing the rows of H′ according to the indices

Kpruned, and leaving everything else zero. We can then apply mod-

ifications to H, such as continuity enhancement and polyphony

restriction, but at the conclusion of the NMF procedure.

4. THE MATLAB APPLICATION NiMFKS

Driedger et al. [3] do not supply a reproducible work package, but

their procedure is described such that it can be reproduced. We

have done so by implementing a GUI application in MATLAB,

named NiMFKS. We organise the interface into four panes. Figure

2 shows an example screenshot of the interface.

The “Sound Files” pane, top left, lets the user load the audio

files to be used as corpus and target. In this example figure, the

user has selected multiple audio files, and a target instrumental

recording of “Mad World” by “Gary Jules”. If several audio files

are specified by the user, they are concatenated to form the corpus.

If the sampling rates of the target and corpus are different, NiM-

FKS resamples the target signal to have the same sampling rate as

the corpus.

The pane labeled “Analysis” lets the user set the parameters

for computing features of both the corpus and target audio. In

the example of Fig. 2, the user has specified the STFT feature to

be computed using a Hann window of duration 400ms with 50%

overlap.

In the “Synthesis” pane, the user may select the method used

for synthesising the output audio waveform and set the related pa-

rameters. Building on this observation and work reported in [16]

where Su et al. demonstrate the benefits of synthesis approaches

alternative to the ISTFT, we make both Time-Domain (cf. section

3.1) and ISTFT synthesis available in NiMFKS. The “Synthesis

Method” drop-down menu lets the user chose between these.

The NMF sub-pane lets the user set all the parameters that

influence the factorisation. The “Prune” parameter, γ (cf. section
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Figure 2: This screen shot shows the main window of NiMFKS. We see the target is “Mad World”, and the corpus is multiple samples of

steel drums. The user presses the run button in the “Analysis” pane to compute STFT features using a Hann window of duration 400ms

with overlap of 50%. When the user presses the “Run” button in the “Synthesis” pane, 10 iterations of NMF with the Euclidean distance

will be performed with the additional constraints (see Sec. 2). No pruning is performed in this case. For synthesis “Template Addition” is

specified. On the right we see a visualisation of the activation matrix. Next to the slider is the play button to hear the resulting synthesis.

Circled in blue at top are the “Activation Sketching” and “Activation Eraser” features (see Sec. 5). Clicking one of these buttons will reveal

the “Sketching” pane in which you can choose the “Paint Brush” to perform the actual sketching. If new activations are added or removed

by hand, the buttons “Resynthesise” and “Re-run” repeat the synthesis and NMF procedure respectively using the new activation matrix.

3.3), allows to tune how aggressively the corpus loaded by the user

should be pruned before it is fed to the NMF optimisation. Cur-

rently, NiMFKS defines ρmin to be −60 dB below the maximum

observed in the corpus and target, and θ = 0.1.

The NMF updates stop after a given number of iterations, or

when the cost function reaches a convergence criteria. In the ex-

ample of Fig. 2, NMF will perform no more than 10 iterations,

but could exit before if the relative decrease in cost between sub-

sequent iterations is less than 0.005.

NiMFKS relies on β-NMF update rules (cf. section 2) and

provides three presets accessible from the “Cost Metric” drop-

down menu: Euclidean (β = 2), Kullback-Leibler divergence

(β = 1), and Sparse NMF with β = 1/2 as described in (4).

Finally, the remaining parameters control the modifications to

be applied to the activation matrix H either at each iteration of the

NMF optimisation or only after convergence if the “Endtime Mod-

ifications” parameter is toggled. The user can set the parameters

of the filtering kernel, as described in section 2.

The pane labeled “Plots” displays various results from the pro-

cedure, accessible from the dropdown menu at top-right. These

include the sound waveforms, their sonograms, and the activation

matrix. In the example of Fig. 2, the user has selected to view

the resulting activation matrix, and can adjust the contrast of the

image by the slider labeled “Max. Activation dB”.

Finally, in order to enable the “Activation Sketching” feature

(cf. section 5.2), the user must select the “Activation Sketching”

item from the “Tools” menu, which enabled the buttons located at

the very top left of the application window and circled on Figure

2. The sub-pane labeled “Sketching” then lets the user specify the

settings to be used when sketching activations.

5. ARTISTIC EXTENSIONS

We now describe a few artistic extensions that we have imple-

mented in NiMFKS.

5.1. Activation Sketching

NiMFKS allows one to treat the activation matrix as an image

on which the user can directly erase, draw, inflate or deflate ac-

tivations. This feature is labeled as “Activation Sketching” in the

GUI. These can be resynthesized on the fly to see any effects. This

proved to be a useful experimentation tool to understand NMF and

the synthesis methods in action. Figure 3 shows an example of an
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Figure 3: Image of an activation matrix produced by NMF using

a specific corpus and target but on which we have sketched addi-

tional activations (circled).
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Figure 4: Clockwise from top-left, an activation matrix H has been

filtered (3) with a kernel G that is diagonal, anti-diagonal, vertical

bar and horizontal bar. More exotic options are possible.

activation matrix to which we have sketched additional activations.

One can also remove activations with the eraser, and resynthesise

the result.

5.2. Modifications of the activation matrix

Driedger et. al. [3] constrained the activation matrix to exhibit di-

agonal structures in order to preserve the original context of the

corpus units. This was created by using a diagonal filter, i.e. set-

ting G = Ic in (3). We can define different kinds of filtering

kernels, e.g., anti-diagonal, or block average in order to favour

other types of structure. NiMFKS enables the user to choose from

a selection of such kernels. For instance, the anti-diagonal filter

promotes similar structures to the diagonal filter, but with a time-

reversed context (the corpus units are not time-reversed, however).

The vertical bar filter results in activating several templates simul-

taneously, while the horizontal bar filter produces repetitions of

corpus units. Figure 4 shows several examples of activation ma-

trices obtained using such structures. Additionally, the diagonal

0.1 0.2 0.3 0.4 0.5

Pruning parameter ( )

0

10

20

30

40

50

60

70

P
e

rc
e

n
t 

c
o

rp
u

s
 r

e
m

a
in

in
g

Figure 5: For several values of the pruning parameter, the per-

centage of the corpus remaining given a target. About 70% of the

corpus remains after pruning by energy (keeping frames within 60

dB of the most energetic frame).

kernel may be rotated by an angle specified by the user.

6. DEMONSTRATION

We now demonstrate the pruning strategy. We build a 40m58s cor-

pus from a collection of 44.1 kHz sampled vocalisations from a va-

riety of monkeys and apes. Our analysis of this corpus uses a Hann

window of 100ms duration, and 50ms hop. We compute the dis-

crete Fourier transform of each frame, sampled at 1024 points from

DC to the Nyquist frequency. In total, there are 49,164 frames,

which means W is a matrix of size 1024× 49164, or 50,343,936

elements. Our target is a recording of “President” Trump saying,

“Sadly. The American. Dream. Is dead!” Figure 5 shows the

percentage of the corpus remaining after the pruning procedure

for several pruning parameters. At the most strict value tested,

γ = 0.05, only 247 frames remain. At the least strict value,

γ = 0.5, the number of frames remaining is 34,433. The prun-

ing by energy removes 14,731 frames.

Figure 6 shows how the pruning parameter affects the cost of

the factorisation over iteration. We see for this example that after

10 iterations the cost from using a larger corpus becomes smaller

than when using the more pruned corpus. Figure 7 shows how the

spectrogram of the original target matches with the results from

NMF and three pruned corpora. The bottom spectrogram shows

the results with a pruning γ = 0.1 and constraints with values

r = p = c = 3. The convolution matrix used for continuity

enhancement in (3) is diagonal with exponentially decreasing pos-

itive values along the diagonal.

7. DISCUSSION & CONCLUSION

The work of Driedger et al. [3] provides an excellent starting point

for exploring NMF for CSS but their code is not available. We have

implemented their approach and make the application freely avail-

able. Our application contributes a variety of extensions as well.

We have implemented a time-domain synthesis method, which

does not suffer from the limitations of STFT inversion. We make

the modifications proposed in [3] applicable during the NMF up-

date procedure, or at the end as a post-processing of the activation

matrix. We also implement a pruning strategy for working with
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Figure 6: Change in cost over NMF iteration with pruned corpora

(relative to highest cost for γ = 0.5).

large corpora. Although we find this hurts the cost in the factoris-

ing procedure, it can become useful when trying to get an idea of

how a target and corpus could work together. In a more creative

direction, we have implemented an interactive “sketching” proce-

dure by which one may modify a resulting activation matrix, and

more general activation filtering procedure.

Our future work will address the uniform segmentation of this

NMF approach to CSS. We seek a way to make it compatible with

a unit-based segmentation of a target and corpus. A simple way

this could be solved is by performing parallel NMF with different

time resolutions, and then a fusion of the results at the end with bi-

nary masking. We will also redesign the GUI to separate analysis,

pruning, factorising, post-processing and synthesising.
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Figure 7: We use NMF-based CSS to resynthesise a recording of “President” Trump saying, “Sadly. The American. Dream. Is dead!”

using a corpus of 40m58s of sampled vocalisations of monkeys, apes and other animals. The features are DFT magnitude frames. The

spectrograms from top to bottom are: original signal; synthesis by NMF with Euclidean distance and pruning with γ = 0.5; synthesis by

NMF with Euclidean distance and pruning with γ = 0.3; synthesis by NMF with Euclidean distance and pruning with γ = 0.1; synthesis

by NMF with Euclidean distance and pruning with γ = 0.1, and constraints r = p = c = 3 with G in (3) diagonal that is exponentially
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[19] R. Kompass, “A generalized divergence measure for nonneg-

ative matrix factorization,” Neural computation, vol. 19, no.

3, pp. 780–791, 2007.

[20] A. Cichocki, R. Zdunek, and S. Amari, “Csiszar’s diver-

gences for non-negative matrix factorization: Family of new

algorithms,” in Proc. Int. Conf. on Independent Component

Analysis and Signal Separation, 2006, pp. 32–39.

[21] C. Févotte and J. Idier, “Algorithms for nonnegative matrix

factorization with the β-divergence,” Neural computation,

vol. 23, no. 9, pp. 2421–2456, 2011.

[22] P. O. Hoyer, “Non-negative matrix factorization with sparse-

ness constraints,” J. Machine Learning Research, vol. 5, no.

Nov, pp. 1457–1469, 2004.

[23] J. Eggert and E. Korner, “Sparse coding and NMF,” in Proc.

of the Int. Joint Conference on Neural Networks, 2004, vol. 4,

pp. 2529–2533.

DAFX-221


	1  Introduction
	2  Prior work
	3  Extensions
	3.1  Time-domain synthesis
	3.2  Sparse NMF
	3.3  Working with Large Corpora

	4  The MATLAB application NiMFKS
	5  Artistic Extensions
	5.1  Activation Sketching
	5.2  Modifications of the activation matrix

	6  Demonstration
	7  Discussion & Conclusion
	8  Acknowledgments
	9  References

