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ABSTRACT

When measuring room impulse responses using swept sinusoids,

it often occurs that the sine sweep room response recording is ter-

minated soon after either the sine sweep ends or the long-lasting

low-frequency modes fully decay. In the presence of typical acous-

tic background noise levels, perceivable artifacts can emerge from

the process of converting such a prematurely truncated sweep re-

sponse into an impulse response. In particular, a low-pass noise

process with a time-varying cutoff frequency will appear in the

measured room impulse response, a result of the frequency-de-

pendent time shift applied to the sweep response to form the im-

pulse response.

Here, we detail the artifact, describe methods for restoring

the impulse response measurement, and present a case study us-

ing measurements from the Berkeley Art Museum shortly before

its demolition. We show that while the difficulty may be avoided

using circular convolution, nonlinearities typical of loudspeakers

will corrupt the room impulse response. This problem can be al-

leviated by stitching synthesized noise onto the end of the sweep

response before converting it into an impulse response. Two noise

synthesis methods are described: the first uses a filter bank to esti-

mate the frequency-dependent measurement noise power and then

filter synthesized white Gaussian noise. The second uses a linear-

phase filter formed by smoothing the recorded noise across per-

ceptual bands to filter Gaussian noise. In both cases, we demon-

strate that by time-extending the recording with noise similar to

the recorded background noise that we can push the problem out

in time such that it no longer interferes with the measured room

impulse response.

1. INTRODUCTION

In order to study room acoustics, one must measure accurate im-

pulse responses of the space. These measurements are often chal-

lenging and time consuming to acquire. Large spaces frequently

exhibit poor background noise levels, so acousticians often employ

methods to improve the signal-to-noise ratio (SNR). In particular,

linear and logarithmic sine sweep measurements have been shown

to be highly effective [1]. Researchers have identified some of the

problems and their solutions for using sine sweep measurements

to study room reverberation. Specifically, [2] and [3] address is-

sues of time-smearing, clicks/plosives, and pre/post equalization.

Further, [4] discusses issues related to clock drift.

This paper addresses another problem that is often encoun-

tered when measuring impulse responses with sine sweeps in noisy

environments that has not been previously discussed—what hap-

pens when the sweep response recording is stopped too early. This

is common, as it is challenging to maintain quiet after the room re-

sponse has appeared to decay into the noise floor. Plosives and im-

pulsive noises will be converted into descending sweeps and any

such noises in the silence following the recorded sweep will be

detrimental to the conversion process. As it turns out, one needs

to record a duration of background noise equivalent to the length

of the sweep following the response’s decay into the noise floor to

ensure that the problem will not be encountered.

If one does not record enough silence (background noise) after

the sine sweep response, the resulting impulse response will con-

tain a time-varying low-pass filter characteristic imprinted on its

noise floor. This paper addresses the cause of these artifacts and

two methods for alleviating the problem in post-production. Re-

lated to this problem, [5] and [6] discuss methods for extending

impulse responses through the noise floor, however there are im-

plications for how the noise floor is measured based on these new

results.

The rest of the paper is organized as follows. In §2 we re-

view the process of converting a sine sweep measurement into an

impulse response and introduce the problem associated with stop-

ping the recoding prematurely. In §3 we introduce two methods

for pre-processing the response sweep by extending the recording

with synthesized noise that matches the background noise present

in the recording. Next §4 presents examples that demonstrate how

our method for preprocessing the sweep response is desirable com-

pared to zero padding or circular convolution. Finally, §5 presents

concluding remarks.

2. CONVERTING SINE SWEEPS TO IMPULSE

RESPONSES

Linear and logarithmic sine sweeps can be used to measure room

impulse responses and work under the principle that the sweep can

be viewed as an extremely energetic impulse smeared out in time.

A linear sweep, in which the sinusoid frequency increases linearly

over time, can be defined as

x(t) = sin

(

ω0t+
ω1 − ω0

T

t2

2

)

, t ∈ [0, T ] , (1)

where ω0 is the initial frequency in radians, ω1 the final frequency,

and T the total duration. A logarithmic sweep, in which the sinu-

soid frequency increases exponentially over time, can be defined

using the same variables as
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To convert sine sweep responses to impulse responses, one

acyclically convolves an equalized, time-reversed version of the
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original sine sweep, x̃ with the recorded response such that

h(t) = y(t) ∗ x̃(t) . (3)

This works because the group delay is canceled by the time rever-

sal, with the equalization compensating for the relative time spent

in each frequency band,

δ(t) = x(t) ∗ x̃(t) . (4)

This deconvolution processing aligns the response to the original

sine sweep in time effectively forming the impulse response. As

a linear sweep traverses any given bandwidth in the same length

of time, irrespective of the starting frequency, the equalization is

a constant, independent of frequency. For a logarithmic sweep,

which spends the same length of time traversing any given oc-

tave, an exponential equalization is applied to compensate for the

disproportionate amount of low-frequency energy applied to the

system. Naturally, the calculation is efficiently computed in the

frequency domain1 as

h(t) = F−1

(

Y (ω)

X(ω)

)

. (5)

One of the benefits to using sine sweep measurements over

other integrated-impulse response measurement techniques, such

as maximum length sequences, is that many nonlinearities pro-

duce only harmonics of an input sinusoid, and the deconvolution

process will place the onset of unwanted harmonic component re-

sponses before the onset of the linear component of the system

response. Using logarithmic sweeps, the time shift of the har-

monic distortion components of the response is controlled via the

length of the sweep, and the linear response is easily separated

from the harmonic distortion response. While [2, 7, 8] and oth-

ers have shown that useful information can be extracted from the

higher order components, that is not the concern of this paper. For

acquiring a linear room impulse response, one can simply window

out the distortion artifacts that precede the linear response.

The fundamental problem this paper explores is caused by the

desire to use acyclic convolution rather than circular convolution

to convert the sine sweep response into separate linear "impulse

response" and non-linear system responses. The difficulty results

from the presence of additive measurement noise, Eq. (3) is actu-

ally

h(t) = [y(t) + n(t)] ∗ x̃(t) . (6)

where n(t) is the measurement noise (often mainly acoustic back-

ground) and is assumed to be stationary. In addition to time-

aligning the frequencies of the sweep into an impulse response,

the background noise is also shifted by the same transformation.

Under acyclic convolution, the tail end of the converted impulse

response will exhibit a frequency-dependent filter cutoff with the

same trajectory as the frequency trajectory of x(t). When the

recording of background noise following the sweep response is

sufficiently long, the filter artifact will occur after the impulse re-

sponse has decayed, and can be windowed out. However, when

the recording is shut off too early, linear convolution causes this

frequency-dependent filter effect to overlap with the impulse re-

sponse. While a recording with a high SNR may render this effect

1In this paper, we use t as the argument to functions in the time domain
and ω as the argument to functions in the frequency domain.

inaudible, in spaces with poor SNR, this unwanted effect becomes

quite clear.

The naïve solution to this problem would be to use circular

convolution rather than linear convolution. However, this is not

ideal. Circular convolution will reconstruct the noise floor and

solve the issue of the filtering effect, shifting the noise correspond-

ing to times before the sweep to the end of the response, but any

nonlinearities in the measurement will also be shifted to occur dur-

ing the desired impulse response. Weak nonlinearities are all but

guaranteed when measuring an acoustic space, as loudspeakers are

inherently nonlinear at levels useful in impulse response measure-

ment. The effect of circular convolution will corrupt the measure-

ment.

Fig. 1 shows a contrived example that highlights the difference

between linear and circular convolution using a linear sweep and

noise signal. Under circular convolution, the noise statistics ought

to stay constant (i.e., n(t) ∼ n(t)⊛x̃(t). Because of zero padding,

linear convolution causes the noise occupy a longer period of time.

Over the course of the beginning of the processed block, the noise

starts from the high frequencies, and lower frequencies enter ac-

cording to the slope of the frequency trajectory of the sweep. At

the end of the file, the opposite is true: the high frequencies stop

before the lower frequencies. If this noise were the background

noise in a space, the effect of the frequencies stopping at different

times would be heard as a filter with a time-varying cutoff fre-

quency.

Fig. 2 demonstrates the difference between cyclic and acyclic

convolution when there are nonlinearities present. In the acyclic

convolution, the nonlinear components preceed the desired linear

response while in the cyclical convolution they corrupt the linear

response.

Ideally, a sufficiently long segment of background noise fol-

lowing the sine sweep is recorded so as to avoid additional pro-

cessing. In real spaces, low frequencies typically take longer to

decay than high frequencies. Ascending sweeps help hide issues

caused by the premature ending of a recording, as the low fre-

quency components are provided more time to decay while higher

frequencies are being excited in the space. In order to guarantee

that the noise roll off problem will not be encountered during the

impulse response, an additional amount of background noise of

length T must be captured following the decay of the room re-

sponse to x(t). The longer the sine sweep, the more patient one

must be when recording the impulse response. (In addition, tran-

sients occurring during the time after the system response has de-

cayed may corrupt the measured impulse response.)

3. NOISE EXTENSION TECHNIQUES

When the recording is cut off too early, our solution is to push the

filter cutoff in time so that it no longer interacts with the room re-

sponse. To do this, we pre-process the sweep response y(t) by ex-

tending it with noise that is perceptually similar to the background

noise in the physical space. We propose two methods detailed be-

low for synthesizing this noise. In both cases, we analyze a portion

of recorded room noise with no other signals present, synthesize

additional noise, and splice it onto the end of the response sweep

before converting it into an impulse response.

For both methods, we use a 500 ms analysis window and a

50 ms cross-fade. If the room response has decayed sufficiently,

it is best to perform the analysis on samples coming from the end

of the response audio file as this is where the new samples will

DAFX-376



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Figure 1: Spectrograms of noise, inverse (linear) sweep, acyclic

convolution, and circular convolution.

be spliced. Our goal is to capture both the overall characteristic

of the background noise as well as any local features necessary to

make an imperceptible transition. If there is a noticeable mismatch

between the recorded noise and the synthesized noise, descending-

chirps will be introduced into the impulse response by the decon-

volution process. If there is not enough isolated noise at the end

of the file, it is possible to use a portion of background noise from

somewhere else (i.e., proceeding the sweep or another recording

taken at the same time).

3.1. Band-pass Filtered Noise

In the first approach, we aim to match the spectrum of the back-

ground noise by analyzing the amplitude of the recorded noise in a

set of frequency bands, and apply these amplitudes to synthesized

white Gaussian noise to correctly color it.

We define the analysis noise n(t) as 500 ms of recorded noise

from the recording we intend to match. Additionally, we generate

an i.i.d. Gaussian noise sequence, denoted γ(t). In this method,

we form a synthesis signal s(t) such that

|S(ω)| ∼ |N(ω)| . (7)

We use a perfect reconstruction, zero-phase filter bank to split both

n(t) and 500 ms of γ(t) into K composite frequency bands

n(t) =
∑

k

nk(t), k ∈ [1, 2, . . . ,K], (8)

and

γ(t) =
∑

k

γk(t) . (9)

Our filter bank consists of a cascade of squared 3rd-order Butter-

worth filters with center frequencies spaced 1/4 octave apart. The

Figure 2: Non-linear sweep response, inverse (logarithmic) sweep,

acyclic convolution, and circular convolution.

signals are filtered both in the forwards and backwards directions

so that the phase is unaltered. The perfect reconstruction aspect of

this filter bank is important because we use it both for analysis and

synthesis.

Once separated into bands, we estimate the gain coefficient in

each frequency band of both n(t) and γ(t) by computing the RMS

level on the steady-state portion of the filtered signals. To com-

pute the synthesis noise s(t), we color a sufficiently long2 amount

of γ(t) by scaling each frequency band by the ratio of measured

analysis to synthesis gains and sum the result,

s(t) =
∑

k

(

RMS[nk(t)]

RMS[γk(t)]
γk(t)

)

. (10)

At this point, the steady state portion of s(t) is a block of noise

with the same magnitude frequency band response as the analysis

signal n(t). An example impulse response and magnitude spec-

trum resulting from this filter bank can be seen in Fig. 3. We found

that 1/4 octave bands were sufficient to match the synthesis and

analysis noises’ magnitude spectrum. We then use a 50 ms long

equal-power cross-fade between the end of y(t) and the beginning

of the steady state portion of s(t). After this, it is safe to convert

the sweep response into an impulse response as done in Eq. (5).

3.2. ERB-Smoothed Noise

Our second method synthesizes noise that is perceptually similar

to the analysis noise via a filter design technique. We define γ(t)
and n(t) in the same way as above, in § 3.1. We window both noise

signals with a Hann window and take their Fourier transforms. In

the frequency domain, we smooth both signals on a critical band

2Sufficient here depends on how prematurely the recording was halted.
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Figure 3: Band-pass filterbank impulse response and magnitude

spectrum.

basis by averaging the power within the DFT bins of each critical

band such that

N̂(ω) =

f(b(ω+1/2)
∑

ζ=f(b(ω−1/2)

|N(ζ)|2 (11)

and

Γ̂(ω) =

f(b(ω+1/2)
∑

ζ=f(b(ω−1/2)

|Γ(ζ)|2 , (12)

where b(·) defines a critical bandwidth. This results in N̂(ω) and

Γ̂(ω), the critical band smoothed versions of N(ω) and Γ(ω). This

processing reduces the complexity and detail of the noise signals’

spectra but should not be perceptually audible. We then impart the

spectrum of the smoothed analysis noise upon the smoothed syn-

thesis noise in the frequency domain to obtain the transfer function

G(ω) =
N̂(ω)

Γ̂(ω)
. (13)

We then find a linear-phase version of this transfer function

Glin(ω) = |G(ω)| e−jτω . (14)

Returning Glin(ω) to the time domain as seen in Fig. 4, we filter

γ(t) with glin(t) such that

s(t) = γ(t) ∗ glin(t) . (15)

Last, we splice the synthesized noise onto y(t) with a 50 ms equal

power cross-fade as described above.
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Figure 4: ERB-smoothed noise filter impulse response and magni-

tude spectrum.

4. EVALUATION

To preserve the acoustics of the Berkeley Art Museum (BAM) at

2626 Bancroft Way in Berkeley, CA, acoustic measurements were

taken by Jacqueline Gordon and Zackery Belanger and their team

shortly before it was demolished in 2015 [9]. This space, de-

signed by Mario Ciampi, has a very long reverberation time due

to its large, concrete structure. Since this space exhibited a high

noise floor, a long sine sweep was employed in order to improve

the SNR. Circumstances led to the recordings being prematurely

ended, and to the discovery of the problem described in this paper.

Fig. 5 shows an example recorded (short) response sweep as well

as versions extended with noise synthesized with our two methods.

Fig. 6 shows the impulse responses computed from these sweeps.

Both visually and aurally the noise extended approaches achieve

better results than the unprocessed version.

Both approaches for synthesizing noise produce reasonable re-

sults, and the power spectrum for the analysis noise and both va-

rieties of synthesis noise can be seen in Fig. 7. On average, the

synthesis noise tracks the nature of the room sound well, and both

synthesis methods produce perceptually similar results. As it turns

out, it is equally important to have a smooth cross-fade between

the recorded and synthesized noise as sudden changes will create

perceptual artifacts.

5. CONCLUSIONS

In this paper, we discuss how converting a sine sweep response to

an impulse response requires a sufficient amount of recording time

beyond what is necessary to capture the room response after it has

perceptually decayed. While it is naturally best to record this in the

physical space, it is not always possible like at the Berkeley Mu-

seum of Art. We propose two methods for extending the record-

DAFX-378



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Figure 5: Spectrograms for signal sweep and sweep responses with

no treatment, band-passed noise, and ERB smoothed noise.

Figure 6: Spectrograms corresponding to the impulse responses

calculated from the sweep responses in Fig. 5—no treatment,

band-passed noise, and ERB smoothed noise.
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Figure 7: Spectrum of synthesized noise (red) averaged over 500

simulations compared to analyzed noise (blue) for the band-pass

filter method (top) and ERB-smoothed method (bottom).

Figure 8: BAM impulse response without processing, extending

the sweep with noise, and extending impulse response through the

noise floor.
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ing after the fact that both depend on analyzing recorded back-

ground noise and using this information to color Gaussian noise.

One technique measures the frequency-dependent amplitude levels

with a bank of band-pass filters while the other involves filtering

Gaussian noise with a perceptual-based filter. Both methods work

well and eliminate the undesired artifact from the resulting impulse

response.

Naturally, an impulse response with a large noise floor is not

ideal. In such cases, the techniques described above can be used to

prepare an impulse response measurement for further processing,

such as described in [6], to extend the measurement through the

noise floor. The result of such processing applied to another of the

BAM measurements appears in Fig. 8. Note that the extended im-

pulse response shows none of the time-varying low-pass filtering

artifacts present in the original measured impulse response.
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