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ABSTRACT

Decorrelation of audio signals is an important process in the spa-

tial reproduction of sounds. For instance, a mono signal that is

spread on multiple loudspeakers should be decorrelated for each

channel to avoid undesirable comb-filtering artifacts. The process

of decorrelating the signal itself is a compromise aiming to re-

duce the correlation as much as possible while minimizing both

the sound coloration and the computing cost. A popular decorre-

lation method, convolving a sound signal with a short sequence of

exponentially decaying white noise which, however, requires the

use of the FFT for fast convolution and may cause some latency.

Here we propose a decorrelator based on a sparse random sequence

called velvet noise, which achieves comparable results without la-

tency and at a smaller computing cost. A segmented temporal de-

cay envelope can also be implemented for further optimizations.

Using the proposed method, we found that a decorrelation filter, of

similar perceptual attributes to white noise, could be implemented

using 87% less operations. Informal listening tests suggest that the

resulting decorrelation filter performs comparably to an equivalent

white-noise filter.

1. INTRODUCTION

Decorrelation is a useful operation in audio signal processing, as

it can reduce correlation properties of partially correlated signals

or can generate versions of a monophonic signal that are as little

correlated as possible [1]. Leaving aside applications where it may

be used internally by another method to improve its performance,

such as echo cancellation, decorrelation is usually associated with

multichannel processing and modification of the perceived spatial

properties of sounds [1], [2], [3].

Reverberation, spatially extended sources, and ambiance with

diffuse sound properties all produce binaural signals that have a

low correlation. Conversely, when delivering two binaural sig-

nals to a listener in a spatial simulation environment the results

can vary. The sound is perceived centrally when both signals are

fully correlated but, when partially correlated, the spatial image is

extended. Two fully incoherent signals may be perceived as two

separated lateral events [4]. These properties make decorrelation

a useful tool for tasks such as spatial source spreading, artificial

reverberation, spatial audio coding, source distance rendering, and

headphone externalization [1], [2], [5].

Various decorrelation methods have been proposed in the lit-

erature. Generally, most methods aim to a) minimize correlation

between the input and the output signal, b) preserve the magnitude
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spectrum of the signal as much as possible, c) have a short decor-

relation impulse response, if time-invariant, and d) be as compu-

tationally efficient as possible. Conditions b) and c) attempt to

guarantee spatial modification of the sound without changing its

spectral character or adding perceived reverberation.

A basic approach is to convolve the audio signal with a short

white-noise sequence, in the range of 20–30 ms [1]. Variants of

this apply an exponentially decaying envelope, or different decay-

ing envelopes at different bandwidth decreasing time constants at

higher frequencies, mimicking late reverberation properties. Such

sequences have been studied by Hawksford and Harris [6]. The

same work also proposes a temporally diffuse impulse, a sum of

decaying sinusoids equalized with their minimum-phase equiva-

lent to be flat. Xie et al. have studied the use of pseudo-random bi-

nary sequences for decorrelation [7]. Instead of synthetic signals,

short late segments of room impulse responses are used directly by

Faller in a spatial audio coding framework [5]. All these methods

require convolution with the generated filters, making them costly

in applications with multiple decorrelators applied in parallel, such

as source spreading, or on the outputs of a large multichannel sys-

tem. The fast convolution method is typically used to reduce the

computational load, as it implements the convolution as a multi-

plication of spectra in the frequency domain. The efficiency then

comes from the use of the fast Fourier transform (FFT) algorithm.

Unfortunately, the fast convolution method causes latency, which

is undesirable in real-time audio processing.

A more efficient method, which guarantees a flat magnitude

response, is based on cascaded allpass filters [1], [8]. Alternatively,

some methods operate in the time-frequency domain, using the

short-time Fourier transform or a filter bank, and apply delays on

each bin or subband. Such an approach was first introduced in

[9], with fixed delays, drawn randomly, applied in perceptually

motivated critical bands. This approach has been used with success

in parametric spatial audio reproduction methods, e.g. in [10], to

decorrelate diffuse/ambient components at the output channels. A

more elaborate subband decorrelation approach has been presented

by Vilkamo et al. [11] for artificial reverberation with convenient

spectral control. Although more efficient, the filter-bank method

also introduces latency.

This paper proposes the use of a velvet-noise sequence for

decorrelating audio signals. Velvet noise consists of samples of

values of either −1, 0, or 1 [12], [13]. The spacing between non-

zero elements is also randomized to satisfy a density parameter.

With sufficient density, these sparse sequences are perceived as

smoother than Gaussian white noise [12], [13]. One of the useful

applications of velvet-noise sequences is simulating room impulse

responses. The late reverberation has been re-created using expo-

nentially decaying filtered noise [14],[15]. Velvet-noise sequences

offer a computationally efficient alternative for this purpose [12],
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[16], [17], [18], [19], [20], [21]. Whereas previous work on velvet

noise has focused on its perceptual qualities and suitability to ar-

tificial reverberation, we investigate how to design a velvet-noise

decorrelator (VND).

This paper is organized in the following way. In Section 2, we

discuss velvet noise and how signals can be efficiently convolved

with it. Section 3 introduces various decorrelation methods us-

ing velvet noise. Section 4 presents our results and compares the

proposed method with a white-noise-based decorrelation method.

Section 5 concludes this paper.

2. VELVET NOISE

2.1. Velvet-Noise Sequence

The main goal of using velvet-noise sequences (VNS) is to create

spectrally neutral signals, comparable to white noise, while using

as few non-zero values as possible. By taking advantage of the

sparsity of the signal, we can efficiently convolve it in the time

domain with another signal without any latency [19], [21]. The

first step in the generation of velvet noise is to create a sequence

of evenly spaced impulses at the desired density [12], as shown

in Fig. 1(a). The sign of the impulses is then randomized (see

Fig. 1(b)). Finally, the spacing between each impulse is also ran-

domized within the space available to satisfy the density parame-

ter, which is illustrated in Fig. 1(c).

For a given density ρ and sampling rate fs, the average spacing

between two impulses is

Td = fs/ρ, (1)

which is called the grid size. The total number of impulses is

M = LsTd, (2)

where Ls is the total length in samples. The sign of each impulse

is

s(m) = 2 round(r1[m])− 1, (3)

where m is the impulse index, the round function is the rounding

operation, and r1(m) is a random number between 0 and 1. The

location of the impulse is calculated from

k(m) = round[mTd + r2[m](Td − 1)], (4)

where r2(m) is also a random number between 0 and 1.

2.2. Velvet-Noise Convolution

To convolve a VNS with another signal x, we take advantage of

the sparsity of the sequence. Indeed, by storing the velvet-noise

sequence as a series of non-zero elements, all mathematical oper-

ations involving zero can be skipped. For further optimization, the

location of the positive and negative impulses can be stored in sep-

arate arrays, k+ and k−, which removes the need for multipliers

in the convolution [19], [21]

x ∗ k =

M+
∑

m=0

x[n− k+[m]]−

M−
∑

m=0

x[n− k−[m]]. (5)

For a sequence with a density of a 1000 impulses per second,

which has been found sufficient for decorrelation, and a sample
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Figure 1: Steps to create a velvet-noise sequence: (a) a sequence of

evenly spaced impulses, (b) the values of impulses are randomized

to either 1 or −1, and (c) the spacing between the impulses is

randomized.

rate of 44.1 kHz, the zero elements represent 97.7% of the se-

quence. Therefore, given a sufficiently sparse sequence, time-

domain convolution can be more efficient than a spectral domain

convolution using an FFT for an equivalent white-noise sequence.

Furthermore, this sparse time-domain convolution offers the bene-

fit of being latency-free.

3. VELVET-NOISE DECORRELATION

3.1. Exponential Decay

When using a sequence of white noise for decorrelation, adding an

exponentially decaying amplitude envelope to the signal is recom-

mended to minimize the potentially audible smearing of transients

[6].

The decay characteristics of the envelope are designed to achieve

a desired attenuation and target length. The envelope is given by

D(m) = e−αm
(6)

based on a decay constant α given by

α =
−ln10−LdB/20

M
, (7)

where LdB is the target total decay, while m represent the index

of a specific impulse and M is the total number of non-zeros ele-

ment in the sequence. The attenuation of an impulse is set by its

index m. For a given set of parameters, every VNS generated has

the same decay attenuation D(m) for the same index m, only the

sign varies. This distribution method ensures the energy is con-

sistently distributed amongst the impulses regardless of their posi-

tions. The energy could also be distributed over time, depending

on an impulse location. However, since the impulse locations vary

based on a random value, a variation of distributed power would

be obtained, which would lead to unbalanced decorrelation filters,

unsuitable for multichannel purposes.

To generate an exponentially decaying velvet-noise filter (Fig-

ure 2), we combine the decay envelope of Eq. (6) to the random

sign sequence:

se(m) = e−αms(m). (8)
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Figure 2: Velvet-noise sequence with an exponentially decaying

temporal envelope.

The velvet-noise convolution equation also needs to be updated to

include the attenuation factors:

x ∗ k =

M
∑

m=0

x[n− k[m]]se(m). (9)

3.2. Segmented Decay

Unfortunately, the decaying amplitude envelope requires multi-

plications and thus leads to more operations for the convolution.

However, since the benefits of a smoothly decaying envelope are

not really perceivable with this application, the process can be sim-

plified while still attenuating impulses based on their location. In-

deed, audible decorrelation artifacts can be caused by velvet-noise

sequences that contain large impulses near the end of the sequence.

Therefore, to prevent these artifacts while minimizing the number

of multiplications required by the sparse convolution, we can sim-

ply limit the attenuation factors to a fixed set of attenuation coeffi-

cients, as illustrated in Fig. 3. Storing each segment in a separate

list allows for a segmented convolution, applying each coefficient

to a partial sum

x∗k =

I
∑

i=0

si

(

Mi+
∑

m=0

x[n−k+[m]]−

Mi−
∑

m=0

x[n−k−[m]]

)

. (10)

The specific number of segments I and coefficient si values can

be set manually. While testing with this approach, we have learned

that a small number of segments can sound satisfying, e.g., I = 4.

3.3. Logarithmic Impulse Distribution

Since the loudness of later impulses needs to be minimized, the

samples near the end of the sequence contribute very little to the

convolved signal. To this end, the impulses can be concentrated at

the beginning of the sequence, where loud impulses do not cause as

much smearing of the transients in the decorrelated signals, could

be beneficial. For this purpose, we can concentrate the impulses at

the beginning of the sequence by distributing their location loga-

rithmically. The grid size between each impulses is

Tdl(m) =
TT

100
10

2Tdm

M (11)

by distributing the spacing logarithmically based on a total length

TT in samples and the density parameter Td. This will also require

the use of an updated location equation

k(m) = round
(

r2[m](Tdl(m)− 1)
)

+

m
∑

i=0

Tdl(i). (12)
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Figure 3: Velvet-noise with a segmented, staircase-like decay en-

velope.
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Figure 4: Velvet-noise sequence having a logarithmically widening

grid size combined with a segmented decay envelope.

Figure 4 shows an example in which the impulse locations are dis-

tributed logarithmically and the segmented decay envelope is also

applied. Since the impulses are not independent and identically

distributed, this distribution may not preserve a flat power spec-

trum. However, given the low impulse density, this does not appear

to have a significant impact on the spectral envelope in practice

(see Section 4.2).

4. RESULTS

To evaluate the proposed methods, we first compared the comput-

ing cost of convolving velvet noise against the FFT-based white-

noise method using different signal lengths and impulse density

parameters. We analyzed the spectral envelope of the generated

filters to ensure a spectral smoothness comparable to an exponen-

tially decaying white-noise sequence and we calculated the cross-

correlation after convolving a sine-sweep signal with the generated

filters. The signal coherence was calculated over the audible fre-

quency range. Finally, to complement the numerical evaluation

methods, a preliminary perceptual test was conducted to validate

the potential of the proposed method to externalize stereo sounds

over headphones.

4.1. Computing Resources

We compared the total number of arithmetic operations required

by the white-noise decorrelation to the VND method. To esti-

mate the cost of the FFT-based convolution required by the white

noise, we chose the radix-2 algorithm. However, a low-latency

version would require extra operations to segment the input sig-

nal into multiple parts. The radix-2 algorithm has a complexity

of N log2(N) additions and N
2
log2(N) complex multiplications.

We only counted the operations required to compute the FFT of

the input signal, since the white-noise filter itself only needs to be

converted into the spectral domain once [17]. The cost per sample

was calculated using an N/2 window size for the input signal.
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The chosen amplitude decay or the impulse distribution method

do not have any impact on the required convolution, only the use of

segments does. Therefore, the computational cost of the proposed

methods can be regrouped into two categories: regular VND and

segmented VND. In Fig. 5, the proposed methods are shown to

outperform FFT-based convolution well below the required length

of a decorrelation filter. Furthermore, for a length of 1024 sam-

ples, approximately 0.23 ms at a 44.1 kHz sampling rate, the pro-

posed methods remain more efficient when the impulse density is

kept below 6000 impulses per second or below 13000 impulses per

second when using the segmented method with four segments.

In our sound examples, the decorrelation filters were chosen to

be of length 30 ms, which leads to a signal length of 1323 samples

for a sampling rate of 44.1 kHz. An impulse density of 1000 im-

pulses per seconds was selected for the VND. The input signal was

segmented into windows of 2048 samples. Since the convolution

result has the length 2M − 1, convolving two signals of length M
requires a zero-padded FFT of 4096 samples to convolve with a

filter of the same length. We can see from Table 1 that, for a length

of 30 ms and a density of 1000 impulses per seconds, the VND

with exponential decay envelope will require 76% less mathemati-

cal operations than fast convolution, whereas a segmented version

of the algorithm with four segments will yield 87% fewer opera-

tions than fast convolution.

4.2. Spectral Envelope

In the context of decorrelation, a filter should be as spectrally flat

as possible while randomizing the phase. Figure 6 compares the

power spectra of a 30 ms white-noise signal with a VNS of the

same length, both using an exponential decay envelope. Figure 7

compares the power spectra of a segmented VNS to another one

that is similarly segmented but logarithmically distributed. The

solid line shows the spectra of one randomly generated sequence.

Since they are of short length, the randomization process does not

lead to a perfectly flat spectrum. However, they both exhibit sim-

ilar spectral behavior and they both have a comparable standard

deviation over multiple randomized instances, as shown with the

dashed lines.

4.3. Cross-Correlation

Although assessing the perceptual quality of a decorrelator numer-

ically is difficult, the cross-correlation of two signals decorrelated

with a VND should result in a similar plot when compared with

a white-noise decorrelation. Assuming that the original input sig-

nal is a and its decorrelated version is b = h ∗ a, where h is the

decorrelation filter, the correlation between them is

rab(l) =
∑

n

a(n+ l)b(n), (13)

where l is the correlation lag. For decorrelation purposes, the zero-

lag case rab(0) is of practical interest, since it corresponds to the

maximum similarity between the two sequences. The normalized

zero-lag correlation is given by

ρab =

∑

n

a(n)b(n)

√

∑

n

a2(n)
∑

n

b2(n)
. (14)
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Figure 5: Comparison of computational cost between block FFT-

based convolution (cross), VND (diamond), and segmented VND

using four segments (circle): (a) the number of operations required

to process each input sample for different filter lengths when the

impulse density ρ is set to 1000 impulses per second and (b) the

cost for various impulse density settings when the filter length is

set to Ls = 1024 samples.

Table 1: Computational cost per output sample in FFT-based fast

convolution, in exponentially decaying velvet-noise convolution,

and in segmented velvet-noise convolution. The VNS has 30 non-

zero elements (30 ms at a density of 1000 impulses/seconds at

44.1 kHz).

Fast convolution Exp. VND Seg. VND

ADD 148 30 30

MUL 104 30 4

Total 252 60 34

The normalized cross-correlation coefficient is bounded between

ρab ∈ [0, 1], and a lower maximum value indicates a more effec-

tive decorrelation.

We used a sine sweep to compare the correlation of two chan-

nels decorrelated either by a white-noise sequence or a segmented

VNS (Fig. 8). Short windows of 20 ms were taken from both sig-

nals to calculate the cross-correlation values at different lag dis-

tances and generate a cross-correlogram. Figure 8(a) shows the

auto-correlation patterns of the input signal, while Figs. 8(b) and

(c) both display a comparable amount of decorrelation after apply-

ing the filters on each channels.

4.4. Coherence

Apart from the time-domain correlation, another useful metric is

the cross-correlation in different frequency bands, called coher-

ence. Normally, a decorrelator is more effective at higher frequen-

cies than at lower, which is a result of the effective length of a

decorrelation filter. Indeed, a longer filter will exhibit stronger

decorrelation for longer wavelengths, but will also create poten-

tially perceivable artifacts when the input signal contains transients.

To study the decorrelation behavior on a frequency-dependent scale,

we can use an octave or third-octave filterbank. The signals for the
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Figure 6: Spectral envelope of (a) an exponentially decaying

white-noise sequence and (b) an exponentially decaying VNS. A

third-octave smoothing has been applied to these magnitude re-

sponses. The dashed lines represent the average standard devia-

tion of randomly generating 500 sequences.

qth band are denoted as aq and bq and the correlation coefficient as

ρ
(q)
ab =

∑

n

aq(n)bq(n)

√

∑

n

a2
q(n)

∑

n

b2q(n)
. (15)

Using this equation, we calculated the coherence of both white-

noise decorrelation and VND methods. In Fig. 9, the decorrela-

tion was applied to a white-noise input signal, and the tests were

run five hundred times to accumulate the averaged results. Fig-

ure 10 shows the same calculation comparing a segmented VNS to

another that is similarly segmented but logarithmically distributed.

The exponentially decaying VNS shows similar results as the white-

noise sequence. However, the segmented version shows better

decorrelation when the impulses are linearly distributed in time

(see Fig. 10(a)), whereas it shows less decorrelation when dis-

tributed logarithmically (see Figure 10(b)). Based on these results,

the segmented version shows the most promising decorrelation po-

tential.

4.5. Perceptual Testing

Perceptual testing of decorrelation filters is important, since it is

difficult to numerically evaluate the impact of the decorrelator on

the stereo image. During an informal perceptual test, several sub-

jects found the proposed VND to lead to a similar or better decor-

relation in comparison to the exponentially decaying white-noise

decorrelator. The spectral coloration and spreading were compa-

rable, and the transients did not have artifacts, provided that lat-

ter impulses were sufficiently attenuated in the VNS. However, a

more thorough listening test is required before drawing definitive

conclusions. The VND could also be compared to other decorre-

lation methods, such as the allpass filter and filter-bank methods.

The preliminary listening suggests that the VND can provide

a satisfactory externalization of stereo sounds over headphones

at a lower computational cost than the white-noise decorrelation

method. No extra perceivable artifacts were detected when using
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Figure 7: Spectral envelope of (a) a segmented VNS and (b) a seg-

mented and logarithmically distributed VNS. Both use four seg-

ments of equal length and with values 0.85, 0.55, 0.35, and 0.20,

respectively. A third-octave smoothing has been applied to these

magnitude responses. The dashed lines represent the average stan-

dard deviation of randomly generating 500 sequences.

the segmented decay envelope instead of the exponential decay.

The tests subjects did detect some low-frequency filtering and a

spectrally fluctuating stereo image. However, these are common

by-products of decorrelation filters. Audio examples are available

at http://research.spa.aalto.fi/publications/papers/dafx17-vnd/.

5. CONCLUSION

The decorrelation of audio signals by convolving them with a short

VNS was proposed. Since a VNS is a spectrally flat signal, it can

create decorrelated signals in the same way as white noise. The

proposed VND method allows a latency-free, time-domain convo-

lution at favorable computing costs. A VNS having an appropriate

density and a decaying temporal envelope provides a comparable

decorrelation with a smaller computational cost when compared

to a white-noise sequence. When used to replace white noise in

our test scenario, the VND reduces the number of arithmetic op-

erations by 76% to 87%, depending on the configuration. Several

parameters can be used to alter the decorrelation itself, such as

density, decaying envelope, segmentation, and impulse distribu-

tion. According to this study, the VNS with a segmented decay

envelope appears to be the best option, since it produces as good

a decorrelation as white noise without latency and using 87% less

operations. Future work may study the impact of these various

parameters as well as conduct a formal perceptual evaluation and

a thorough comparison with other well-established decorrelation

methods.

6. ACKNOWLEDGMENT

The authors would like to thank Luis Costa for proofreading this

paper.

DAFX-409



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(c)

Time [s]

-0.02

0

0.02

L
a
g
 [
s
]

0.5

1

C
o
rr

e
la

ti
o
n

(a)

-0.02

0

0.02

L
a
g
 [
s
]

0.5

1

C
o
rr

e
la

ti
o
n

(b)

-0.02

0

0.02

L
a
g
 [
s
]

0.5

1

C
o
rr

e
la

ti
o
n

Figure 8: (a) Auto-correlogram of the sine sweep signal. (b) Cross-correlogram of both channels using the white-noise sequence for

decorrelation. (c) Cross-correlogram of both channels using the segmented VND for decorrelation. The correlation values were normalized

for visualization purposes.

500 2k 5k 10k 15k 20k

(b)

Frequency [Hz]

-0.5

-0.25

0

0.25

0.5

C
o

h
e

re
n

c
e

500 2k 5k 10k 15k 20k

(a)

-0.5

-0.25

0

0.25

0.5

C
o

h
e

re
n

c
e

Figure 9: Coherence graph, from 20 Hz to 20 kHz, between left and

right channels when using (a) white noise and (b) velvet noise. The

dashed lines represent the average standard deviation of the data

after running the algorithm 500 times.
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