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ABSTRACT

Digital oscillators with discontinuities in their time domain sig-

nal derivative suffer from an increased noise floor due to the un-

bound spectrum generated by these discontinuities. Common anti-

aliasing schemes that aim to suppress the unwanted fold-back of

higher frequencies can become computationally expensive, as they

often involve repeated sample rate manipulation and filtering.

In this paper, the authors present an effective approach to ap-

plying the four-point polyBLAMP method to the continuous order

polygonal oscillator by deriving a closed form expression for the

derivative jumps which is only valid at the discontinuities. Com-

pared to the traditional oversampling approach, the resulting SNR

improvements of 20 dB correspond to 2–4× oversampling at 25×
lower computational complexity, all while offering a higher sup-

pression of aliasing artifacts in the audible range.

1. INTRODUCTION

A novel complex oscillator algorithm was recently proposed [1],

which generates waveforms by traversing a two-dimensional poly-

gon over time. Such a polygon may contain any number of ver-

tices, corresponding to a desired order n > 2, which expresses

the vertices per rotation. The term complex conveniently com-

bines both the internal dependence on the complex plane as well

as the resulting complex spectral behaviour. A projection of the

path around a shape in the complex plane can be interpreted as a

time-domain signal, with the rotational speed corresponding to the

fundamental pitch. Such a signal will naturally contain a number

of discontinuities in its derivative. These discontinuities produce

an unbounded spectrum and therefore introduce aliasing artifacts

into the signal. In order to produce high-quality audio output, this

aliasing should be minimized.

Anti-aliasing of digital oscillator algorithms is a well devel-

oped topic in literature, but to-date was focused primarily on the

generation of classical waveforms or on wavetable synthesis. Re-

search into the anti-aliasing of classical analog waveforms began

with the invention of the Band Limited Impulse Train (BLIT) method

[2], which generates all waveforms by integrating an underlying

sequence of bandlimited impulses. The next major advancement

was the invention of the Band Limited stEP (BLEP), and derived

Band Limited rAMP (BLAMP) methods [3], which can be applied

to the anti-aliasing of discontinuities (of any order) in any type of

waveform, as long as the position and magnitude of the discon-

tinuity is known. Further research has concentrated on more ef-

ficient polynomial approximations of the ideal BLEP, known as

polyBLEP [4, 5, 6, 7].

A parallel stream of research has investigated techniques based

on pre-integration of the waveform to be generated, followed by

digital differentiation. These techniques have been applied to clas-

sical waveforms [8, 9] and to wavetable synthesis [10, 11]. Work

has also explored techniques that are a hybrid of these two streams

[12, 13]. More recently, both approaches to anti-aliasing have been

generalized to apply to the processing of arbitrary input signals

with a nonlinear waveshaping function [14, 15, 16, 17, 18].

In the following Section 2, the implementation of the polygon-

based oscillator is layed out, which is then anti-aliased in Sec-

tion 3. The results in terms of SNR and performance are discussed

in Section 4, followed by a short summary in Section 5.

2. POLYGON OSCILLATOR

The following is a quick recap of the continuous order polygon

waveform synthesis presented in [1]. To create the polygon P of

order n, where n denotes the number of vertices after one rotation

of the sampling phasor, a corresponding radial amplitude p(ϕ) is

generated:

p(ϕ) =
cos

(

π
n

)

cos
[

2π
n

· mod
(

ϕn

2π
, 1
)

− π
n

] , (1)

where ϕ is a linearly incrementing phase whose slope depends on

the desired pitch f0. The amplitude p(ϕ) can then used to scale a

unit circle, resulting in the polygon P in the complex plane:

P (ϕ) = p(ϕ) · ejϕ (2)

order: 2.5

order: 3

order: 4

order: 5.5

Figure 1: Projections of polygons P (φ) of different orders n from

the 2D space (left) radially sampled into the time domain (right).

DAFX-125

http://www.qu.tu-berlin.de
mailto:mail@chohner.com
https://www.e-rm.de
mailto:m.rest@e-rm.de
https://www.native-instruments.com
mailto:julian.parker@native-instruments.de
mailto:julian.parker@native-instruments.de


Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Real and imaginary projections x, y then form a 90◦ phase

shifted quadrature output which can be interpreted as oscillator

signals in the time domain:

fx(ϕ) = ℜ{P (ϕ) } = cos(ϕ) · p(ϕ) (3)

fy(ϕ) = ℑ{P (ϕ) } = sin(ϕ) · p(ϕ) (4)

Several of such polygons P (ϕ, n) and their corresponding time-

domain projections fx(ϕ) are shown in Figure 1. One can see that

with increasing order / edge count n, the polygon naturally ap-

proaches a unit circle, which corresponds to a pure sine in the time

domain when sampled spatially. A more in-depth analysis of the

link between the shape of the polygon and the resulting spectrum

can be found in [1].

3. ANTI-ALIASING

Anti-aliasing of the polygon oscillator could be achieved via most

of the available approaches. However, the BLAMP technique is

particularly suited to this problem, as the exact positioning and

magnitude of the discontinuities in the derivative of the waveform

can be obtained in a very efficient closed-form solution.

To apply a four-point polyBLAMP based on third-order B-

spline approximation (as presented in [18]), the jump of the first

order derivative has to be evaluated at the points of discontinuities,

along with the the fractional delay d between the exact time of the

discontinuity and the next sample in discrete, sampled time. Ta-

ble 1 lists the corresponding polynomials that are to be subtracted

from the four samples surrounding the discontinuity.

[−2T,−T ] d5/120
[−T, 0] [−3d5 + 5d4 + 10d3 + 10d2 + 5d+ 1]/120
[0, T ] [3d5 − 10d4 + 40d2 − 60d+ 28]/120
[T, 2T ] [−d5 + 5d4 − 10d3 + 10d2 − 5d+ 1]/120

Table 1: Four-point polyBLAMP residual for the four samples sur-

rounding a discontinuity, where d is the fractional delay.

3.1. Fractional delay

In the sampled digital time domain, the samples left and right of

the discontinuity can be traced from the continuous form, as the

positions of the discontinuities are exactly at ϕ = 2π/n · k, k ∈
[0, 1, ...,∞). The fractional delays d are the difference between

the ceiled sample time and the exact time:

d = ⌈fs/(nf0) · k⌉ − fs/(nf0) · k , (5)

where ⌈·⌉ denotes the ceiling function, f0 is the fundamental pitch

and fs is the sampling frequency.

Figure 2 shows the discrete time-domain signal f(ϕ) along

with its derivative f ′(ϕ) while marking the precise positions and

amplitude jumps of the derivative at the discontinuities as x and

their quantized position by o.

3.2. Derivative jump at discontinuity

To properly scale the residuum of table 1, we still need to find the

jump in amplitude of the derivative at the discontinuities f̂ ′(ϕ).
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Figure 2: Signal f(ϕ) of order n = 3.75 and pitch f0 = 1415 Hz

with its derivative f ′(ϕ). The discontinuities f̂ ′(ϕ) are shown at

exact and quantized positions.

The closed form derivative of equation ( 3 ), f ′
x(ϕ) with a = π

n
is:

dfx(ϕ)

dϕ
=

d

dϕ

cos(ϕ) cos (a)

cos [mod (ϕ, 2a)− a]
, (6)

Treating ϕm = mod(ϕ, 2a) as a special case of ϕ, which

needs to be differentiated but marked, yields:

f ′
x(ϕ) = cos(a)

cos(ϕ) sin(ϕm − a)− sin(ϕ) cos(ϕm − a)

cos(ϕm − a)2
(7)

f ′
y(ϕ) = cos(a)

cos(ϕ) cos(ϕm − a)− sin(ϕ) sin(ϕm − a)

cos(ϕm − a)2
(8)

3.3. Efficient implementation

We are only interested in the change in amplitude of the deriva-

tive at the discontinuities f̂ ′, which happens when ϕm ∈ [0...2a)
wraps around. Looking from both sides (ϕm↓ = 0 and ϕm↑ = 2a)

yields:

lim
ϕm↓0

f̂x
′
(ϕ) = f̂ ′

↓(ϕ) =
− sin(ϕ) cos(a)+sin(a) cos(ϕ)

cos(a)
(9)

lim
ϕm↑2a

f̂x
′
(ϕ) = f̂ ′

↑(ϕ) =
− sin(ϕ) cos(a)−sin(a) cos(ϕ)

cos(a)
(10)

This leaves us with a simple expression for the change in am-

plitude at discontinuities:

f̂ ′(ϕ) = f̂ ′
↓(ϕ)− f̂ ′

↑(ϕ) = −2 tan(a) cos(ϕ) (11)

Using Equation ( 11 ), we can now correctly scale the residuum

of Table 1. Figure 3 shows the original function and its anti-aliased

version as well as their difference, with is zero everywhere except

the 4 samples surrounding a discontinuity.
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Figure 3: Original and anti-aliased versions of the signal f(ϕ) of

order n = 3.75 and pitch f0 = 1350 Hz.

4. RESULTS

In the following Section, the presented method is compared to tra-

ditional oversampling (2x and 4x) in terms of Signal-to-Noise Ra-

tio (SNR) and computational load.

4.1. Signal-to-Noise Ratio

Sharp discontinuities exhibit unbounded frequency requirements,

which results in foldback at fNY = fs/2 and effectively raises

the noise floor of the oscillator. Therefore, the Signal-to-Noise

Ratio (SNR), which denotes the ratio between the energy in the

fundamental + harmonics and that of the rest of the spectrum is

a good metric for measuring and comparing the performance of

different anti-aliasing approaches.

Firstly, the harmonic overtones fH,k, which depend on order

n and the fundamental pitch f0, need to be determined. For the

continuous order polygonal oscillator, the frequencies of the first

K harmonics fH, k can be found to be:

fH,k(f0, n) = f0

(

2

⌊

k

2

⌋

+ 1 + (n− 2)(1 +

⌊

k − 1

2

⌋

)

)

,

(12)

where ⌊·⌋ denotes the flooring function, n is the order, f0 the fun-

damental frequency and k ∈ [1...K].
The energy of the fundamental and harmonics is extracted di-

rectly from the Fourier spectrum, the noise energy is simply the

difference of the full and the signal energy:

SNR =
Esig

Enoise

=

∑

|f0 + fH |2
∑

|f∀|2 −
∑

|f0 + fH |2
(13)

The SNR can then be calculated for both the original signal

and various anti-aliased versions. While the measured SNR de-

pends on order n as well as the fundamental frequency f0, large

improvements of the SNR on the magnitude of 20 dB compared to

the original signal were found consistently, as shown in Table 2.

It can be seen that the measured improvements of the employed

method falls between 2× and 4× oversampling, which was imple-

mented using a 64 / 128 (2×/4× oversampling) order FIR lowpass

SNR (dB)

f0 n original 2x OX 4x OX BLAMP

400 Hz 2.53 57.2 72.5 82 78.7

751 Hz 4.42 66.7 82.6 94 87.8

1350 Hz 3.75 59.4 74 83.6 80.3

Table 2: SNR at different pitches f0 and orders n of the original

signal, 2x oversampling, 4x oversampling and our BLAMP imple-

mentation.

filter and Matlab’s Polyphase FIR decimator as implemented in the

dsp.FIRDecimator object.

Figure 4 shows the Fourier spectra of the original (top) and

three anti-aliased versions: 2x oversampling (second), 4x over-

sampling (third) and closed form BLAMPS (bottom), with the

overtones of the fundamental marked in each. The chosen settings

correspond to Table 2 and are n = 2.53, f0 = 400Hz in Fig. 4a)

and n = 3.75, f0 = 1350Hz in Fig. 4b. Although the three anti-

aliased versions exhibit slightly different characteristics, the low-

ered noise floor can be seen clearly in each. In both oversampling

cases, a considerate drop in harmonics close to fs/2 can be ob-

served due to the low-pass filtering before decimation, as well as a

uniformly suppressed noise floor. On the other hand, the BLAMP

implementation exhibits only a small drop in high-frequency har-

monics and has a continuously decreasing noise floor.

The stronger aliasing at higher frequencies, although less audi-

ble, lowers the overall SNR measurement of the BLAMP approach

which uniformly weights all anti-aliasing noise. This is an advan-

tage that is not easy to measure but arguably of large importance

- BLAMP suppresses the potentially more disturbing anti-aliasing

artifacts (below 10 kHz) stronger compared to other approaches.

4.2. Performance

As shown above, relatively large improvements in SNR can be

achieved quite efficiently by precisely analysing the oscillator func-

tion at hand. The validity of the derivation is limited to the points

at the discontinuities but for a given order, only a single trigono-

metric function has to be evaluated.

Compared to traditional oversampling, the presented approach

falls in between 2x and 4x oversampling in terms of SNR improve-

ment, as shown in Table 2. However, oversampling involves three

computationally expensive steps (upsampling - lowpass - down-

sampling), which on a current machine come with an averaged

25x performance hit when comparing execution times in Matlab.

5. CONCLUSIONS

It was shown that even for non-traditional digital oscillators, el-

egant and computationally cheap solutions for the polyBLAMP

anti-aliasing approach may be found by only considering the nec-

essary points of discontinuity. For an oscillator method that in-

herently generates high levels of aliasing noise such as the one

presented, this can increase the SNR by 20 dB - beating 2× over-

sampling - at 25x lower computational complexity. The percep-

tual comparison are even be more favorable, as the polyBLAMP

method continuously drives down the noise floor (compared to

constant uniform suppression of oversampling methods) which re-

sults in lower aliasing artifacts at audible frequencies below 10 kHz.
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(a) Order n = 2.53, fundamental pitch f0 = 400Hz.
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(b) Order n = 3.75, fundamental pitch f0 = 1350Hz.

Figure 4: Magnitude spectra of the polygonal oscillator at different settings and different anti-aliasing strategies. Original (top), 2x

oversampled (second), 4x oversampled (third) and BLAMP anti-aliased (bottom). Sampling frequency fs = 44.1 kHz, fundamental and

harmonics used for SNR computation marked with ◦.
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