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ABSTRACT

One of the most challenging tasks in physically-informed sound

synthesis is the estimation of model parameters to produce a de-

sired timbre. Automatic parameter estimation procedures have

been developed in the past for some specific parameters or ap-

plication scenarios but, up to now, no approach has been proved

applicable to a wide variety of use cases. A general solution to pa-

rameters estimation problem is provided along this paper which is

based on a supervised convolutional machine learning paradigm.

The described approach can be classified as “end-to-end” and re-

quires, thus, no specific knowledge of the model itself. Further-

more, parameters are learned from data generated by the model,

requiring no effort in the preparation and labeling of the training

dataset. To provide a qualitative and quantitative analysis of the

performance, this method is applied to a patented digital waveg-

uide pipe organ model, yielding very promising results.

1. INTRODUCTION

Almost all sound synthesis techniques require a nontrivial effort

in the selection of the parameters, to allow for expressiveness and

obtain a specific sound. The choice of the parameters depends on

tone pitch, control dynamics, interpretation, and aesthetic criteria,

with the aim of producing all the nuances required by musicians

and their taste. Hereby, interest is given to the so-called physically-

informed sound synthesis, a family of algorithms[1, 2] usually in-

spired by acoustic physical systems or derived from the transform

in the digital domain of their formulation in the continuous-time

domain. Such acoustic systems (e.g. strings, bores, etc.) often re-

quire simplifying hypotheses to limit the modeling complexity and

to separate the acoustic phenomenon into different components.

Notwithstanding this, the number of micro-parameters that control

the sound and its evolution may be extremely large (see e.g. [3])

and if the effects of the parameters is intertwined the estimation

effort may grow.

In the past some algorithms have been proposed to estimate

some of the parameters of a physical model in an algorithmic fash-

ion (see e.g. [4, 5]). These, however, require specific knowledge

of physics, digital signal processing and psychoacoustic in order

∗ This work is partly supported by Viscount International SpA

to provide an estimate in a white-box approach. Furthermore, spe-

cific estimation algorithms must be devised for each parameter. To

solve these issues, a black-box approach could be undertaken to

provide a good estimate of all the parameters at once. The goal

of this preliminary work is to support the thesis that adequate ma-

chine learning techniques can be identified to satisfactorily esti-

mate a whole set of model parameters without specific physical

knowledge or model knowledge.

In the past some works extended the use of early machine

learning techniques to the parametrization of nonlinearities in phys-

ical models [6, 7], or employed nonlinear recursive digital filters

as physical models and employed parameter estimation techniques

mutuated from the machine learning literature for the estimate of

the coefficients [8, 9]). More in the spirit of this paper comes the

work of Cemgil et al. on the calibration of a simple physical model

employing artificial neural networks [10]. This work, however, to

the best of our knowledge saw no continuation. Recently another

computational intelligence approach for the estimation of a syn-

thesizer parameters using a multiple linear regression model has

been proposed, employing hand-crafted features [11]. To the best

of our knowledge, however, no further attempt has been made to

the estimation of a physical model parameters for sound synthesis

employing other machine learning approaches. From this point of

view, the swift development of deep machine learning techniques,

and the exciting results obtained by these in a plethora of appli-

cation scenarios, including musical representation and regression

[12] suggests their application to the problem at hand. Follow-

ing the recent advances of deep neural networks in audio applica-

tions, we propose here an end-to-end approach to the parameter

estimation of acoustic physical models for sound synthesis based

on Convolutional Neural Networks (CNN). The training can be

conducted in a supervised fashion, since the model itself can pro-

vide audio and ground-truth parameters in an automated fashion.

To evaluate the approach, this concept is applied to a valuable use

case, i.e. a commercial flue pipe organ physical model, detailed in

[13]. The estimation yields promising results which call for more

research work.

The paper outline follows. Section 2 provides a mathematical

formulation of the problem and the machine learning techniques

employed to provide a general solution to it. Section 3 describes

a real-world use case for validation of the proposed techniques.
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Section 4 reports the implementation details and the experiments

conducted, while Section 5 provides the results of these experi-

ments and discusses them. Finally in Section 6 conclusions are

drawn and open avenues for research are suggested.

2. THE PROPOSED METHOD

A physical model solves a set of differential equations that model

a physical system and requires a set of of parameters θ to gener-

ate a discrete time audio sequence s(n). The goal of the model

is to approximate acoustic signals generated by the physical sys-

tem in some perceptual sense. If the model provides a mapping

from the parameters to the discrete sequence s(n), the problem of

estimating the parameters θ that yield a specific audio sequence

identified as a target (e.g. an audio sequence sampled from the

physical system we are approximating), is equivalent to finding

the model inverse. Finding an inverse mapping (or an approxima-

tion thereafter) for the model is a challenging task to face, and a

first necessary condition is the existence of the inverse for a given

s(n). Usually, however, in physical modelling applications, re-

quirements are less strict, and generally it is only expected that

audio signals match in perceptual or qualitative terms, rather than

on a sample-by-sample basis. This means that, although, a signal

r(n) cannot be obtained from the model for any θ, a sufficiently

close estimate r̂(n) may. Evaluating the distance between the two

signals in psychoacoustic terms is a rather complex task and is out

of the scope of this work

Artificial neural networks, and more specifically, deep neu-

ral networks of recent introduction, are well established to solve

a number of inverse modelling problems. Here, we propose the

application of a convolutional neural network that, provided with

an audio signal of maximum length L in a suitable time-frequency

representation, can estimate model parameters θ̂ that fed to the

physical model obtain an audio signal ŝ(n) close to s(n).
To achieve this, the inverse of the model must be learned em-

ploying deep machine learning techniques. If a supervised train-

ing approach is employed, the network must be fed with audio se-

quences and the related model parameters, also called target. The

production of a dataset D of such tuples D = {(θi, si(n)), i =
1, ...,M} allows the network to try learn the mapping that con-

nects these. The production of the dataset is often a lengthy task

and may require human effort. However, in this application, the

model is known and, once implemented, it can be employed to

automatically generate a dataset D in order to train the neural net-

work.

The neural network architecture proposed here allows for end-

to-end learning and is based on convolutional layers. Convolu-

tional neural networks globally received attention from a large

number of research communities and found application into com-

mercial applications, especially in the field of image processing,

classification, etc. They are also used with audio signals, where,

usually, the signal is provided to the CNN in a suitable time-fre-

quency representation, obtained by means of a Short-Time Fourier

Transform (STFT) with appropriate properties of time-frequency

localization. The architecture of a CNN is composed of several

layers in the following form,

Z
(m) = h(σ(Q(m))), (1)

Q
(m) = W

(m) ∗Z(m−1)
, (2)

and Z(0) ≡ X , where M denotes the total number of layers,

W (m), m = 1, ...,M are the filter weights to be learned, σ(·) is

a non-linear sigmoid activation function, Z(m−1) is the output of

layer m− 1, called feature map, Q(m) is the result of convolution

on the previous feature map and h(·) is a pooling function that

reduces the feature map dimensionality. After M convolutional

layers, one or more fully connected layers are added. The final

layer has size p and outputs an estimate of the model parameters

θ̂.

Learning is conducted according to an update rule, which is

based on the evaluation of a loss function, such as

ℓ(W, e) = ‖θ − θ̂
(e)‖2 (3)

where e is the training epoch. Training is iterated until a conver-

gence criterion is matched or a maximum number of epochs has

passed. To avoid overfitting and reduce training times early stop-

ping by validation can be performed, which consists in evaluating

after a constant number of epochs the loss, called validation loss,

calculated against a validation set, i.e. a part of the dataset that is

not used for training and is, hence, new to the network. Even if the

training loss may still be improving, if the validation loss does not

improve after some training epochs, the training may stop avoiding

a network overfit.

Finally, once the network is trained, it can be fed with novel

audio sequences to estimate the physical model parameters that

can obtain a result close to the original. In the present work we em-

ploy additional audio sequences generated by the model in order

to measure the distance in the parameter space between the param-

eters θi and θ̂i. If non-labelled audio sequences are employed (e.g.

sequences sampled from the real-world), it is not straightforward

to validate the generated result, that is why in the present work no

attempt has been made to evaluate the estimation performance of

the network with real-world signals.

3. USE CASE

The method described in the previous section has been applied to a

specific use case of interest, i.e. a patented digital pipe organ phys-

ical model. A pipe organ is a rather complex system [14, 15], pro-

viding a challenging scenario for physical modelling itself. This

specific model, already employed on a family of commercial dig-

ital pipe organs, exposes 58 macro-parameters to be estimated for

each key, some of which are intertwined in a non linear fashion and

are acoustic-wise non-orthogonal (i.e. jointly affect some acoustic

features of the resulting tone).

We introduce here some key terms for later use. A pipe organ

has one or more keyboards (manuals or divisions), each of which

can play several stops, i.e. a set of pipes, typically one or more

per key, which can be activated or deactived at once by means of a

drawstop. When a stop is activated, air is ready to be conveyed to

the embouchure of each pipe, and when a key is pressed, a valve

is opened to allow air flow into the pipe. Each stop has a different

timbre and pitch (generally the pitch of the central C is expressed

in feet measuring the pipe length). From our standpoint, the con-

cept of stop is very important, since each key in a stop will sound

similar to the neighboring ones in terms of timbre and envelope,

and each key will trigger different stops which may have similar

pitch but different timbre. In a pipe organ it can be expected that

pipes in a stop have consistent construction features (e.g. mate-

rials, geometry, etc.) and a physical model that mimics that pipe

stop may have correlated features along the keys but this is not
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Figure 1: Overview of the proposed system including the neural network for parameter estimation and the physical model for sound

synthesis.

an assumption that can be done, so it is necessary to conduct an

estimate of the parameters for each key in a stop.

The physical model employed in this work is meant to emulate

the sound of flue pipes and is described in detail in the related

patent. To summarize, it is constituted by three main parts:

1. exciter: models the wind jet oscillation that is created in the

embouchure and gives rise to an air pressure fluctuation,

2. resonator: a digital waveguide structure that simulates the

bore,

3. noise model: a stochastic component that simulates the air

noise modulated by the wind jet.

The parameters involved in the sound design are widely different

in range and meaning, and are e.g. digital filters coefficients, non-

linear functions coefficients, gains, etc. The diverse nature of the

parameters requires a normalization step which is conducted on

the whole training set and maps each parameter in a range [-1, 1],

in order for the CNN to learn all parameters employing the same

arithmetic. A de-normalization step is required, thus, to remap the

parameters to their original range.

Figure 1 provides an overview of the overall system for pa-

rameter estimation and sound generation including the proposed

neural network and the physical model.

4. IMPLEMENTATION

The CNN and the machine learning framework has been imple-

mented as a python application employing Keras1 libraries and

Theano2 as a backend, running on a Intel i7 Linux machine equipped

with 2 x GTX 970 graphic processing units. The physical model

is implemented as both an optimized DSP algorithm and a PC ap-

plication. The application has been employed in the course of this

work and has been modified to allow producing batches of audio

sequences and labels for each key in a stop (e.g. to produce the

dataset, given some specifications). Each audio sequence contains

a few seconds of a tone of specific pitch with given parameters.

A dataset of 30 Principal pipe organ stops, each composed of

74 audio files, one per note, has been created taking the parameters

from a database of pre-existing stops hand-crafted by expert mu-

sicians to mimic different hystoric styles and organ builders. The

1http://keras.io
2http://deeplearning.net/software/theano/

dataset has been split by 90% and 10% for the training and vali-

dation sets respectively, for a total of 1998 samples for the former

and 222 for the latter. The only pre-processing conducted is the

normalization of the parameters and the extraction of the STFT.

A trade-off has been selected in terms of resolution and hop size

to allow a good tracking of harmonics peaks and attack transient.

Figure 2 shows the input STFT for a A4 tone used for training the

network.
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Figure 2: The STFT for an organ sound in the training set. The

tone is a A4.

The CNN architecture is composed of up to 6 convolutional

layers, with optional batch normalization [16] and max pooling,

up to 3 fully connected layers and a final activation layer. For the

training, stochastic gradient descent (SGD), Adam and Adamax

optimizers have been tested. The training made use of early stop-

ping on the validation set. A coarse random search has been per-

formed first to pinpoint some of the best performing hyperparam-

eters. A finer random search has been, later, conducted keeping

the best hyperparameters from the previous search constant. Tests

have been conducted with other stops not belonging to the training

set and averaged for all the keys in the stops.

5. RESULTS

The loss used in training, validation and testing is the Mean Square

Error (MSE) calculated at the output of the network with respect
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to the target, before de-normalization. Results are, therefore, eval-

uated in terms of MSE.

Table 2 reports the 15 best hyperparameters combinations in

the fine random search. The following activation function combi-

nations are reported in Table 2:

1. A: employs tanh for all layers,

2. B: employs tanh for all layers besides the last one, that uses

a Rectified Linear Unit (ReLU)[17],

3. C: employs ReLU functions for all layers,

4. all other combinations of the two aforementioned activation

functions obtained higher MSE score and are not included

here.

Results are provided against a test set of 222 samples from three

organ stops, and have same learning rate (1E−5), momentum max

(0.9), pool sizes (2x2 for each convolutional layer), receptive field

sizes (3x3 for each convolutional layer) and optimizer (Adamax

[18]). These fixed parameters have been selected as the best ones

after the coarse random search.

Figure 4 shows the training and validation loss plots for the

first 200 training epochs for the first combination in Table 2. The

loss is based on the MSE for all parameters before denormaliza-

tion. This means all parameters contribute to the MSE with the

same weight and makes results clearer to evaluate. Indeed, if the

MSE would be evaluated after de-normalization, parameters with

larger excursion ranges would have a larger effect on the loss (e.g.

a delay line length versus a digital filter pole coefficient). Vali-

dation Early Stopping is performed when the minimum validation

loss is achieved to prevent overfitting and reduce training times. In

Figure 4, e.g., the validation loss minimum (0.027) occurs at epoch

122, while the training loss minimum (0.001) occurs at epoch 198.

Two spectra and their waveforms are shown in Figure 3 showing

the similarity of the original tone and the estimated one, both ob-

tained from the flue pipe model.

Results provided in terms of MSE, unfortunately, are not acous-

tically motivated: not all errors have the same effect, since param-

eters affect different perceptual features, thus large errors on some

parameters may not result as easily perceived as small errors on

other parameters. To the best of the authors’ knowledge there is

no agreed method in literature to objectively evaluate the degree

of similarity of two musical instruments spectra. Previous works

suggested the use of subjective listening tests [19, 20, 21, 22], but

an objective way to measure this distance is still to be addressed.

In order to provide the reader with some cues on how to eval-

uate these results, we draw from the psychoacoustic literature, as

an example, the work from Caclin et al. [23], where spectral ir-

regularity is proposed as a salient feature in sound similarity rat-

ing. Spectral irregularity is modelled, in their work, as the atten-

uation of even harmonics in dB (EHA). The perceptual extremes

are chosen to be a tone with a regular spectral decay and a tone

with all even harmonics attenuated by 8dB. The mean squared er-

ror calculated for these two tones (HMSE) for the first 20 harmon-

ics (as done in their work) is 32dB. In our experiments, results

vary greatly, depending on the pipe sounds to be modeled by the

CNN. As an example, Figure 3 shows time and frequency plots of

two experiments. They both present two A4 signals created by the

physical model with two different parameter configurations hand-

crafted by an expert musician, called respectively “Stentor” and

“HW-DE”. The peak amplitude of the harmonics for the tones in

HMSE10 HMSE20 HMSE35

Stentor 5.2 dB 9.4 dB 18.9 dB

HW-DE 0.3 dB 10.1 dB 12.3 dB

Table 1: Harmonics MSE (HMSE) for the first 10, 20 and all 35

harmonics for the tones shown in Figure 3.

Activations Minibatch Internal layers MSE

class size size

A 40 (16, 16, 512, 58) 0.261

B 50 (4, 6, 8, 10, 512, 58) 0.203

A 40 (16, 16, 32, 32, 512, 58) 0.164

A 40 (16, 16, 32, 32, 512, 58) 0.139

A 25 (16, 16, 32, 32, 1024, 58) 0.161

A 40 (16, 16, 32, 32, 1024, 58) 0.266

A 25 (16 ,16, 32, 32, 512, 58) 0.156

A 40 (16, 16, 32, 32, 1024, 58) 0.252

A 50 (4, 6, 8, 10, 512, 58) 0.166

A 40 (16, 16, 32, 32, 256, 58) 0.179

A 25 (2, 2, 4, 4, 128, 58) 0.254

C 740 (16, 16, 32, 32, 512, 58) 0.252

B 50 (4, 6, 8, 10, 512, 58) 0.214

C 740 (16, 16, 32, 32, 512, 58) 0.257

B 40 (16, 16, 512, 58) 0.179

Table 2: The best 15 results of the fine random hyperparameters

search. Activation classes are described in the text. The MSE

is evaluated before denormalization, thus, all parameters have the

same weight. Please note: all the layers are convolutional with ker-

nel size as indicated, exception made for the second to last which

is a fully connected layer. The output layer has fixed size equal to

the number of model parameters.

Figure 3 are evaluated in terms of HMSE for the first 10, 20 and

35 harmonics in Table 1 3.

The first tone, shown in Figure 3(a) has a spectrum with a good

match for the first harmonics, but with some outliers and a gener-

ally bad match for harmonics higher than 12. The latter, shown

in Figure 3(b) has a good match, especially in its first 10 partials,

but the error raises with higher partials, especially from the 12th

up. This is reflected by an HMSE10 of 5.2 dB vs. 0.3 dB and an

error on the whole spectrum (HMSE35) of 18.9 dB vs. 12.3 dB.

HMSE20 values for the two tones do not differ significantly, due

to the averaging done on spectral ranges with different results, but

we leave them to the reader so that they can be compared to the

experiments of Caclin et al. The HMSE20 values are somewhere

between the two extremes, “same” and “different”, tending more

towards the former. Informal listening tests conducted with expert

musicians suggest that the estimated “Stentor” tone does not match

well to the original, while the “HW-DE” does match sufficiently.

We hypothesize that the spectral matching of the first harmonics is

more relevant in psychoacoustic terms to assess similarity, but we

leave this to more systematic studies as a future work. The tones

are made available to the reader online4.

3The sampling frequency of the tones is 31250 Hz, thus, 35 is the high-
est harmonic for a A4 tone.

4http://a3lab.dii.univpm.it/research/10-projects/84-ml-phymod
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Figure 3: Spectra and harmonic content for two A4 tones from (a) Principal stop named “Stentor”, and (b) Principal stop named “HW-DE”.

The gray lines and crosses show the spectrum and the harmonic peaks of ŝ(n), while the black line and dots show the spectrum and the

harmonic peaks of s(n). In the waveform plots, the upper ones are obtained by the target parameters, while the lower ones are obtained

with the estimated parameters.
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Figure 4: Training (solid line) and validation loss (dashed line)

for the best combination reported in Table 2. Please note that the

validation loss minimum (0.027) occurs at epoch 122, while the

training loss minimum (0.001) occurs at epoch 198.

6. CONCLUSIONS

In this paper a machine learning paradigm that is general and flex-

ible is proposed and applied to the problem of estimating the pa-

rameters for a physical model for sound synthesis. To validate the

idea a specific use case of a flue pipe physical model has been em-

ployed. Results in term of MSE are good and tones spectra have

a good match in terms of harmonic content, although results vary.

Such results, coming from a real-world application scenario moti-

vate the authors in believing that a machine learning paradigm can

be employed with success for the problem at hand. Nonetheless,

this first achievement calls for more research works. First of all a

validation is required with data sampled from a real pipe organ for

further assessment and to evaluate the robustness of this method to

noise, reverberation and such.

During the evaluation of the results, it has been discovered that

results may greatly vary depending on the stops acoustic charac-

ter. A rigorous approach to machine learning requires understand-

ing whether the training set, which is a sampling of the probability

distribution of all flue pipe stops obtained by the model, is repre-

sentative of that probability distribution. Furthermore, it can be ex-

pected that the organ stops that can be obtained from the model are

a subset of all organ stops that could physically built, due to model

limitations and simplifying hypotheses. On the other hand, due

to its digital implementation, the model could circumvent some

physical limitation of real flue pipes, thus, yielding stops that are

not physically feasible. This calls for a better understanding of

how different stops are related to each others in the modelled and

the physical realms, to understand before trying the machine learn-

ing approach, whether satisfying results can be obtained. As a last

remark, these are general issues that apply also to other physical

model or musical instruments.
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