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ABSTRACT

In audio spectral analysis, the Fourier method is popular because

of its stability and its low computational complexity. It suffers

however from a time-frequency resolution trade off and is not par-

ticularly suited for aperiodic signals such as exponentially decay-

ing ones. To overcome their resolution limitation, additional tech-

niques such as quadratic peak interpolation or peak picking, and

instantaneous frequency computation from phase unwrapping are

used.

Parameteric methods on the other hand, overcome the time-

frequency trade off but are more susceptible to noise and have a

higher computational complexity. We propose a method to over-

come these drawbacks: we set up regularized smaller sized inde-

pendent problems and perform a cluster analysis on their combined

output. The new approach validates the true physical terms in the

exponential model, is robust in the presence of outliers in the data

and is able to filter out any non-physical noise terms in the model.

The method is illustrated in the removal of electrical humming

in harmonic sounds.

1. INTRODUCTION

Multi-exponential models arise naturally in music and audio. They

are used in audio effects, audio coding, source separation and mu-

sic transcription. Multi-exponential models can be computed via a

non-parametric or a parametric approach.

The non-parametric Fourier based techniques are widely used

to decompose a signal into a sum of complex exponentials with eq-

uispaced frequencies on the unit circle. The frequency resolution is

directly linked to the length of the time window used for the anal-

ysis. Longer time windows result in a higher frequency resolution,

thus bounding these methods to quasi-stationary recordings. To

overcome this limitation and improve the frequency resolution of

short time windows, one can exploit the amplitude or phase infor-

mation of consecutive windows. An overview of such techniques

is found in [1].

On the other hand, parametric methods can overcome the fre-

quency limitation of the Fourier based methods, but at the expense

of being more susceptible to the noise present in the signal. An-

other advantage of parametric methods is that they can model com-

plex exponentials whose amplitudes are modulated by exponential

decays or polynomials [2]. These methods are successfully ap-

plied in different fields of audio signal processing [3, 4, 5]. To

improve the robustness against noise, other approaches have also

been developed [6, 7].
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Recently multi-exponential analysis was generalized [8] to sub-

Nyquist sampling rates. The ability to use a coarser time grid

may also improve the numerical stability of the parametric method.

Moreover, the use of a uniform non-consecutive sampling scheme

permits to avoid outliers in the data. At the same time, connec-

tions of the method with sparse interpolation from computer alge-

bra and Padé approximation from numerical approximation theory

were studied in depth [9]. In the Sections 2, 3 and 4 all these recent

results are recapped.

Making use of these recent developments, we present a new

approach in Section 5, which can be combined with the use of

existing parametric methods. In particular, it can be used on top

of any parametric technique derived from Prony’s method. The

new parametric analysis is performed on several decimated sig-

nals, each being sub-sampled. The use of a cluster detection algo-

rithm allows to automatically validate the output of the method. In

the same way it is possible to remove outliers from the data since

the latter will not be validated as true frequencies.

When applying the proposed method in Section 6 to harmonic

sounds, we see that it easily allows to detect and numerically re-

fine the lowest partial of an harmonic sound, since the validated

frequencies retrieved by the cluster analysis are stable frequencies.

From the lowest partial, a denoised version of the source can sub-

sequently be constructed.

2. THE MULTI-EXPONENTIAL MODEL IN SIGNAL
PROCESSING

In order to proceed we introduce some notations. Let the real num-

bers ψi, ωi, βi and γi respectively denote the damping, frequency,

amplitude and phase in each component of the signal

φ(t) =

n
∑

i=1

αi exp(φit), t ∈ Z

i2 = −1 αi = βi exp(iγi), φi = ψi + i2πωi. (1)

For the moment, we assume that the frequency content of φ(t) is

limited by

|ℑ(φi)/(2π)| = |ωi| < Ω/2, i = 1, . . . , n,

and we sample φ(t) at the equidistant points tj = j∆ for j =
0, 1, . . . , 2n− 1, . . . , N with ∆ ≤ 1/Ω. In the sequel we denote

fj := φ(tj), j = 0, 1, . . . , 2n− 1 . . . , N.

The aim is to find the model order n, and the parameters φ1, . . . , φn

and α1, . . . , αn from the measurements f0, . . . , f2n, . . . We fur-

ther denote

λi := exp(φi∆), i = 1, . . . , n.
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With

H(r)
n :=







fr . . . fr+n−1

...
. . .

...

fr+n−1 . . . fr+2n−2






, r ≥ 0, n ≥ 1,

the λi are retrieved [10] as the generalized eigenvalues of the prob-

lem

H(1)
n vi = λiH

(0)
n vi, i = 1, . . . , n, (2)

where vi are the generalized right eigenvectors. From the values

λi, the complex numbers φi can be retrieved uniquely because

of the restriction |ℑ(φi∆)| < π. In a noisy context the Hankel

matrices can be extended to be rectangular of size m × n with

m > n and equation (2) can be considered in a least square sense

[11].

In the absence of noise, the exact value for n can be deduced

from [12, p. 603] (for a detailed discussion see [13])

detH(r)
n 6= 0,

detH(r)
ν = 0, ν > n. (3)

In the presence of noise and/or clusters of eigenvalues, the use of

(3) is not very reliable though. We indicate in Section 5 how n is

then to be detected numerically.

Finally, the αi are computed from the interpolation conditions

n
∑

i=1

αi exp(φitj) = fj , j = 0, . . . , 2n− 1, (4)

either by solving the system in the least squares sense, in the pres-

ence of noise, or by solving a subset of n (consecutive) interpola-

tion conditions in case of a noisefree φ(t). Note that

exp(φitj) = λj
i

and that the coefficient matrix of (4) is therefore a Vandermonde

matrix. It is well-known that the conditioning of structured matri-

ces is something that needs to be monitored [14, 15].

3. EXPONENTIAL ANALYSIS VIEWED AS PADÉ
APPROXIMATION

With fj = φ(tj) we now define the noisefree

f(z) =

∞
∑

j=0

fjz
j . (5)

The Padé approximant rm,n(z) of degree m in the numerator and

n in the denominator is defined as the irreducible form of the ra-

tional function p(z)/q(z) satisfying

dj(fq − p)(z)

dtj
(0) = 0, j = 0, . . . ,m+ n.

This condition guarantees a high degree of contact between f(z)
and p(z)/q(z). Since

fj =

n
∑

i=1

αi exp(φij∆) =

n
∑

i=1

αiλ
j
i ,

we can rewrite

f(z) =

n
∑

i=1

αi

1− zλi

. (6)

So we see that f(z) is itself a rational function of degree n −
1 in the numerator and n in the denominator, with poles 1/λi.

Hence, from Padé approximation theory we know that rn−1,n(z)
computed for (5) reconstructs f(z), in other words

rn−1,n(z) = f(z).

The partial fraction decomposition (6) is related to the Laplace

transform of the exponential model (1), which explains why this

approach is known as the Padé-Laplace method [16].

Now we add a white circular Gaussian noise term ǫj to each

sample fj . In the sequel we denote the noisy series by

f(z) + ǫ(z) =

∞
∑

j=0

(fj + ǫj)z
j .

A number of strong approximation and convergence results exist

for sequences of Padé approximants to f(z) + ǫ(z). They express

what one would expect intuitively from such approximants: they

are especially useful if the approximated function is meromorphic

(i.e. has poles) in some substantial region of the complex plane

[17], as is the case for f(z) given by (6). The theorem of Nuttall,

later generalized by Pommerenke, states that if f(z)+ ǫ(z) is ana-

lytic throughout the complex plane except for a countable number

of poles [18] and essential singularities [19], then the paradiagonal

sequence {rν−1,ν(z)}ν∈N converges to f(z)+ǫ(z) in measure on

compact sets. So no assertion is made about pointwise or uniform

convergence. Instead, the result states that for sufficiently large

ν, the measure of the set where the convergence is disrupted, so

where |f(z) + ǫ(t) − rν−1,ν(z)| ≥ τ for some given threshold

τ , tends to zero as ν tends to infinity. The pointwise convergence

is actually disrupted by ν − n unwanted pole-zero combinations

of the Padé approximants rν−1,ν(z): near each spurious pole in-

troduced by increasing the denominator degree beyond the true n,

one finds an associated zero, the pole and zero effectively can-

celling each other locally. These pole-zero doublets are referred

to as Froissart doublets [20, 21, 22]. Because of the Padé conver-

gence theorem, the n true physical poles can be identified as stable

poles of successive rν−1,ν(z), while the ν − n spurious nonphys-

ical poles are distinguished by their instability [23, 24]. So these

Froissart doublets offer a way to filter the noise ǫ(z) from the un-

derlying signal f(z) [25]. Because of their ability to model the

noise, Froissart doublets should not be avoided in the computa-

tion, as in [26] and [27], but should be filtered out at a later stage

in the computation, an approach we apply in this paper.

So n is revealed as the number of stable poles in successive

Padé approximants rν−1,ν(z) for (6). Before moving to an imple-

mentation of this idea, we need another tool.

4. REGULARIZATION OF THE PROBLEM BY
DOWNSAMPLING

When replacing ∆ by a multiple

∆(k) := k∆, ∆(k) ≤ k/Ω

and thus sampling at tjk = j∆(k) = jk∆, the eigenvalues we

retrieve from (2) are not λi, but

λi(k) = λk
i , i = 1, . . . , n.
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So we fill the Hankel matricesH
(r)
n with the samples fik instead of

the samples fi, i = 0, . . . , 2n− 1. To avoid confusion we denote

the latter ones by

H(r)
n (k) :=







frk . . . f(r+n−1)k

...
. . .

...

f(r+n−1)k . . . f(r+2n−2)k






.

Again these Hankel matrices can be extended to be rectangular of

size m × n with m > n. From λk
i = exp(kφi∆) the imaginary

part of φi cannot be retrieved uniquely anymore, because now

|ℑ(kφi∆)| < kπ.

So aliasing may have occurred: because of the periodicity of the

function exp(i2πkωi∆) a total of k values in the 2kπ wide inter-

val can be identified as plausible values for 2πωi. Note that when

the original λi are clustered, the powered λk
i may be distributed

quite differently and unclustered. Such a relocation of the general-

ized eigenvalues may significantly improve the conditioning of the

Hankel matrices involved.

What remains is to investigate how to solve the aliasing prob-

lem in the imaginary parts 2πωi of the φi. So far, from λk
i , we only

have aliased values for ωi. But this aliasing can be fixed at the ex-

pense of a small number of additional samples. In what follows

n can everywhere be replaced by ν > n when using ν − n addi-

tional terms to model the noise, and all square ν × ν matrices can

be replaced by rectangular µ× ν counterparts with µ > ν. To fix

the aliasing, we add n samples to the set {f0, fk, . . . , f(2n−1)k},

namely at the shifted points

tkj+κ = jk∆+ κ∆ = jk∆+ κ∆,

j = r, . . . , r + n− 1, 0 ≤ r ≤ n.

An easy choice for κ is a small number relatively prime with k
(for the most general choice allowed, we refer to [28]). With the

additional samples we proceed as follows.

From the samples {f0, fk, . . . , f(2n−1)k, . . .} we compute the

generalized eigenvalues λk
i = exp (φik∆) and the coefficients αi

going with λk
i in the model

φ(jk∆) =

n
∑

i=1

αi exp(φijk∆)

=

n
∑

i=1

αiλ
jk
i , j = 0, . . . , 2n− 1. (7)

So we know which coefficient αi goes with which generalized

eigenvalue λk
i , but we just cannot identify the correct ℑ(φi) from

λk
i . The samples at the additional points tjk+κ satisfy

φ(jk∆+ κ∆) =

n
∑

i=1

αi exp (φi(jk + κ)∆)

=

n
∑

i=1

(αiλ
κ
i )λ

jk
i , j = r, . . . , r + n− 1,

(8)

which can be interpreted as a linear system with the same coef-

ficients matrix as (7), but now with a new left hand side and un-

knowns α1λ
κ
1 , . . . , αnλ

κ
n instead of α1, . . . , αn. And again we

can associate each computed αiλ
κ
i with the proper generalized

eigenvalue λk
i . Then by dividing the αiλ

κ
i computed from (8) by

the αi computed from (7), for i = 1, . . . , n, we obtain from λκ
i

a second set of κ plausible values for ωi. Because of the fact that

we choose κ and k relatively prime, the two sets of plausible val-

ues for ωi have only one value in their intersection [29]. Thus the

aliasing problem is solved.

5. ADDING VALIDATION TO THE ANALYSIS METHOD

The Padé view from Section 3 can now nicely be combined with

the regularization technique from Section 4. The downsampling

option uses only 1/k of the overall sequence of samples f0, f1, . . .,
f2ν−1, . . . taken at equidistant points tj = j∆, j = 0, 1, 2, . . . ,
plus an additional set of samples at shifted locations to get rid of

some possible aliasing effect. So for a fixed k > 0 the full se-

quence of samples points can be divided into k downsampled sub-

sequences

t0, tk, t2k, . . .

t1, tk+1, t2k+1, . . .

...

tk−1, t2k−1, t3k−1, . . .

For each downsampled subsequence tℓ+kj , ℓ = 0, . . . , k − 1 a

sequence of shifted sample points tℓ+kj+κ can also be extracted

from the original full sequence tj , as long as gcd(k, κ) = 1. Ac-

tually, the computation of λκ
i can be improved numerically by con-

sidering the following shift strategy instead of a single shift. Af-

ter the first shift by κ of the sample points to tℓ+kj+κ, multiples

of the shift κ can be considered. By sampling at tℓ+kj+hκ, h =
1, . . . , H = ⌊(N − k − 1 − 2nk)/κ⌋ the values αiλ

κ
i , αiλ

2κ
i ,

. . ., αiλ
Hκ
i are obtained, which can be considered as the samples

ψ(1), ψ(2), . . . , ψ(H) of a mono-exponential analysis problem

ψ(h) = αiλ
κh
i . (9)

From these we can compute λκ
i using (2) for a single exponential

term. For this the Hankel matrices are again best enlarged to rect-

angular matrices. This sparse interpolation replaces the division

αiλ
κ
i /αi by a more accurate procedure.

By repeating the computation of λk
i from (7) and λκ

i from (9)

for each ℓ = 0, . . . , k − 1, we obtain k independent problems

of the form (8) instead of just one. In each of these – assuming

that we overshoot the true number of components n in (7) and (8)

by considering ν − n – the true parameters φi from the model

(1) appear as n stable poles in the Padé-Laplace method and the

ν−n spurious noisy poles behave in an unstable way. In fact, each

downsampled sequence can be seen as a different noise realization

while the underlying function φ(t) remains the same. So the gen-

eralized eigenvalues related to the signal φ(t) cluster near the true

λk
i , while the other generalized eigenvalues belong to independent

noise realizations and do not form clusters anywhere [23, 24].

The gain of considering k downsampled multi-exponential anal-

ysis problems rather than one large problem is twofold:

• A cluster analysis algorithm can detect the number of clus-

ters in the complex plane, and hence deliver the number n
of components in the model of the form (1). So there is no

need to estimate the number n separately, by means of an

SVD of H
(0)
ν with ν > n for instance.

DAFX-224



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

• Because the physically meaningful generalized eigenvalues

form clusters of (about) k elements, their value can be esti-

mated more accurately by computing the center of gravity

of each cluster, where the cluster radius is a function of the

ill-disposedness of that specific λi [15].

The cluster analysis method used in the examples below is

DBSCAN [30]. Since the cluster radii may vary, we typically per-

form two runs of DBSCAN with different parameter settings. In a

first run we retrieve the clusters with higher density, while a second

run allows to detect the less dense clusters of generalized eigenval-

ues.

After obtaining a center of gravity as approximation for the

λk
i and a center of gravity as approximation for the λκ

i asociated

to the λk
i , the intersection of the solution sets for ωi can be taken.

We simply build a distance matrix and look for the closest match

between

ωi : exp(kφi∆) = exp(k(ψi + i2πωi)∆) = λk
i

and

ωi : exp(κφi∆) = exp(κ(ψi + i2πωi)∆) = λκ
i .

We point out and emphasize that the above technique can be

combined with any implementation to solve problem (1), more

precisely (7) and (8), popular methods being [31, 10, 11].

To illustrate the validation aspect and how it is robust in the

presence of outliers, we consider 400 audio samples of the sus-

tained part of an A4 note played by a trumpet, corrupted by an out-

lier as shown in Figure 1. We put k = 4 and κ = 3 and compare

the validation to a standard implementation of ESPRIT. As can be

seen in the ESPRIT reconstruction in Figure 1 (top), it suffers from

the presence of the outlier, as any parametric method would. The

new method, illustrated in Figure 1 (bottom), deals with k deci-

mated signals instead of the full signal and is more robust. In both

approaches we choose n = 20. While the ESPRIT algorithm deals

with a Hankel matrix of size 260 × 141, the cluster analysis only

needs Hankel matrices of size 70×30. When the recording is cor-

rupted by an outlier, here only one of the k decimated signals is

affected. The decimated sample set that contains the outlier does

not contribute to the formed clusters. But the cluster algorithm still

detects clusters composed of at least k − 1 eigenvalues at the cor-

rect locations λk
i . Since one easily identifies the decimated signal

that did not contribute to all clusters, the equations coming from

that set of samples and contributing to (4) for the computation of

the αi, are best removed from the Vandermonde system.

6. ILLUSTRATION ON A HARMONIC SOUND

We consider a recorded sound of a guitar playing a D3 note cor-

rupted by electrical humming [32], downloaded from the website

freesound.org. The samples are collected at a rate of 48 kHz,

for a duration of about 9 seconds in total (454 071 sample points

tj). We apply the method described above to audio windows of

1024 samples, with an overlap of 75% between the windows. The

goal is to extract the sinusoidal tracks [33] that form the guitar par-

tials. We choose the downsampling factor k = 5 and take κ = 7
(other combinations work as well, of course). So in each win-

dow the downsampled set contains 204 samples, which we use to

extract ν = 61 generalized eigenvalues, leaving us to Hankel ma-

trices of size (at most) 143 × 61. For the solution of (7) we use
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Figure 1: Corrupted trumpet recording reconstructed by ESPRIT

(top, circles) and by the new method (bottom, crosses).

the ESPRIT algorithm [31]. After superimposing the k = 5 anal-

yses of the downsampled audio windows, a cluster analysis using

DBSCAN is performed for each window, thus retrieving the gen-

eralized eigenvalues λk
i most accurately.

To illustrate the regularization effect on the rectangular 143×
61 analogon of (2) from choosing k > 1, we show in Figure 2 the

distribution of the generalized eigenvalues λi, i = 1, . . . , n of the

full not downsampled 60-th windows starting at t15104 opposed to

that of the λ5
i , i = 1, . . . , n of the downsampled set of samples

from the same window.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2: Generalized eigenvalues λi (left) versus λ5
i (right) from

the 60-th window.

In the wake of the shift strategy discussed in Section 5 (we

merely took h = 1, . . . , 24 < H), the value λκ
i can further be im-

proved. After performing the cluster analysis on the superimposed

results for λk
i , we can look at the λκ

i associated with each of these

and compute their center of gravity (disregarding those that fall out

of scope). Note that for the λκ
i no separate cluster analysis needs

to be performed. The latter is illustrated in Figure 3 for i = 16,

corresponding to the 16-th harmonic partial.

Since the technique is being applied to a harmonic sound, an
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Figure 3: Cluster of λ5
15 values (left) and λ7

15 values (right).

additional step can be performed to estimate the base frequency

(per window) more accurately. Once the stable frequencies φi, i =
1, . . . , n are retrieved, we look for a harmonic relation between

them. We divide every detected harmonic partial φi by the inte-

gers j = 1, . . . , 40 (which is the largest number of partials ex-

pected) and we add these quotients to the discovered φi, in this

way creating a new larger cluster at the base frequency, which we

call φ1. The center of gravity of this larger cluster estimates the

lowest partial of the harmonics. Using this estimate of the base fre-

quency φ1, all higher harmonic partials jφ1, j = −60, . . . , 60 are

reconstructed and substituted in one large rectangular 512 × 121
Vandermonde system (4), which serves as the coefficient matrix

for the computation of the αi, i = 1, . . . , 121.

While moving from one window to the next over the course

of the 9 seconds, the higher harmonic partials that are detected

become weaker and fewer. So n decreases with time. We re-

fer to Figure 4, where we again show the generalized eigenval-

ues λi and λ5
i , before and after regularization, now for one of the

middle audio windows. Fortunately, the number of partials re-

mains large enough during the whole audio fragment to rebuild

the harmonics as described. Since the final reconstructed gui-

tar sound only makes use of the φi from the stable generalized

eigenvalues, the reconstruction, which can be downloaded from

https://www.uantwerpen.be/br-cu-ea-val-17/,

does not suffer from the electrical hum anymore.
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Figure 4: Generalized eigenvalues λi (left) versus λ5
i (right) from

a middle window.

7. CONCLUSION

We present an approach that can be embedded in several paramet-

ric methods. We exploit the aliasing phenomenon caused by sub-

Nyquist sampling and the connections with sparse interpolation

and Padé approximation. The result is a parametric method that

is able to discern between the stable and unstable components of

a multi-exponential model. It can thus remove outliers and/or the

noisy part of the signal. We illustrate our approach on a harmonic

sound where the validated output is used to refine the estimation

of the lowest partial and reconstruct the signal thus eliminating the

electrical humming present in the recording.

In our case study, we use a quasi-stationary sound and thus

have not fully exploited the potential of the presented method yet.

In the future we plan to apply the techniques described in Section

5 to decaying signals and signals with modulated amplitudes. Our

illustrations pave the way for a wider field of unexplored applica-

tions and connections. Actually, every audio algorithm that makes

use of a parametric method, may benefit from the ideas presented

here.
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