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ABSTRACT

Two well known examples of electro-acoustical keyboards played
since the 60s to the present day are the Wurlitzer electric piano
and the Rhodes piano. They are used in such diverse musical gen-
res as Jazz, Funk, Fusion or Pop as well as in modern Electronic
and Dance music. Due to the popularity of their unique sound
and timbre, there exist various hardware and software emulations
which are either based on a physical model or consist of a sample
based method for sound generation. In this paper, a real-time phys-
ical model implementation of both instruments using field pro-
grammable gate array (FPGA) hardware is presented. The work
presented herein is an extension of simplified models published
before. Both implementations consist of a physical model of the
main acoustic sound production parts as well as a model for the
electromagnetic pickup system. Both models are compared to a
series of measurements and show good accordance with their ana-
log counterparts.

1. INTRODUCTION

Electromechanical and analog electric systems used for musical
sound generation were building blocks of early types of electronic
music instruments from the late 19th century well into the sec-
ond half of the 20th century. Largely driven by the advances in
science and engineering as well as the rising capabilities of mu-
sic recording, transmission and reproduction systems, these in-
struments were crucial for the evolution of various modern music
styles and were formative ingredients for multiple music genres.
Two prominent electromechanical keyboard instruments from the
1960s and 1970s that are still being used in modern music produc-
tions are the Fender Rhodes and the Wurlitzer electronic piano.
Their unique sound can be heard in many well known songs from
genres such as Jazz, Funk, Pop, Rock and modern electronic mu-
sic as well. Due to the fact that central parts of modern music pro-
duction, recording and transmission gradually shifted from analog
to fully digital processing chains from the late 20th century on,
these two instruments are popular options for digital emulations
in synthesizers, digital keyboards and hardware/software samplers
of differing product generations and vendors. Notwithstanding the
availability of a multitude of different emulations on various hard-
ware and software platforms , there is an ongoing effort to optimize
models of musical instrument towards physical plausibility and re-
alistic sounding simulations of analog instruments in general as
well as the Rhodes and Wurlitzer in special.

In this paper, a methodology and implementation of a Fender
Rhodes and Wurlitzer e-piano’s sound production system imple-
mented on field programmable gate array (FPGA) hardware is pre-
sented. The implementation is based on a physical model pub-
lished in [18], [17], [19] and uses a similar hardware implemen-

tation methodology as is published in [21]. This work aims at
extending the existing physical models of mentioned publications
in two regards by (1) implementing them on a FPGA for real-time
synthesis and (2) making the physical model more accurate when
compared to physical measurements as is discussed in more detail
in section 4 and 5.

2. RELATED WORK

Scientific research regarding acoustic and electro-mechanic prop-
erties of both instruments is comparably sparse. Freely available
user manuals as well as patents surrounding the tone production
of the instruments give an overview of basic physical properties of
both instrument [5]; [7]; [8]; [13]; [4]. The operation manual of
the Rhodes contains several important aspects of its construction
and explains influences of mechanical properties and the resulting
effects on the sound of the instrument, see [11]. The Wurlitzer’s
manual gives a comprehensive overview and reference on the con-
struction of the instruments and the resulting sound, see [25]. As
is shown in [18], some of these publications fail to explain the in-
fluence of certain physical effects in the formation of the sound.

Regarding a scientific classification of the acoustic and elec-
tronic properties of the Rhodes and Wurlitzer piano there are sev-
eral works that can be highlighted here. A thesis , available in Ger-
man only, highlights acoustic features of the Rhodes by focussing
on the vibration of the tine and the resulting sound [10]. Some
non-linear properties and effects of the rhodes’ tone production is
published in [19] and [17]. A physical model of Rhodes’ tone pro-
duction using a Port-Hamiltonian approach is presented in [27].
Acoustic properties taken from high-speed camera measurements
and finite difference models of both instruments are published in
[18].

3. PHYSICAL PROPERTIES

This section gives an overview on on physical properties of the
main sound producing parts of both instruments. The measure-
ments presented here are based on work published in [18] as well
as more recent measurements performed on the same instruments.

3.1. Tone production mechanism in the Fender Rhodes

The Fender Rhodes measured in this work is used as a foundation
for the model presented in section 5. It is comparable to most
Rhodes’ electronic pianos from the late 60s to the early 80s.

The mechanical part consists of a rod made of spring steel
shrunk into an aluminium block on one side, making the result-
ing system comparable to a cantilever beam. The length and cir-
cumference of the rod as well as the position of a small tuning
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spring, adding mass, determines its fundamental frequency. The
rod, which in the case of the Rhodes piano is called a tine, is ex-
cited by hammer having a neoprene tip. The key action mechanism
is a simplified single action as described in [6], it can be compared
to a Viennese or German piano action because the hammer is in
direct contact with the key. Depending on the year of construction
the key and hammer mechanisms are crafted from wood or, as is
generally used in newer models, of synthetic materials. Every tine
is damped by an individual felt damper that is in contact with the
tines from below. The fixation of the tine, the aluminium block, is
tightly connected to a, sometimes π

2
twisted, brass bar which acts

as the second prong of the patented Rhodes’ “tuning fork” system.
The harmonic oscillations of the mechanic part of the Rhodes’

tone production is converted to an alternating voltage by an elec-
tromagnetic pickup that consists of a wound permanent magnet.
This setup is comparable to a pickup of a guitar in its overall struc-
ture but differs in terms of the geometry of the magnets tip as is
depicted in Figure 1.

The geometry of the pickup’s iron tip shapes the specific distri-
bution of the magnetic field in which the tine vibrates. The motion
of the ferromagnetic tine changes the flux of the magnetic field
which in turn produces a change in the electromotive force of the
pickup. This results in an alternating voltage which then can be
amplified by an external amplifier. The copper wire winding of
each pick up is divided into two sections, connected in opposite
phase for hum cancelling.

The timbre of a Rhodes note can be altered by changing the
position of the tine in respect to the magnet as schematically de-
picted in Figure 7a and Figure 7b.

Figure 1: The Rhodes Tuning Fork assembly with electromagnetic
pickup.

3.2. Tone production mechanism in the Wurlitzer

Compared to the Rhodes piano, the tone production mechanism
in the Wurlitzer piano is based on a different physical principle .
In contrast to the Rhodes’ picks-up which reacts to changes in the
magnetic field (H-field), the Wurlitzer’s pickup system is designed
to detect changes in the E-field distribution over the sound gen-
erators geometry. In special, it is designed as a time-varying ca-
pacitor which consists of a loaded static plate and a moving plate,
called a reed [25], having zero potential (connected to ground).
Mechanically the reed is fixed at one side and free on all others.
According to the manual, the high potential has a voltage 170V
which has been found to be considerably lower (130V) in the mea-
sured instrument used in this work. Effectively, the time varying
capacitance induces a time-varying current which in turn induces
a time-varying voltage which is being amplified by the subsequent
amplification circuit.

There are two factors determining the fundamental frequency
f0 of every reed, the physical dimensions of the reed itself and the
amount of solder on the tip of the reed. By removing or adding lead
to the tip of the reed its f0 is increased or lowered respectively.

Figure 2: Structural depiction of the Wurlitzers pickup system. A
side view on the left, top view on the rigth. Both showing the high
potential plate and the low potential reed.

As is depicted in Figure 2, the charged plate has cutouts at the
position of the reed for each note of the instrument. The reeds are
designed to vibrate freely between the symmetric cutouts, provid-
ing a surface area large enough to produce a measurable change in
capacity. The air gaps between plate and reed act as dielectric ma-
terial. Analogous to the case of a plate capacitor or the diaphragm
of a condenser microphone, the capacity varies inversely propor-
tional to the distance between the two electrodes, in this case: reed
and fixed plate.

The key action mechanism of the Wurlitzer piano consists of a
miniaturized London style piano action that can be regulated like
a grand piano action. Every reed of the Wurlitzer electric piano is
excited by an individual ply maple hammer that has a felt tip [25].
Comparable to the playing dynamics of the Rhodes piano, depress-
ing the keys with higher velocity results in a richer harmonic sound
of the Wurlitzer than playing softly.

4. MEASUREMENTS

4.1. Measurement tools

All measurements of visibly moving parts of both instrument’s
primary sound production parts are performed using a Vision Re-

search V711 high-speed camera. The recorded motion is tracked
with sub-pixel accuracy using Innovision System’s MaxTraq2D soft-
ware. The traced trajectories are exported as time series which are
post-processed and evaluated using the high-level language julia.
Electronic properties are measured using a measurement amplifier
and converter LTT24 by Tasler. Analog sound outputs of both in-
struments are recorded using Logic Pro X software and a Focusrite

interface running at 44,1kHz and 24 bit.

4.2. Rhodes measurements

As depicted in Figure 3, the tip of the tine vibrates in an approx-
imately sinusoidal motion, the direct-out signal measured behind
the pick-up has a more complex waveform, showing the influence
of the magnetic field of the pick-up.

As an extension to the measurements in one plane, the same
rhodes tine is measured with the camera in two horizontal dimen-
sions. Figure 4 shows non-planar motion in the transversal direc-
tion. The tine’s vibration in the vertical plane uver , which is the
direction of the hammer impact, is larger when compared to that in
the horizontal plane uhor . The horizontal motion is excited either
through coupling effects on the tine or due to imperfections in the
hammer tip.
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Figure 3: Measurement of one Rhodes tine. The upper row shows
the deflection of the tine the lower the measured direct-out signal
behind the pick-up.

Figure 4: Phase plot of the two polarisations of the tine deflection
of one tine.

4.3. Wurlitzer measurements

Figure 5 shows the first 12 milliseconds of the Wurlitzer’s reed
motion and the measured sound at the output.
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Figure 5: The upper graph shows the tracked camera signal having
approximately sinusoidal motion. The lower graph shows the volt-
age measured behind the pick-up system before the amplification
circuitry.

5. PHYSICAL MODEL

5.1. Overview

The physical models presented in this section are based on the
measured properties presented in section 4, qualitative observa-
tions of the FEM models published in [18] and some assumptions
regarding material properties of the Wurltizer’s reed and the ham-
mer tip of both instruments. The model of the Rhodes e-piano
includes a formulation for the hammer impact, a model of a beam
vibrating in two polarisations subject to large effects and a pre-
processed approximation of the magnetic field distibution over the
tip of the pick-up’s magnet core. The model of the Wurlitzer
EP200 shares conceptual similarities with the Rhodes model but
is adapted to the different geometry of the sound production. The
tine of the Wurlitzer is modeled as a non-uniform cantilever beam
with large-deflection effects and a spatial transfer function describ-
ing the change in capacitance resulting from the motion of the tine.

5.2. Hammer model

A hammer impact including viscoelastic material properties of the
hammer tip can be simulated by using a hysteretic hammer model
as presented in [22] and [14]. This impact model is able to sim-
ulate hammer impacts of different materials showing viscoelastic
behaviour. Based on the formulation in [14], a distributed force
exerted by a hammer impact follows the relationship

F ([x], t) =

{

k · x(t)α + λ · x(t)α · xt(t) if
∑

xL x > 0

0 for
∑

xL x ≤ 0
(1)

with
∑

xL indicating a weighted sum over the contact area. This
model is based on a model for hammer impacts developed by Hunt
& Crossly [33], that has been shown to yield good results for mod-
els of hammer impacts with moderate impact velocities and plain
geometries [14]; [29]. Here, α is the nonlinearity exponent de-
pending on the geometry of the contact area and λ is a material
dependent damping term that dissipates energy in dependence to
the velocity of the changing hammer-tip compression written as
xt.

5.3. Rhodes tine model

In an earlier work ([18]), the tine of the Rhodes was modeled as
simple harmonic oscillator approximating it’s fundamental mo-
tion. Here, the tine is modeled as a cantilever beam with non-
planar motion, large-deflection effects, and inclusion of the tuning
spring as an additional mass.

Large deflection effects are included by taking shearing effects
in the beam into account. Trail & Nash [26] showed that the shear
beam is a better approximation for the vibrations of the funda-
mental frequency then the more popular Euler-Bernoulli beam and
less computationally complex as the similar accurate Timoshenko
beam model. Coupling between two polarisations for large deflec-
tions of the beam can be included as proposed in [?]. Compared
to its diameter, the deflection of the Rhodes’ tine is large. Thus it
is feasible to include high deflection effects into the formulation
of the model. As shown in [28] the inclusion of shear effects to
the Euler-Bernoulli beam raises the accuracy of the fundamental
frequency as well as the accuracy of higher partials. Following the
consideration in [28], the differential equation for a round beam
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exhibiting large and non-planar deflections, having non homoge-
neous mass, and not considering the angle of rotation can be writ-
ten as

ρutt + [EIuxx]xx − EA
1

2
uxx ·K(u)

− κu2x2t − F (uV [x], t) = 0 (2)

Here, u is the deflection in two transverse polarisations (H,V ),
E is the Young’s modulus I is the radius of gyration and A is the
cross-sectional area. F (uV [x], t) is the forcing function of the
hammer model, impacting the bar in the vertical direction indi-
cated by uV . K(u,w) is a nonlinear Kirchhoff-like term given
as

K(u) =

∫ l

0

(uH
x )2 + (uV

x )2dx (3)

5.4. Rhodes pickup model

As depicted in Figure 1 the tip of the tine vibrates in close proxim-
ity to the electromagnetic pickup and the FEM simulations given
in Figure 8 of [18] highlight that only a small part of the tip is in-
fluenced by the magnetic field. For a derivation of the magnetic
field distribution in two dimensions, the tip is approximated as a
finite point oscillating over an idealised geometry of the magnetic
pick-up tip.

The electromagnetic effects of the Rhodes’ pickup system can
be reduced from Maxwell’s equations for transient electromag-
netic effects to a more tractable formulation know as Faraday’s law
of induction. As shown above, the pickup consists of a magnetized
steel tip and a coil wrapped permanent magnet; leaving reciprocal
magnetic effects of the induced current in the coil out of our con-
sideration, the voltage induced over the pickup is equivalent to the
change of the magnetic flux in the field produced by the magnet

ǫ = −
∂ΨB

∂t
(4)

with ǫ the electromotive force and ΨB the magnetic flux due to the
change in the magnetic field given by

ΨB =

∫

~B · d~S (5)

with B the magnetic field strength integrated over surface S. Us-
ing these equalities, the induced voltage directly depends on the
change of magnetic field strength which depends solely on the po-
sition of the tine disturbing the field as shown in Figure 7.

The following derivation of the magnetic field distribution uses
the unphysical assumption that there exist magnetic monopoles
which produce a distributed magnetic field.1 As is shown in [16]
this approach yields good approximations of notional magnetic in-
duction fields produced by guitar pickups (see also [15]). Consist-
ing of a plainer geometry, the tip of a guitar pickup bar magnet can
be simplified to a circular, magnetically charged disc with a certain
cross-section, which reduces the problem to a position-dependent
integration of the field over the pickup. Due to the specific pickup
geometry of the Rhodes, a different approach is taken here to cal-
culate the induction field strength above the tip of the magnet. As

1This assumption proposes an equivalence between the effective causes
of electric fields and magnetic fields and can be used as a mathematical
modeling tool, see: [31, pp. 174 ff].

depicted in Figure 6 our derivation makes use of several simplify-
ing assumptions facilitating the computation of the magnetic field
distribution over the magnet’s tip that are

1. The tine vibrates in an sinusoidal motion in both planes in
in front of the pickup.

2. The tip of the tine vibrates on the trajectory of an ideal circle
with the center at its fixation point.

Figure 6: Simplified geometry of the pickup system and the vibrat-
ing tine in the x- and y-plane orthogonal to the magnetic pick-up.

Defining an imaginary magnetic point charge which induces a change
in the magnetic flux in the direction of z

Bz = B0

∆z

|r21|3
(6)

The magnetic field for position (x
′

, z
′

) in front of the of steel tip
can thus be written as a three-part integral

Bz(x
′

, z
′

) = |Btine|

·

[
∫ b

a

σ(z
′

− z(x))x

[(x′ − x)2 + (z′ − z(x))2]3/2
dx

+

∫ c

b

σ(z
′

− zk)x

[(x′ − x)2 + (z′ − zk)2]3/2
dx

+

∫ d

c

σ(z
′

− z(x))x

[(x′ − x)2 + (z′ − z(x))2]3/2
dx

]

(7)

with σ the constant magnetic charge density the magnetic field

distribution for position (y
′

, z
′

) can be computed accordingly. In-
tegrating this formula for all points on a trajectory given by the
position of the Rhodes’ tine tip

z
′

= r −
√

r2 − (x′)2

x
′

= x̂ · sin(2πftinet) (8)

DAFX-20



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

with ftine the fundamental frequency of the tine, leads to a mag-
netic potential function characterising the magnitude of relative
magnetic field change.

An idealised form of the magnetic field in front in one plane of
the Rhodes pickup is depicted in Figure 7a and 7b, it is comparable
to the measurements results published in [16].

Figure 7: An idealised schematic deptiction of the pickup system
of the Rhodes E-piano. The sinusoidal motion of the vibrating tine
induces a c a) A low amplitude input of a sinusoidal vibration of
the magnetic flux weighted by the magnet fields distribution. By
differentiating the magnetic flux in respect to time, the alternat-
ing voltage present at the output is calculated. b)A similar model
setup as before consisting of a slightly displaced mid-point for the
input motion resulting in a different weighting function of the mag-
netic field. The output shows a different form than before. This
condition is close to a realistic playing condition found in Rhodes
E-pianos.

5.5. Wurlitzer reed model

The reed of the Wurlitzer is modeled using a similar PDE as for
the Rhodes’ tine using only one direction of motion u, the coupling
term between the two polarisations is ommited. The use of a beam
model instead of a plate model is justifiable here because typical
effects found in plates were not measured using the high-speed
camera setup and thus are either not present or small compared to
the transversal deflection of the fundamental mode. In addition to
that, the measurements show that the influence of higher modes
are comparably small or non-existent even under extreme playing
conditions, thus the primary mode of vibration can be approxi-
mated by the reeds first natural frequency which coincides with a
cantilever beam of similar dimensions.

ρutt + [EIuxx]xx − κu2x2t − f(x, t) = 0

with the same variables as introduced before. Again Equation 9
does not explicitly depend on the shear angle α (see [28]) thus it is
not regarded here any further. Again omitting the shear angle, the
boundary conditions for the fixed/free beam are

u|0 = 0

k
′

GAux|L = 0 . (9)

5.6. Wurlitzer pickup model

The influence of the Wurlitzer’s pick-up system can be charac-
terised as a change in capacitance of a time varying capacitor in-
duces an alternating voltage which is amplified as the instruments

sound. Using a basic definition of time-varying capacitance that
induces a current i we get

i(t) = C(t)
∂u(t)
∂t

+ u(t)
∂C(t)
∂t

(10)

with u the voltage and C the capacitance both depending on time
t. For the derivation of the influence function of the capacitor we
take two simplifying assumptions.

1. The time dependent charging / discharging curve of the ca-
pacitor is linear in the considered range.

2. The supply voltage stays constant during a capacity change
cycle of the capacitor.

Using both definitions, we can write the time-dependent current
resulting from a changing capacitance as

i(t) = u0

∂C(t)
∂t

(11)

This alternating current induces an alternating voltage over a resis-
tor that drives an amplification circuit.

To calculate the capacitance curve due to the deflection of the
Wurlitzer’s reed, a number of i planes through the geometry are
taken and the electric field strength is computed for each resulting
slice simplifying the 3-dimensional problem to a 2-dimensional.
The capacitance for each slice can be computed from the electric
field by

Ci =
Qi

Ui
(12)

with Qi = ǫt
∮

A
~E · dA the charge defined as the integral of the

electric field over the surfaces of the geometries using Gauss’s the-
orem and ǫt an electric field constant for the material and free field
properties. Three exemplary positions for the computation of the
capacitance are depicted in Figure 8.

Figure 8: Distribution of the electric field for one examplary reed
deflections. On the left hand side one slice of geometry on the
right hand side the results from an FEM model.

6. HARDWARE MODEL

6.1. Overview

The finite difference implementations of the physical models de-
scribed in section 5 are implemented on an FPGA development
board consisting of a XILINX Virtex-7 690T. This section gives a
short overview on the methodology and the implementation of the
real-time hardware models. A more detailed account is published
in [21] or [34]
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6.2. FPGA hardware overview

The real-time implementations presented in this work, make use
of the parallel structure of an FPGA using a concurrent iterative
approach for basic computations of all numerical schemes.

The parallel processing capabilities of FPGAs are mainly due
to their inherently parallel hardware structure. The core parts of
FPGAs consist of freely programmable, interconnected logic cells
that can perform several Boolean operations (AND, OR, XOR. . . )
depending on input and configurations signals. Most modern FP-
GAs employ Look-Up-Tables (LUTs) which act as addressable
function generators having a number of logic inputs and logic out-
puts performing a specified Boolean operation [?]. Interconnect-
ing these basic logic blocks, more complex logic functions can
be realized ranging from basic arithmetic operations to specialised
processing units.

6.3. FD Models on FPGA Hardware

To take benefit from the inherently parallel structure of FPGA
hardware central parts of the FD models introduced in this work
are processed in parallel. The numerical schemes developed in (5)
can be split into sequential and parallel parts. The sequential com-
putation is necessary for the interdependent computations of the
velocities and the deflection of one discretised FD node on a geom-
etry. When processed with synchronous timing, all FD nodes can
be computed concurrently leading to an numerical scheme which
can be efficiently computed on FPGA hardware.

The real-time implementations of the proposed FD models
make use of a structured design approach consisting of a layer
model developed to combine functional parts of FD models and
assort them according to their respective functionality. All parti-
tions of the FPGA implementations are categorised into five differ-
ent sub-layers, each encapsulating specific functionality, specific
data types and a specific communication protocol [21]. This layer
model enables the reuse of structurally similar parts of different
models minimizing implementation efforts for new FD designs.

Both instrument models are implemented by transferring the
FD models developed before to a hardware level. This can be re-
alised by rewriting the finite difference schemes using a hardware
operator notation explained below. All basic numerical computa-
tions are implemented on the Algorithmic Layer, the structure of
the modeled geometry is initialised and parametrised on the Model
Routing Layer. The functionality of the other layers include signal
routing, timing and synchronisation of the computation and simu-
lated signals.

A structural flow diagram given in Figure 9 shows that both
models share similarities regarding their processing steps.

Figure 9: Schematic depiction of the processing chain of the
model. 1© The respective model is initialised regarding its physical
properties and boundary condition. 2© Computation of the finite
difference models on FPGA hardware. 3© Output of the respec-
tive exciter model. 4© Rhodes model output. 5© Wurlitzer model
output.

6.4. Discrete FD Operators

As extension to the well-established FD operator notation (see
[32]; [30] or [29] a discrete operator formalism is used in this
work. The operator notation allows to transfer several mathemat-
ical operation into a simpler notation. In the following, this con-
cept is extended to an even lower abstraction level by resolving
the underlying mathematical operations to the specific operations
depending on the data type and underlying hardware structure. As-
suming a signed two’s complement data type, a centered finite dif-
ference operator can be expressed with following statement

δ̂x = T∆ · [ǫ̂∆x+,−ǫ̂∆x−] (13)

with ǫ̂∆x+/∆x− = a read operation from a register a finite differ-
ence cell right (+) or left (-) of the actual cell and T∆ a multiplicand
which depends on the stride of the discrete grid in the spatial do-
main. A second order centered FD operator in vector notation can
be written as

δ̂xx = T∆ · [(ǫ̂∆x−), (< 1), (ǫ̂∆x+)] (14)

with T∆ = 1

∆x
and (< 1) indicating a shift operation. This shift

operation can be used to replace a multiplication by 2 in fixed-
point arithmetic. A higher order digital FD-operator used for the
fourth order differential equation of the beam can be constructed
by a convolution of two second order digital FD operators

δ̂4x = δ̂xx ∗ δ̂xx. (15)

This can be extended to higher spatial order difference operators
leading to a specific numbers of digital operations for the respec-
tive operator given in Table 1. These basic operators can be em-

??

Table 1: Digital operations for FD operators used in this work
Operator Reg. Op. Shift Op. Mult. Add./Sub.

δ̂x 2 0 1 2
δ̂xx 3 1 1 2
δ̂4x 5 4 1 5
δ̂2x2y 5 1 1 4

ployed for temporal as well as spatial discretisation and can be ex-
tended by including variable as well as static multiplicands into the
formulation. For reasons of brevity, all material parameters of the
following models are included in the operator notation as multipli-
cands and are preprocessed during model initialisation. Hence, a
second order operator still needs one multiplication including ma-
terial and geometry dependant weighting.

6.5. Finite difference hardware models

The exciter models of the Rhodes and the Wurlitzer pianos are dis-
cretised applying standard finite difference approximations using
a symplectic Euler scheme for iteration in time. The discretisation
method and the scheme are published in more detail in [21] and
[20]. Applying the presented hardware FD approximations from
Table 1 and splitting the PDE by introducing v1 = u_t, the trans-
verse part of Equation 2 can be written as

δ̂tv = [−δ̂xx + δ̂tt]δ̂
M
xxu+K(u,v, t) + F ([x], t)

δ̂tu = v (16)

DAFX-22



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

7. SIMULATION RESULTS

7.1. Interaction with the model

Both real-time models can be controlled and parametrized using
a script file. Besides controlling physical properties of the tone
generators, initial values of the hammer can be set. A keyboard in-
terface implementing the OSC protocol to interact with the models
is a work in progress.

7.2. Simulation results Rhodes model

The following examples show simulation results of the real-time
model parametrized with different initial conditions.

Increasing hammer velocities

Figure 10 shows five simulated Rhodes notes with varying start ve-
locities the hammer model. This simulation shows that increasing
the impact velocity of the hammer, increases the complexity of the
Rhodes’ due to the effects shown in Figure 7.

Figure 10: Spectrogram of a Rhodes model impacted with increas-
ing hammer velocity.

2 dimensional polarisation

One of the effects that can be modeled using the extended formula-
tion of the Rhodes’ tine presented in this paper is the possibility to
simulate two-dimensional vibrations of the impacted Rhodes tine

Figure 11 depicts the simulated deflection of both horizontal
polarizations of the tine. When compared to the measurements
given in Figure 4 it is obvious that the simulated coupling mech-
anism is capable of representing the measured behaviour of the
tine.

Tuning of a Wurlitzer reed

In this simulation, the amount of solder on the Wurlitzers reed
is changed by altering the mass distribution at the tip of the reed
(see Figure 2 for a schematic depiction of the reed). As shown in
Figure 12, changing the amount of solder leads to a detuning of
the fundamental vibration frequency.

8. CONCLUSIONS

In this paper a real-time implementation of main sound producing
parts of the Rhodes and Wurlitzer electronic pianos was presented.

Figure 11: Horizontal vs. vertical deflection of an hammer im-
pacted Rhodes tine.

Figure 12: Spectrogram of five synthesized Wurlitzer notes. Every
second, the mass on the tip is increased, thereby simulating the
tuning procedure as described in section 3.

Both instruments are based on physical models and are computed
on a an FPGA board which is connected to a standard personal
computer and can be played and parametrized in real-time.

The presented models are able to capture salient features of the
instruments and make it possible to interact with physical proper-
ties and parameters. Regarding the expressive range, both modeled
instruments capture essential parts of the sound characteristics and
can help in understanding specific features of both instruments in
more detail.

Nonetheless, there are several parts in the model formulation
which work with simplifications especially the physical properties
of the respective pick-up systems. A further step to enhance this
work would be an inclusion of a geometrically accurate model of
the Rhodes electromagnetic pick-up and the Wurlitzer’s electro-
static pick-up system.
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