
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

LIVE CONVOLUTION WITH TIME-VARIANT IMPULSE RESPONSE

Øyvind Brandtsegg ∗

Department of Music,
Norwegian University of Science and Technology

Trondheim, Norway
oyvind.brandtsegg@ntnu.no

Sigurd Saue

Department of Music,
Norwegian University of Science and Technology

Trondheim, Norway
sigurd.saue@ntnu.no

ABSTRACT

This paper describes a method for doing convolution of two live
signals, without the need to load a time-invariant impulse response
(IR) prior to the convolution process. The method is based on
stepwise replacement of the IR in a continuously running convolu-
tion process. It was developed in the context of creative live elec-
tronic music performance, but can be applied to more traditional
use cases for convolution as well. The process allows parametriza-
tion of the convolution parameters, by way of real-time transfor-
mations of the IR, and as such can be used to build parametric
convolution effects for audio mixing and spatialization as well.

1. INTRODUCTION

Convolution has been used for filtering, reverberation, spatializa-
tion and as a creative tool for cross-synthesis ([1], [2] and [3] to
name a few). Common to most of them is that one of the inputs is a
time-invariant impulse response (characterizing a filter, an acoustic
space or similar), allocated and preprocessed prior to the convolu-
tion operation. Although developments have been made to make
the process latency free (using a combination of partitioned and
direct convolution [4]), the time-invariant nature of the impulse re-
sponse (IR) has inhibited a parametric modulation of the process.
Modifying the IR traditionally has implied the need to stop the au-
dio processing, load the new IR, and then re-start processing using
the updated IR. This paper will briefly present a context for the
work before presenting the most common convolution methods.
A number of observations along the way will motivate a strategy
for convolution with time-variant impulse responses based on step-
wise replacement of IR partitions. Finally we present a number of
use cases for the method with focus on live performance.

2. CONTEXT

The current implementation was developed in the context of our
work with cross-adaptive audio processing (see [5] and also the
project blog http://crossadaptive.hf.ntnu.no/) and live processing
(previous project blog at [6] and the released album "Evil Stone
Circle" at [7]). Our previous efforts on live streaming convolution
area are described in ([8], [9]). We also note that the area of flex-
ible convolution processing is an active field of research in other
environments (for example [10], in some respects also [11] and
[12] due to the parametric approach to techniques closely related
to convolution).

Our primary goal has been to enable the use of convolution
as a creative tool for live electronic music performance, by allow-

∗ Thanks to NTNU for generously providing a sabattical term, within
which substantial portions of this research have been done

ing two live sources to be convolved with each other in a stream-
ing fashion. Our current implementation allows this kind of live
streaming convolution with minimal buffering. As we shall see,
this also allows for parametric transformations of the IR. Examples
of useful transformations might be pitch shifting, time stretching,
time reversal, filtering, all done in a time-variant manner.

3. CONVOLUTION METHODS

Convolution of two finite sequences x(n) and h(n) of length N is
defined as:

y(n) = x (n) ∗ h (n) =

N−1
∑

k=0

x (n− k)h (k) (1)

This is a direct, time-domain implementation of a FIR filter struc-
ture with filter length N . A few observations can be made at this
stage:

• Filter length is the only parameter involved.

• There is no latency: y(0) = x(0)h(0).

• The output length Ny is equal to 2N − 1

• Computational complexity is of the order O(N2).

Eq. 1 can be interpreted as a weighted sum of N time-shifted
copies of the input sequence x(n). The weights are given by the
coefficients of the filter h(n). In acoustic simulations, a room im-
pulse response is a typical example of such a filter, with wall reflec-
tions represented as non-zero coefficients. The result of running a
source signal through this filter is an accumulation of delayed re-
flections, into what we recognize as a reverberant sound.

If instead the filter h(n) is live-sampled from a musical per-
formance, the filter coefficients will typically form continuous se-
quences of non-negligible values. Hence, when the sound of an-
other musical instrument is convolved with this filter, the output
will exhibit a dense texture of overlays, leading to a characteristic
time smearing of the signals involved.

Figure 1 illustrates what happens when a simple sinusoidal
signal is convolved with itself (x(n) = h(n)). As expected the
output is stretched out to almost double length. What is more in-
teresting is the ramp characteristics caused by the gradual overlap
of the sequences x(n) and h(n) in eq. 1. The summation has a sin-
gle term at n = 0, reaches a maximum of N terms at n = N − 1,
and returns to a single term again at n = 2N − 2. This inherent
"fade in/fade out"-property of convolution will be exploited in our
approach.

The computational complexity of direct convolution will be
prohibiting when filter length increases. We normally work with
filters of duration 1-2 seconds or more, which can amount to 96000

DAFX-239

https://www.ntnu.edu/music
mailto:oyvind.brandtsegg@ntnu.no
https://www.ntnu.edu/music
mailto:sigurd.saue@ntnu.no
http://crossadaptive.hf.ntnu.no/

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Figure 1: Convolving a time-limited sine sequence with itself

multiplications per output sample at 48 kHz. A far more efficient
method takes advantage of the circular convolution property of
the Discrete Fourier Transform (DFT) to perform convolution as
multiplication in the frequency domain [13]:

y(n) = DFT−1{DFT{x(n)} ·DFT{h(n)}} (2)

where DFT and DFT−1 are the forward and inverse Discrete
Fourier Transform, respectively.The Fast Fourier Transform (FFT)
provides an efficient implementation. It is worth noting that circu-
lar convolution assumes periodicity of the input sequences. Fortu-
nately it can be made applicable for linear filtering, provided that
the FFT block size K satisfies the condition K ≥ M + N − 1
where M,N are the lengths of the input sequences x(n) and h(n),
respectively. If the condition does not hold there will be time alias-
ing [14]. The input sequences must be zero padded to length K
prior to the FFT.

Equation 2 also calls for some observations:

• Computational complexity is reduced to O(N logN) (the
complexity of the FFT).

• Latency has increased to the full filter length.

It is now obvious that convolution is simply multiplication in the
frequency domain. From which we may further observe that:

• Output amplitude strongly depends on degree of frequency
overlap between the two inputs. Hence convolution can be
a challenge to work with in live performance due to lack of
amplitude control.

• We may expect a relative loss of high frequency energy. For
non-synthetic sounds the energy typically falls off in the
high frequency range. When two such frequency spectra
are multiplied the relative imbalance between high and low
frequencies is magnified.

The increased latency is undesirable for real-time applications.
Partitioned convolution reduces the latency by breaking up the in-
puts into smaller partitions [15]. Assume that the input sequences
in eq. 1 are segmented into P partitions of uniform length NP =
N/P :

x (n) = [x0 (n) , x1 (n) , . . . , xP−1 (n)] (3)

h (n) = [h0 (n) , h1 (n) , . . . , hP−1 (n)] (4)

with:

xi (n) =

{

x(n), if n ∈ [i ·NP , (i+ 1) ·NP − 1]

0, otherwise.
(5)

and:

hj (n) =

{

h(n), if n ∈ [j ·NP , (j + 1) ·NP − 1]

0, otherwise.
(6)

Then it can be proven from the linear and commutative properties
of convolution that eq. 1 can be rewritten as:

y(n) = x (n) ∗ h (n) =

P−1
∑

i=0

P−1
∑

j=0

xi(n) ∗ hj(n) (7)

In the last part of equation 1 we notice that the indices of x(n)
and h(n) in each term of the summation always add to n. This
can be extended to the partitions xi(n) and hj(n) and allows us to
deduce the interval of n where a particular partitioned convolution
xi(n) ∗ hj(n) contributes to the output y(n). If we define Sij and
Eij as the starting and ending point of this interval, respectively,
we get by adding the respective ranges in equations 5 and 6 [8]:

Sij = (i+ j) ·NP (8)

Eij = (i+ j + 2) ·NP − 2 (9)

Now let’s define the interval Yk as:

Yk = [k ·NP , (k + 1) ·NP − 1] (10)

If we compare equations 8, 9 and 10, we see that the partitioned
convolution xi(n)∗hj(n) only contributes to the output y(n) for n
in the intervals Yi+j and Yi+j+1. A trivial example of the compu-
tation with only P = 3 partitions is shown in Figure 2 (the sample
index n is omitted for simplicity).

Figure 2: Example of partitioned convolution with 3 partitions [8]

Each partitioned convolution can be performed as multiplica-
tion in the frequency domain (equation 2). Partition size should be
adjusted to make an optimal compromise between computational
efficiency and latency. From this implementation we observe:

• Latency is reduced to the partition size, NP

• The partitions xi(n) and hj(n) contributes to output inter-
val Yk only if i, j ≤ k.

• The partitions xi(n) and hj(n) contributes to output inter-
val YP+k only if i, j ≥ k 1.

The latter two observations play an important role for our stream-
ing approach.

It should also be added that techniques combining partitioned
and direct-form convolution can eliminate processing latency en-
tirely [4]. Wefers [14] provide an excellent, updated review of
convolution algorithms in general, with a particular focus on par-
titioned convolution.

1We will later show that the inequality can be expressed as i, j > k

when implementation is taken into account.

DAFX-240

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

4. RESEARCH GOALS AND PREVIOUS WORK

Traditionally convolution is an asymmetric operation where the
two inputs have different status: a continuous stream of input sam-
ples x(n) and an impulse response (IR) h(n) of finite length N .
Typically the latter is a relatively short segment, a time-invariant
representation of a system (e.g. a filter or a room response) onto
which the input signal is applied.

Instead we are searching for more flexible tools for musical
interplay and have previously presented a number of strategies for
dynamic convolution [9]. Our aim has been to:

• Attain dynamic parametric control over the convolution pro-
cess in order to increase playability.

• Investigate methods to avoid or control dense and smeared
output

• Provide the ability to use two live audio sources as inputs
to a continuous real-time convolution process.

• Provide the ability to update/change the impulse responses
in real-time without glitches.

With existing tools we haven’t been able to get around the
time-invariant nature of the impulse response in an efficient way.
In order to make dynamic updates of the IR during convolution
without audible artifacts, we had to use two (or more) concurrent
convolution processes and then crossfade between them whenever
the IR should be modified. The IR update could be triggered ex-
plicitly, at regular intervals or based on the dynamics of the input
signal (i.e. transient detection). Every update of the IR triggered a
reinitialization of the convolution process.

We have also done work on live convolution of two audio sig-
nals of equal status: neither signal has a subordinate status as filter
for the other [8]. Instead both are continuous audio streams seg-
mented at intervals triggered by transient detection. Each pair of
segments are convolved in a separate process. With frequent trig-
gering the number of concurrent processes could grow substan-
tially due to the long convolution tail (P − 1 partitions) of each
process.

5. TIME-VARIANT IMPULSE RESPONSE

In this paper we present a simple, but efficient implementation of
convolution with a time-variant impulse response h(n) of finite
length N. In this case the coefficients of h(n) are no longer con-
stant throughout the convolution process. At a point nT in time
the current impulse response, denoted hA(n) is updated with a
new filter hB(n).

Wefers and Vorländer [16] points at two possible solutions to
time-varying FIR filtering: instantaneous switching or crossfading.
The former can be expressed as:

yn =

{

x (n) ∗ hA (n) , if n < nT

x (n) ∗ hB (n) , if n ≥ nT

(11)

It is a cheap implementation, but the hard switching is known to
cause audible artifacts from discontinuities in the output wave-
form.

The second option, crossfading, avoids these artifacts by fil-
tering x(n) with both impulse responses, hA(n) and hB(n), in a
transition interval and then crossfade between the two outputs to

smooth out discontinuities. The disadvantage of this method (as-
suming fast convolution in the frequency domain) is the added cost
of an extra spectral convolution and inverse transform, as well as
the operations consumed by the crossfade. A modified approach
with crossfading in the frequency domain [16] saves the extra in-
verse transform.

Our goal is to be able to dynamically update the impulse re-
sponse without reinitializations and crossfades of parallel convolu-
tion processes. In the following we assume a uniformly partitioned
convolution scheme implemented with FFTs and multiplication in
the frequency domain. The key to our approach is the inherent
"fade in/fade out"-characteristic of convolution (illustrated in fig-
ure 1) and the previously noted properties of partitioned convolu-
tion:

Property 1. The partitions xi(n) and hj(n) contributes to output
interval Yk only if i, j ≤ k.

An immediate consequence of Property 1 is that we can load
the impulse response partition by partition in parallel with the in-
put. A fully loaded IR is not necessary to initiate the convolu-
tion process since the later partitions initially do not contribute to
the convolution output. This drastically reduces the latency e.g.
for application of live sampled impulse responses. Convolution
can start during sampling, as soon as a single partition of the IR
is available. In addition the computational load associated with
FFT calculations on the IR is conveniently spread out in time,
hence avoiding bursts of CPU usage when loading long impulse
responses.

Property 2. The partitions xi(n) and hj(n) contributes to output
interval YP+k only if i, j ≥ k.

From Property 2 it is clear that we also can unload the im-
pulse response partition by partition without audible artifacts, even
while the convolution process is running. The reason being that the
earlier partitions no longer contribute to the output. Unloading a
partition simply means clearing it to zero, and it should progress
in the same order as the loading process.

The shortest possible load/unload interval is a single partition,
which is actually equivalent to segmenting out a single partition
of the input signal and convolve it with the full impulse response.
Figure 3 illustrates the effect.

Figure 3: Example of minimal load/unload interval

The combination of the two strategies, stepwise loading and
unloading, naturally leads to stepwise replacement of the impulse
response. If we return to the direct form we can express the con-
volution with stepwise IR replacement starting at time nT as:

DAFX-241

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

yn =

N−1
∑

k=max{0,n−nT+1}

x (n− k)hA (k)

+

min{N−1,n−nT }
∑

k=0

x (n− k)hB (k) (12)

For n < nT equation 12 reduces to:

yn =

N−1
∑

k=0

x (n− k)hA (k) (13)

For n > nT +N − 1 it reduces to:

yn =

N−1
∑

k=0

x (n− k)hB (k) (14)

In the transition interval n ∈ [nT , nT +N − 2] the filter coeffi-
cients of hA(n) are replaced one by one with the coefficients of
hB(n), beginning with the first coefficient hA(0). This transition
interval ensures a smooth transition between filters since the con-
volution tail of filter hA(n) is allowed to fade out properly after
time nT while the new filter hB(n) fades in. It is important to
note that there is no extra cost, since it is solved by gradual coef-
ficient replacement, and the total number of additions in equation
12 is equal to N − 1 at every step n. At the same time it avoids
the artifacts caused by instantaneous switching (eq. 11).

The same logic holds for partitioned convolution where the
filter is replaced partition by partition instead. The only restriction
is that the replacement time nT must be at a partition border:

nT = k ∗NP for k = 0, 1, 2, ... (15)

At any time during the running convolution process we can trigger
an update of the IR and start filling in new partitions from the be-
ginning of the IR buffer. Figure 4 shows a simplified example of
the procedure, where a filter update is triggered at the beginning
of time interval Y1. The impulse response partitions HA,k is re-
placed by HB,k. In a transition period equal to P − 1 (where P is
the number of IR partitions) the output is a mix of two convolution
processes.

Figure 4: Example of dynamic IR replacement starting at time in-
terval Y1

It should be apparent that triggering a new IR update amounts
to a segmentation of the input signal. No input partitions buffered
before the trigger (x0 in the figure) will be convolved with the new
IR, and similarly, no input partitions buffered after the trigger (x1

and x2 in the figure) will be convolved with the old IR. To avoid
discontinuities in the IR and hence audible clicks in the output
signal, the impulse response buffer should always be completely
refilled when updated (all N partitions).

In contrast to our earlier attempts and also to the crossfade
methods suggested by [16], the proposed method does not add any
extra computational cost. Impulse response partitions are simply
replaced in the right order. A possible disadvantage is that the
length of the transition interval is fixed to the filter length N and
not available for user control.

6. THE IMPLEMENTATION

We have implemented convolution with time-variant IR as a plu-
gin opcode titled liveconv written in C for the audio programming
language Csound2 . A Csound opcode normally provides three
programming components: An internal data structure, an initial-
izing function and a processing function [17]. The internal data
structure is allocated in the initialization function, including all dy-
namic memory. In liveconv partition length and impulse response
table are specified during this step. The content of the IR table
may be updated at any time, but not its memory location or size.

The starting point for our implementation is a previous op-
code, ftconv3, that implements uniformly partitioned convolution
with a fixed IR. The partition length must be an integer power of
two: NP = 2k, and the FFT block size NB is twice the parti-
tion length: NB = 2NP . The inputs partitions xi(n) and hj(n)
are padded with NP zeros and thereby satisfies the condition for
circular convolution without time-aliasing.

To ensure correct real-time processing the implementation em-
ploys the Overlap-Add scheme (OLA): The convolution produces
overlapping output segments of length NB , which is twice the par-
tition length NP . Consequently, half the output samples produced
by the partitioned convolution xi(n) ∗hj(n) at interval Yi+j must
be stored and added to the output of the next interval, Yj+i+1. It is
worth noting that since this contribution is buffered with the out-
put of interval Yi+j , it is not necessary to recalculate the contribut-
ing convolution during interval Yj+i+1. For that reason the final
inequality of Property 2 can be adjusted from ≥ to >: The parti-
tions xi(n) and hj(n) contributes to output interval YP+k only if
i, j > k.

The Overlap-Save scheme (OLS) is found to compute more
efficiently than OLA [14]. It remains to be ascertained if our par-
tition replacement scheme is applicable to OLS without modifica-
tions. The integration with other convolution algorithms such as
direct convolution in the time domain and non-uniform partitioned
convolution should also be verified.

The outline of the processing function is as follows (details on
OLA are omitted):

• Check the update control signal. If set to "load", prepare
to reload the IR. If set to "unload", prepare to unload the
IR. A data structure maintains control of each load/unload
process. In theory there could be a new process for every
partition.

• Read audio inputs into an internal circular buffer in chunks
given by the control rate of Csound (ksmps is the number
of samples processed during each pass of the processing
function).

• When an entire partition is filled with input data:

2More information and links to source code at http://csound.github.io/.
Documentation for the liveconv opcode can be found at
http://csound.github.io/docs/manual/liveconv.html.

3Documentation at http://csound.github.io/docs/manual/ftconv.html.

DAFX-242

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

– Calculate the FFT of the input partition

– For every running load process fetch a specified par-
tition from the IR table and calculate its FFT. Note
that several parts of the IR may be updated in paral-
lel.

– Do complex multiplication of input and IR buffers in
the frequency domain

– Calculate the inverse FFT of the result and write to
output

– For every running unload process clear a specified
partition to zero.

• Increment load/unload processes to prepare for the next par-
tition. If a process has completed its pass through the IR
table, it is set inactive.

No assumptions have to be made on the impulse responses
involved. The load process can be signaled as soon as one ksmps
chunk of new data has been filled into the IR table.

In order to clarify the behavior of time-variant convolution
with partition replacement, we will compare it with two overlap-
ping time-invariant convolutions. Figure 5 shows the input sig-
nals. On top are the two impulse responses, hA(n) and hB(n).
They are both 1 second excerpts of speech sampled at 44,100 Hz
(N = 44100). At the bottom is the input source signal x(n),
which is a 10 second excerpt of baroque chamber music, also sam-
pled at 44,100 Hz.

Figure 5: Convolution demonstration. Top: The two impulse re-
sponses, hA(n) and hB(n). Bottom: The input signal x(n)

In the following all convolution operations are running with
partition length NP = 1024 and FFT block size NB = 2048.
At time nT ≈ 4.5 seconds, a switch between impulse responses
hA(n) and hB(n) is initiated (the exact time is slightly less in
order to align it with the partition border).

First we show the output of two separate time-invariant con-
volution processes, using traditional partitioned convolution (fig-
ure 6). The input signal is split in two non-overlapping segments
at the transition time nT . The first segment defined by n < nT

is convolved with impulse response hA(n) only and the output
is shown immediately below (Convolution 1). The second input
segment defined by n ≥ nT follows next. It is convolved with

Figure 6: Convolution demonstration: Two overlapping time-
invariant convolutions. Upper pair: Source signal segment for
n < nT followed by the convolution with impulse response hA(n).
Lower pair: Source signal segment for n ≥ nT followed by the
convolution with impulse response hB(n).

impulse response hB(n) only and the output is shown at the bot-
tom (Convolution 2). Notice that the two outputs overlap in a time
interval of length comparable to the impulse response.

Figure 7: Convolution demonstration: Comparing time-variant
method with two overlapping time-invariant convolutions. Top:
The merged result of the two time-invariant convolutions in figure
6. Middle: The output when using stepwise IR replacement. Bot-
tom: Difference between the two.

If we merge together the two convolution outputs in figure 6
we get the signal shown at the top of figure 7. If, on the other hand,
we run the entire operation as a single time-variant convolution on
the original signal x(n), where the impulse response is stepwise
replaced beginning at time nT , we get the output signal shown in
the middle of figure 7. The difference between the two signals are
displayed at the bottom. It is uniform and for all practical pur-
poses negligible. An estimate of the signal-to-noise ratio (SNR)
returns 67.2 dB. From this demonstration it should be clear that

DAFX-243

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

convolution with stepwise IR replacement preserves the behavior
of time-invariant convolution, while at the same time allowing fil-
ter updates within a single process at no extra cost.

A special case appears when the IR’s are sampled from the
same continuous audio stream, one partition apart. Then we get
a result similar to cross-synthesis, pairwise multiplication of par-
titions from two parallel audio streams, but still with the effect of
long convolution filters. It should be added that there are more ef-
ficient ways to implement this particular condition, but that will be
deferred to another paper.

The interval between IR updates is provided as a parameter
available for performance control, which increases the playability
of convolution. There is still a risk of huge dynamic variations
due to varying degrees of frequency overlap between input signal
and impulse response. The housekeeping scheme introduced to
maintain the IR update processes could be exploited for smarter
amplitude scaling. This is ongoing work. We would also like to
look at integration of some of the extended convolution techniques
proposed by Donahue & al [10].

7. USE CASE: PLUGIN FOR LIVE PERFORMANCE

A dedicated VST plugin has been implemented to show the use
of the new convolution methods, built around the liveconv opcode.
Even though the incremental IR update allows for a vast array of
application areas, we have initially focused on realtime convolu-
tion of two live signals. As an indication of its primary use, we’ve
named it "Live convolver". The plugin is implemented with a "dual
mono" input signal flow, as shown in figure 8, allowing it to be
used on a stereo track of a DAW. The left stereo signal will be used
to record the IR, while the right stereo signal will be used as input
to the convolution process.

Figure 8: Plugin signal flow overview

The signal on the IR record input channel is continuously writ-
ten to a circular buffer. When we want to replace the current IR,
we read from this buffer and replace the IR partition by partition.
The main reason for the circular buffer is to enable transformation

(for example time reversal) of the audio before making the IR. As
an attempt to visualize when the IR is taken from, we use a circu-
lar coulouring scheme to display the circular input buffer. We also
represent the IR using the same colours. Time (of the input buffer)
is thus represented by colour. As the color of now continuously
and gradually changes from red to green to blue, it is possible to
identify time lag as an azimuthal distance on the color circle 4. Fig-
ure 9 shows the plugin gui, with a representation of the coloured
input buffer and a live sampled IR. Similarly, a time reversed IR is
shown in figure 10. Note the direction of color change (green to
red) of the reversed IR as compared with the color change in the
normal (forward) IR (blue to red).

Figure 9: Liveconvolver plugin GUI

Figure 10: Visualization of time reversed IR

The plugin has controls for manual triggering of the IR record-
ing, or the IR can be automatically updated by a periodic trigger
(using IR update rate and IR size controls). Methods for triggering
IR update via transient detection has also been implemented. Pitch
modification and time reversal is available by dedicated gui con-
trols. In addition, we have simple lowpass and highpass filtering,
as this can be very useful for quickly fixing spectral problems of
using convolution in a live setting. Since convolution can lead to
a certain loss of high frequency content, we also have the option
of "brightening" each input by applying a low-q high shelf filter.
Finally, there is a significant potential for audio feedback using
convolution in a live setting, when the IR is sampled in the same
room where the convolver output is played back. To alleviate this
risk, we have implemented a frequency shifter with relatively small
amounts of shift as suggested by [18]. The amount of frequency
shift is also controllable from the gui. By shifting the convolver
output with just a few Hz, the feedback potential is significantly
reduced.

8. USE CASE: LIVE PERFORMANCES

The liveconvolver plugin has been used for several studio sessions
and performances from late 2016 onwards. Reports and sound ex-
amples from some of these experimental sessions can be found at
[19] and [20]. These reports also contain reflections on the per-
formative difference experienced in the roles of recording the IR

4https://en.wikipedia.org/wiki/Color_wheel

DAFX-244

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

and playing through it. It is notable that a difference is perceived,
since in theory the mathematical output of the convolution process
is identical regardless of which one signal is used as the IR. The
buffering process allows continuous updates to the IR with mini-
mal latency, and several methods for triggering the IR update has
been explored. This should ideally facilitate a seamless merging
of the two input signals. However, the IR update still needs to be
triggered, and the IR will be invariant between triggered updates.
In this respect, the instrument providing the source for the IR will
be subject to recording, and the live input to the convolution pro-
cess is allowed a continuous and seamless flow. It is natural for
a performer to be acutely aware of the distinction between being
recorded and playing live. Similar distinctions can assumably be
made in the context of all forms of live sampling performance,
and in many cases of live processing as an instrumental practice.
The direct temporal control of the musical energy resides primar-
ily with the instrument playing through the effects processing, and
to a lesser degree with the instrumental process creating the effects
process (recording the IR in our case here).

9. OTHER USE CASES, FUTURE WORK

The flexibility gained by our implementation allows parametric
control of convolution also in more traditional effects processing
applications. One could easily envision a parametric convolution
reverb with continuous pitch and filter modulation for example.
Parametric modulation of the IR can be done either by applying
transformations on the audio being recorded to the IR, or directly
on the spectral data. Such changes to the IR could have been done
with traditional convolution techniques too, by preparing a set of
transformed IR’s and crossfading between them. The possibilities
inherent in the incremental IR update as we have described allows
direct parametric experimentation, and thus is much more immedi-
ate. It also allows for automated time-variant modulations (using
LFO’s and random modulators), all without introducing artifacts
due to IR updates.

10. CONCLUSIONS

We have shown a technique for incremental update of the impulse
response for convolution purposes. The technique provides time-
variant filtering by doing a continuous update of the IR from a
live input signal. It also opens up possibilities for direct paramet-
ric control of the convolution process and as such enhancing the
general flexibility of the technique. We have implemented a sim-
ple VST plugin as proof of concept of the live streaming convo-
lution, and documented some practical musical exploration of its
use. Further applications within more traditional uses of convolu-
tion has also been suggested.

11. ACKNOWLEDGMENTS

We would like to thank the Norwegian Artistic Research Programme
for support of the research project "Cross-adaptive audio process-
ing as musical intervention", within which the research presented
here has been done. Thanks also to the University of California,
and performers Kyle Motl and Jordan Morton for involvement in
the practical experimentation sessions.

12. REFERENCES

[1] Mark Dolson, “Recent advances in musique concrète at
CARL,” in Proceedings of the 1985 International Computer
Music Conference, ICMC 1985, Burnaby, BC, Canada, Au-
gust 19-22, 1985, 1985.

[2] Curtis Roads, “Musical sound transformation by convolu-
tion,” in Opening a New Horizon: Proceedings of the 1993
International Computer Music Conference, ICMC 1993,
Tokio, Japan, September 10-15, 1993, 1993.

[3] Trond Engum, “Real-time control and creative convolution,”
in 11th International Conference on New Interfaces for Mu-
sical Expression, NIME 2011, Oslo, Norway, May 30 - June
1, 2011, 2011, pp. 519–522.

[4] William G. Gardner, “Efficient convolution without input-
output delay,” Journal of the Audio Engineering Society, vol.
43, no. 3, pp. 127, 1995.

[5] Øyvind Brandtsegg, “A toolkit for experimentation with sig-
nal interaction,” in Proceedings of the 18th International
Conference on Digital Audio Effects (DAFx-15), 2015, pp.
42–48.

[6] Øyvind Brandtsegg, Trond Engum, Andreas Bergs-
land, Tone Aase, Carl Haakon Waadeland, Bernt Isak
Wærstad, and Sigurd Saue, “T-emp communication
and interplay in an electronically based ensemble,”
https://www.researchcatalogue.net/view/48123/48124/10/10,
2013.

[7] Øyvind Brandtsegg, Trond Engum, Tone Aase, Carl Haakon
Waadeland, and Bernt Isak Wærstad, “Evil stone circle,”
https://www.cdbaby.com/cd/temptrondheimelectroacou,
2015.

[8] Lars Eri Myhre, Antoine H Bardoz, Sigurd Saue, Øyvind
Brandtsegg, and Jan Tro, “Cross convolution of live audio
signals for musical applications,” in International Sympo-
sium on Computer Music Multidisciplinary Research, 2013,
pp. 878–885.

[9] Øyvind Brandtsegg and Sigurd Saue, “Experiments with dy-
namic convolution techniques in live performance,” in Linux
Audio Conference, 2013.

[10] Chris Donahue, Tome Erbe, and Miller Puckette, “Extended
convolution techniques for cross-synthesis,” in Proceedings
of the International Computer Music Conference 2016, 2016,
pp. 249–252.

[11] Jonathan S Abel, Sean Coffin, and Kyle S Spratt, “A
modal architecture for artificial reverberation,” Journal of
the Acoustical Society of America, vol. 134, no. 5, pp. 4220–
4220, 2013.

[12] Jonathan S Abel and Kurt James Werner, “Distortion and
pitch processing using a modal reverberator architecture,” in
International Conference on Digital Audio Effects (DAFx-
15), Trondheim, Norway, November/2015 2015, .

[13] H.J. Nussbaumer, Fast Fourier Transform and convolution
algorithms, Springer, 1982.

[14] Frank Wefers, Partitioned convolution algorithms for real-
time auralization, Logos Verlag Berlin GmbH, 2015.

[15] Thomas G. Stockham, “High-speed convolution and corre-
lation,” in Proceedings of the April 26-28, 1966, Spring joint
computer conference, 1966, pp. 229–233.

DAFX-245

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

[16] Frank Wefers and Michael Vorländer, “Efficient time-
varying fir filtering using crossfading implemented in the dft
domain,” in Forum Acousticum. European Acoustics Associ-
ation, 2014.

[17] Victor Lazzarini, “Extensions to the csound language: from
user-defined to plugin opcodes and beyond,” in Proceedings
of the 3rd Linux Audio Conference, 2005.

[18] Carlos Vila, “Digital frequency shifting for electroacoustic
feedback suppression,” in Audio Engineering Society Con-
vention 118, May 2005.

[19] Øyvind Brandtsegg and Kyle Motl,
“Session ucsd 14. februar 2017,”
http://crossadaptive.hf.ntnu.no/index.php/2017/02/15/session-
ucsd-14-februar-2017/, 2017.

[20] Øyvind Brandtsegg and Jordan Morton, “Con-
volution experiments with jordan morton,”
http://crossadaptive.hf.ntnu.no/index.php/2017/03/01/convolution-
experiments-with-jordan-morton/, 2017.

DAFX-246

	1 Introduction
	2 Context
	3 Convolution methods
	4 Research goals and previous work
	5 Time-variant impulse response
	6 The implementation
	7 Use case: plugin for live performance
	8 Use case: live performances
	9 Other use cases, future work
	10 Conclusions
	11 Acknowledgments
	12 References

