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ABSTRACT

This article addresses the Doppler effect of a planar vibrating pis-

ton in a duct, as a plane wave radiation approximation generated

by a loudspeaker membrane. This physical model corresponds to

a nonlinear problem, because the linear propagation is excited by

a moving boundary condition at the piston face: this introduces a

varying propagation time between the piston and a fixed receiver.

The existence of a regular function that solves the problem (a so-

called “strong” solution) is proven, under a well-posed condition

that guarantees that no shock occurs. This function satisfies an

implicit equation to be solved. An algorithm based on the per-

turbation method is proposed, from which an exact solution can

be built using power series. The convergence of the power series

is numerically checked on several examples. Simulations derived

from a truncated power series provide sound examples with audi-

ble intermodulation and distortion effects for realistic loudspeaker

excursion and speed ranges.

1. INTRODUCTION

The Doppler effect in loudspeakers is due to the membrane mo-

tion: this introduces a varying propagation time between the piston

and a fixed receiver. For large frequency range speakers, this re-

sults in distortion effects. This phenomenon has been hightlighted

by Beers and Belar [1], who recommend the use of a multi-way

system to reduce its influence.

In [2], Butterweck proposes a simplified 1D model based on plane

wave propagation generated by a moving piston. He proposes to

approximate the solution by a truncated series expansion, from

which a criterion to evaluate the distortion is built.

This paper restates the 1D model introduced in [2] and investigates

the well-posedness of the problem. A necessary and sufficient con-

dition is presented for the existence of a regular solution, charac-

terized by an implicit equation. This equation admits a unique

solution, and its regularity order is proven to be related to that

of the membrane displacement function. The proof relies on the

method of characteristics. This so-called moving boundary prob-

lem has already been investigated, and analytical solutions have

been established [3, 4]. In this paper, infinite regular displacement

functions are considered, and the perturbation method proposed by

[2] is adopted to derive the power series expansion in an exact re-

cursive way. The series expansion corresponds to a Volterra series

and its terms involve the partial Bell polynomials. Finally, simula-

tions are carried out by truncation of the series expansion and both

harmonic and intermodulation distortions are evaluated.

This paper is organized as follows. Section 2 introduces the phys-

ical model and the equations to solve. Then Section 3 presents the

strong solution derived from the method of characteristics, and a

recursive algorithm based on power series expansion is described

in Section 4. Finally the simulations are presented in Section 5.

2. PROBLEM STATEMENT

2.1. Description

Consider a semi-infinite duct excited by a vibrating planar piston

(see Figure 1), which follows those four hypotheses:

(H1) conservative linear acoustic plane waves propagation in an

adiabatic homogeneous gas initially at rest,

(H2) no wave coming from the right side of the duct,

(H3) no shockwave propagates,

(H4) piston position described by the function t 7→ ξ(t) at the left

side of the duct, initially at rest
(

ξ(t) = 0 for t ≤ 0
)

.

ξ(t)

0 x

∞(p, v)

Figure 1: A piston vibrates around x = 0 in a semi-infinite duct.

2.2. Physical model

Following (H1), the wave propagation in the duct is described by

ρ0∂tv(x, t) + ∂xp(x, t) = 0, (1)

∂tp(x, t) + ρ0c
2
0∂xv(x, t) = 0, (2)

where p and v denote the acoustic pressure and the particle veloc-

ity, x and t are the space and time variables and ρ0 and c0 are the

air density and the sound velocity, respectively.

The general solution (1-2) is decomposed into traveling waves as

follows

v(x, t) = v+(t− x/c0)− v−(t+ x/c0),

p(x, t) = ρ0c0
(

v+(t− x/c0) + v−(t+ x/c0)
)

,

where functions t 7→ v±(t) represent forward and backward wave-

forms.
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Condition (H2) implies that there is no backward wave (v− = 0),

so that

v(x, t) = v+(t− x/c0), (3)

p(x, t) = ρ0c0v
+(t− x/c0), (4)

only propagates from left to right.

Condition (H3) implies that v+ must be a regular function. In

the following, this class of solutions is called the class of “strong

solutions” (contrary to the case of weak solutions that can admit

jumps or singularities).

Finally, because of (H4), the particle velocity at position ξ is the

piston velocity ξ′. This means that the waves are driven by the

piston face according to

v
(

ξ(t), t
)

= ξ′(t), (5)

and that they propagate from left to right in the space-time domain

Kξ = {(x, t) ∈ R
2

s.t. x ≥ ξ(t)}, (6)

according to (3-4).

The problem described by (H1-H4) can be restated and reduced to

the following question: given a piston motion function t 7→ ξ(t),
does there exist a regular waveform function t 7→ v+(t) such that

v+
(

t− ξ(t)/c0
)

= ξ′(t), (7)

and such that, on domain (6), (3-4) is a solution of (1-2) ?

3. EXISTENCE OF STRONG SOLUTIONS

This section addresses the existence of regular solutions based on

the method of characteristics. It provides a necessary and suffi-

cient condition on C1-regular functions ξ.

In the following, the exponent "a" denotes quantities related to the

arrival time of the acoustic wave at the observer point, whereas "d"

denotes the departure time of the wave from the piston face.

Definition 1 (Characteristic) Let us define the regular functions

τa
ξ : Kξ 7→ R

(x, t) 7→ t+
x− ξ(t)

c0
,

(8)

and
Kξ : Kξ 7→ K

a
ξ

(x, t) 7→
(

x, τa
ξ (x, t)

) (9)

where the image set Ka
ξ is

K
a
ξ =

{(

x, τa
ξ (x, t)

)

for (x, t) ∈ Kξ

}

(10)

In this definition (see Figure 2), T = τa
ξ

(

x = X, t = θ
)

provides

the arrival time t = T at position x = X of an acoustic wave

emitted at time t = θ and position x = ξ(θ), according to (3).

Indeed, the particle velocity v at (x, t) = (X,T ) is

v+(τa
ξ (X, θ)−X/c0) = v+(θ − ξ(θ)/c0),

which corresponds to the particle velocity at (x, t) =
(

ξ(θ), θ
)

.

X

θ

ξ(θ)

T

X−ξ(θ)
c0

0

x

t

Figure 2: Illustration of the characteristics for a sinusoidal piston

motion: the lines Lξ(t) = {Kξ(x, t), x ≥ ξ(t)} are the space-

time locus on which the acoustic waves are constant. This figure

details the case for the wave emitted at (x, t) =
(

ξ(θ), θ
)

and

arriving at (x, t) = Kξ(X, θ) = (X,T ), with T = τa
ξ (X, θ).

Figure 3 is a 3D illustration of the wave propagation from the pis-

ton face ξ(t) to the observer point x through the characteristic Kξ.

The piston displacement ξ(t) is a sine function and its velocity

ξ′(t) describes an helicoidal trajectory, highlighting the moving

character of the boundary condition.

This results in various lengths of characteristic lines (represented

by arrows) and so various times of propagation to reach the posi-

tion x. Thus, the waveform of the particle velocity observed at x
is not the exact copy of the piston motion.

time
position

0

x

ve
lo
ci
ty

ξ(t)

ξ ′(t)
v(x, τaξ (x, t))

Figure 3: Perspective view of an acoustic wave generated at
(

ξ(t), t
)

and observed at
(

x, τa
ξ (x, t)

)

. The piston displacement

is described by the curve labelled ξ(t), and the velocity by the he-

licoidal trajectory ξ′(t). Four lines of characteristic Kξ are rep-

resented by arrows, connecting ξ′(t) with the particle velocity v at

position x.
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The characteristic defined in (9) is based on the emission time of

the acoustic wave (propagation occurs at time τa
ξ (x, t) > t). Then

the expression of the particle velocity observed at x is v
(

x, τa
ξ (x, t)

)

.

However we seek a solution based on the observation time, so that

the velocity is v(x, t). Thus, the existence of strong solutions in-

volves the reciprocal application K−1
ξ .

The main result of this section is given by the following theorem.

Theorem 1 (Strong solution). Let ξ be a Cn+1-regular function

with n ∈ N. Suppose that its (signed) Mach number is stricly less

than 1, namely,

∀t ∈ R, ξ′(t)/c0 < 1. (11)

Then, the following results hold:

(i) Kξ is a Cn-regular diffeormorphism from Kξ to K
a
ξ ,

(ii) The strong solution v of (3-6-7) is Cn-regular and given by

v : Ka
ξ −→ R

(x, t) 7−→ ξ′ ◦ τd
ξ (x, t) (12)

where the (unique) departure time τd
ξ (x, t) of the travelling

wave observed at (x, t) is given by the Cn-regular function

τd
ξ : Ka

ξ −→ R

(x, t) 7−→ [K−1
ξ (x, t)]2, (13)

where [K−1
ξ (x, t)]2 denotes the second component of the

function.

Consequently, if ξ is C∞-regular, then all the above-defined func-

tions are also C∞-regular.

The proof of this theorem is given in appendix B. It relies on the

two following propositions.

Proposition 1 (Kξ is a bijection). Let ξ be a C1-regular function.

Then, function Kξ : Kξ → K
a
ξ is a bijection if function ξ satisfies

condition (11).

Proof. (i) By construction of the image set Ka
ξ (see (10)), Kξ is a

surjective function.

(ii) Injectivity. ξ is a C1-regular function, so that τa
ξ and then Kξ

are also C1-regular functions. For all (x, t) ∈ Kξ, the jacobian of

Kξ is given by

JKξ
(x, t) =

(

1 0
1/c0 1− ξ′(t)/c0

)

,

in which 1 − ξ′(t)/c0 is strictly positive. Therefore Kξ(x, t)
is strictly increasing with respect to x and t. The monotonicity

proves that Kξ is injective, which concludes the proof.

Remark 1 (Condition on the Mach number). (11) is a sufficient

condition to ensure the bijectivity of Kξ. To obtain a necessary

and sufficient condition, (11) must be modified as follows:

• the set E = {t ∈ R s.t. ξ′(t)/c0 = 1} has a zero measure,

and

• ξ′(t)/c0 < 1 for all ∈ R \ E.

Indeed, as E has a zero measure, the monotonicity is still fulfilled

so that this condition is still sufficient. This condition is also nec-

essary because if E has a non zero measure, there exists an open

subset of Kξ on which the jacobian of Kξ has a zero determinant,

making Kξ locally constant and so non injective.

Remark 2 (Relations between K
a
ξ and Kξ). By construction of Ka

ξ

(see (10)), Kξ ⊆ K
a
ξ : the characteristics lines cover Kξ (see Lξ(t)

in Figure 2.) Moreover, if the Mach number condition (11) is ful-

filled, the characteristics lines Lξ(t) start from the boundary ∂Kξ

of Kξ at point
(

ξ(t), t
)

, t ∈ R and do not recross this boundary

∂Kξ =
(

ξ(t), t
)

, t ∈ R. Therefore, Ka
ξ = Kξ.

Proposition 2 (Kξ is a Cn-diffeomorphism). Let ξ be a C1-regular

function that satisfies condition (11). If function ξ is also Cn+1-

regular with n ∈ N, then function Kξ is a Cn-regular diffeomor-

phism. Consequently, if ξ is C∞-regular, then Kξ is a C∞-regular

diffeomorphism.

Proof. Let n ∈ N and consider ξ ∈ Cn+1-regular. Suppose that

condition (11) is satisfied. Then, from Proposition 1, function

τd
ξ (x, t) : (x, t) ∈ Kξ 7→ [K−1(x, t)]2 ∈ R exists and is con-

tinuous.

Now, we prove by induction that τd
ξ is Cp-regular for 1 ≤ p ≤ n.

• Case p = 1: τd
ξ ∈ C1.

From (8), τa
ξ is C1-regular so that D2τ

a
ξ is continuous, where D2

stands for the derivative with respect to the second component of

the function. Moreover, ∀(x, t) ∈ K
a
ξ ,

(

x, τd
ξ (x, t)

)

∈ Kξ and

f(x, t) = D2τ
a
ξ

(

x, τd
ξ (x, t)

)

= 1 − ξ′
(

τd
ξ (x, t)

)

/c0 defines a

function f : Ka
ξ −→ R which is:

(i) continuous, because it is a composition of the continuous func-

tions τd
ξ and D2τ

a
ξ ,

(ii) strictly positive because (11) is satisfied.

The jacobian of K−1
ξ given by

JK−1 : K
a
ξ −→ M2,2(R)

(x, t) 7−→

(

1 0
−1

c0f(x,t)
1

f(x,t)

)

, (14)

is then a continuous function. Hence, K−1
ξ and then τd

ξ (see (13))

are C1-regular.

• Case p ≥ 2: If τd
ξ is Cp-regular, then τd

ξ is Cp+1-regular.

From (14), the jacobian JK−1 is Cp-regular. Therefore τd
ξ is Cp+1-

regular, which concludes the proof.

From Proposition 1, there exists a function τd
ξ : Ka

ξ 7→ R, such

that for all (x, t) ∈ K
a
ξ , equation (8) reads

τd
ξ (x, t) = t−

x+ ξ ◦ τd
ξ (x, t)

c0
. (15)

The calculation of this space-time function can be reduced to that

of a simpler time function, because of the following property.

Property 1 (Translational symmetry). Let δ > 0 and Tδ : (x, t) 7→
(x+ δ, t+ δ/c0) be the space-time translation operator of space-

time shift (δ, δ/c0).
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Then, for any arrival space-time point (x, t) ∈ K
a
ξ , the translated

point Tδ(x, t) is in K
a
ξ and the departure time of this translated

point is unchanged:

∀(x, t) ∈ K
a
ξ , δ > 0, τd

ξ ◦ Tδ(x, t) = τd
ξ (x, t). (16)

and v
(

Tδ(x, t)
)

= ξ′ ◦ τd
ξ (x, t).

The proof is straightforward from (3).

Consequently, the next section addresses the derivation of a solver

for the reduced problem given by

τξ(t) = t+
ξ ◦ τξ(t)

c0
, (17)

where τξ(t) = τd
ξ (x = 0, t), and from which the strong solution

is derived

v(x, t) = ξ′
(

τξ(t)− x/c0
)

. (18)

Remark 3 (Equivalent Eulerian description). Consider function

V : (x, t) 7→ ξ′
(

τξ(t− x/c0)
)

defined on R
2. This function coin-

cides with v on K
a
ξ (see (12)) and is such that V ◦ Tδ is invariant

with respect to δ. Consequently, function V extends solution v on

the space-time domain R
2 and t 7→ V (0, t) stands for the equiva-

lent source description at x = 0 (Eulerian description).

4. RECURSIVE METHOD BASED ON POWER SERIES

First, a dimensionless version of the model is established, so that

the representation as power series is simplified. Second, a method

based on series expansion is described, in order to carry out com-

putation of (17-18).

4.1. Dimensionless model

Consider the following change of variable, given in Table 1.

Table 1: Dimensionless Model.

Variables Functions

x̃ = x/c0 p̃ = p/(ρ0c0)
t̃ = t ṽ = v/c0

ξ̃ = ξ/c0

Replacing equations (3-6-7) by their versions denoted with a "tilde"

yields

p̃(x̃, t̃) = ṽ(x̃, t̃) = ṽ+(t̃− x̃), (19)

the time-space propagation domain becomes

K̃ξ = {(x̃, t̃) ∈ R
2

s.t. x̃ > ξ̃(t̃)}, (20)

and the left boundary

ṽ+
(

t̃− ξ̃(t̃)
)

= ξ̃′(t̃). (21)

The strong solution becomes

ṽ(x̃, t̃) = ξ̃′
(

τ̃ξ(t̃)− x̃
)

∈ (K̃ξ,R), (22)

where

τ̃ξ(t̃) = t̃+ ξ̃ ◦ τ̃ξ(t̃). (23)

For the sake of readability, the symbols "tilde" are omitted in the

sequel.

4.2. Perturbation method and series expansion

Consider ξ ∈ C∞ (so that τξ ∈ C∞ from the theorem 1), and let

ǫ(t) = τξ(t)− t, (24)

which corresponds to the variation of propagation time due to source

motion. Reformulating (22-23) with ǫ(t) yields

v(x, t) = ξ′
(

t− x+ ǫ(t)
)

, (25)

ǫ(t) = ξ
(

t+ ǫ(t)
)

. (26)

Now, we solve the implicit equation (26) using a perturbation method.

Consider that (26) describes a system of input ξ and output ǫ(t),
and apply the change of variable ξ = α.u, with α ≥ 0. The

method consists in writing the output as a formal power series in

α, such that

ǫ(t) =

∞
∑

n=0

ǫn(t)

n!
αn. (27)

Then (26) becomes

∞
∑

n=0

αn ǫn(t)

n!
= α.u

(

t+

∞
∑

n=0

αn ǫn(t)

n!

)

. (28)

Now function u is developped into Taylor series at point t:

∞
∑

n=0

αn ǫn(t)

n!
= α

∞
∑

n=0

u(n)(t)

n!

(

∞
∑

m=0

αm ǫm(t)

m!

)n

. (29)

Given that the right-hand side of (29) is multiplied by α, the term

ǫ0(t) (corresponding to α0) is vanished. Then (29) reads

∞
∑

n=1

αn ǫn(t)

n!
= α

∞
∑

n=0

u(n)(t)

n!

(

∞
∑

m=1

αm ǫm(t)

m!

)n

. (30)

The right-hand side is a series composition and can be developped

using the Faá di Bruno power series formula:

∞
∑

n=1

ǫn(t)

n!
αn = α.u(t) +

∞
∑

n=1

cn(t).α
n+1, (31)

where

cn(t) =

n
∑

k=1

u(k)(t)

n!
Bn,k

(

ǫ1(t), ǫ2(t), ..., ǫn−k+1(t)
)

(32)

and Bn,k are the partial Bell polynomials.

Now,
∞
∑

n=1

αn
[ ǫn(t)

n!
− u(t)δ1,n − cn−1(t)

]

= 0, (33)

hence, for all α > 0,

ǫ1(t) = ξ(t),

ǫn(t) = n.

n−1
∑

k=1

ξ(k)(t)Bn−1,k

(

ǫ1(t), ..., ǫn−k(t)
)

,

∀n > 1,

(34)

where the amplitude α has been dropped, so that u = ξ.
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Property 2 (Multivariate polynomial). ǫn(t) has the form

Cn : ǫn(t) = Pn

(

ξ(t), ξ′(t), ..., ξ(n−1)(t)
)

, (35)

where Pn is a homogeneous multivariate polynomial of degree n.

The proof of this property is given in Appendix C.

Now, the expression of the particle velocity (25) is also expanded

into Taylor series, at point t− x:

v(x, t) =

∞
∑

n=0

ξ(n+1)(t− x)

n!

(

∞
∑

m=1

ǫm(t)

m!

)n

. (36)

Applying again the Faá di Bruno formula for power series compo-

sition finally yields the expression of the particle velocity,

v(x, t) =

∞
∑

n=1

vn(x, t), (37)

where

v1 = ξ(1)(t− x),

vn =

n−1
∑

k=1

ξ(k+1)(t− x)

k!(n− 1)!
Bn−1,k

(

ǫ1, ..., ǫn−k

)

,

∀n > 1.

(38)

The first orders of vn are listed below, where the dimensionless

model has been dropped:

v1(x, t) = ξ(1)(t− x/c0), (39a)

v2(x, t) =
1

c0
.ξ(t− x/c0).ξ

(2)(t− x/c0), (39b)

v3(x, t) =
1

c20

[1

2
ξ(t− x/c0)

2.ξ(3)(t− x/c0)

+ ξ(t− x/c0).ξ
(1)(t− x/c0).ξ

(2)(t− x/c0)
]

. (39c)

Remark 4 (Link with Volterra series). From the property 2, ǫn(t)
has homogeneous order n with respect to ξ(t) and its derivatives.

Then the system of input ξ(t) , on which the perturbation method is

applied, and output ǫ(x, t) (and by extension v(x, t)) can be rep-

resented by a Volterra series expansion [5], formally in the space

of distributions.

Remark 5 (Convergence). Some results about the convergence of

Volterra series are available in [6, 7] for L∞ input signals: they

involve L1 Volterra kernels. In the present problem, the conver-

gence and the class of admissible inputs are a more complicated

issue: because of the time-derivative in (38), kernels are not in L1.

In addition to (11), some properties about asymptotic behaviour

(bounds on time derivatives or on frequency characteristics) have

to be examined to set the convergence condition: this future work

will provide the class of admissible waveforms.

Remark 6 (Practical implementation). For implementation pur-

pose, the expansion (37) is truncated at a given order N . More-

over, for a signal in the frequency range fmax, a frequency over-

sampling by a factor of N is applied so that fs = N.(2fmax),
ensuring no aliasing (the frequency range of vn is then nfmax ≤
Nfmax).

4.3. Numerical evaluation of the convergence

Although the convergence domain of (38) is not tackled from the

theoretical side, this section presents simulations of the acoustic

output for a 40Hz, 1s sinusoidal velocity input at various Mach

numbers. Figure 4 shows the results for different truncation or-

ders, from N = 1 to N = 15.

Divergence of the series is noted at Mach 1 and above, which is

consistent with the condition of existence of the strong solution

(11). Since the usual range of membrane velocities is far below

this limit, the convergence criterion should be met, at least for si-

nusoidal motions.
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Figure 4: Convergence computation for various sinusoidal input

velocities. Simulations at Mach 0.6 and Mach 0.8 converge, con-

trary to simulations at Mach 1 and Mach 1.5.

5. SIMULATION AND DISTORTION EVALUATION

5.1. Harmonic distortion

The harmonic distortion is evaluated for a sinusoidal piston ve-

locity with constant amplitude over the frequency spectrum (loud-

speaker with a flat frequency response), so that the input displace-

ment takes the form

ξ(t) =
A

2πf1
sin(2πf1t). (40)

Two simulations are implemented, listed in Table 2 below. The

velocity amplitude A corresponds to a high velocity of the driver’s

membrane, T is the simulation duration and N is the truncation

order of (38). Results are presented in Figures 5and 6.

Table 2: Simulation parameters used for harmonic distortion sim-

ulations.

Name f1 A T N fs

HD1 40 Hz 1 m/s 50 s 3 N × 44100 Hz

HD2 1 kHz 1 m/s 50 s 3 N × 44100 Hz
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• The same harmonic distortion is observed for HD1 and HD2,

respectively in Figure 5 and Figure 6, with the apparition of the

second harmonic around -55dB. Injecting the expression of ξ(t) in

the first orders equations (39) leads to

v1(x, t) = A sin(2πf1t),

v2(x, t) =
A2

2c0

(

1− cos(4πf1t)
)

.

It appears that harmonic distortion only depends on piston velocity

amplitude, as confirmed by the simulations. Moreover, the ampli-

tude ratio between v1 and v2 is of -56,7 dB, which is consistent

with the numerical result.

• A THD1 of 0.14 % is noted. In most cases, harmonic distor-

tion can then be neglected. This is in agreement with previous

studies [2, 8]. A truncation at order 2 appears to be sufficient to

characterise this type of distortion (in the loudpseaker velocities

range).
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Figure 5: Results of simulation HD1. The amplitude spectrum

of the input piston velocity (top) and the ouput particle velocity

(bottom) are shown. Harmonic distortion is observed at 2f1.
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Figure 6: Results of simulation HD2. The amplitude spectrum

of the input piston velocity (top) and the ouput particle velocity

(bottom) are shown. Harmonic distortion is observed at 2f1.

1Total Harmonic Distortion is calculated as the ratio of RMS amplitude
of the harmonics to the RMS amplitude of the fundamental.

5.2. Intermodulation distortion

In this section, the intermodulation distortion is examined by sim-

ulating the particle velocity for an input displacement of the form

ξ(t) =
A

2πf1
sin(2πf1t) +

A

2πf2
sin(2πf2t).

Given the weak amplitude of harmonic distortion, it is assumed

that both phenomena can be analyzed separately (harmonic distor-

tion that occurs in the following computations is neglected). The

simulation parameters are listed in Table 3. Simulation results are

presented in Figures 7 and 8.

Table 3: Simulation parameters used for intermodulation distor-

tion simulation.

Name f1 f2 A T N fs
IMD1 40 Hz 3 kHz 1 m/s 50 s 5 N × 44100 Hz

IMD2 40 Hz 6 kHz 1 m/s 50 s 5 N × 44100 Hz

• An increase of intermodulation distortion is observed between

both simulations with a noticeable gain in sidebands amplitude

for IMD2. The Intermodulation Factors2 are 7.5% and 11.4% for

IMD1 and IMD2, respectively. This confirms that the intermodu-

lation effect, which rises with the value of f2, should be taken into

account for large frequency range speakers.

• Truncation at order 5 was sufficient for both simulations to cap-

ture the distortion phenomena in a dynamic of 100dB. However,

higher orders might be necessary in case of sound synthesis with

audio signal as input, since intermodulation distortion can be much

higher with complex signals.

• Finally, Figure 9 shows the intermodulation distortion for simu-

ation IMD2 in the time domain, resulting in phase modulation of

the high frequency component.
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Figure 7: Amplitude spectrum of the particle velocity (bottom) for

simulation IMD1 (top). The bottom figure is rescaled around the

frequency of interest, f2. Intermodulation distortion is observed at

f2 − p.f1 and f2 + p.f1 for p = 1, 2, 3.

2Intermodulation Factor is calculated as the ratio of the RMS amplitude
of the sidebands to the RMS amplitude of the carrier frequency.
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Figure 8: Amplitude spectrum of the particle velocity (bottom) for

simulation IMD2 (top). The bottom figure is rescaled around the

frequency of interest, f2. Intermodulation distortion is observed at

f2 − p.f1 and f2 + p.f1 for p = 1, 2, 3, 4.
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Figure 9: Time samples of simulation IMD2. Phase modulation is

observed, since the high frequency component is phase-shifted on

the falling edges and conversely on the rising edges.

In order to highlight the influence of Doppler effect on more com-

plex signals, a final simulation is performed with an input signal

composed of two chirps (50Hz to 3kHz) and one pure tone (1kHz),

at constant amplitude 1 m/s. Spectrograms of the particle veloci-

ties are shown without Doppler effect on the upper part of Figure

10, which is an exact copy of the input (delayed with x/c0). Bot-

tom Figure 10 shows the acoustic output with the Doppler effect,

truncated at N = 5. Both harmonic and intermodulation distortion

are clearly visible.

6. CONCLUSION

The model and simulations presented in this paper confirm that the

Doppler effect causes audible intermodulation distortion, as stated

in [1, 2, 9]. The numerical examination of expansion terms shows

that: (i) the convergence is statisfied quickly, (ii) the first expansion

terms can have an audible impact up to the orders 3 or 4.

Future work is concerned with:

• the convergence proof of the series expansion and the es-

tablishment of a truncation error bound,

• a corrector that compensates the Doppler effect based on

series inversion and the control of the truncation order on

the inverse series,

• the improvement of the model by including the convection

phenomenon.
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Figure 10: Spectrograms of the particle velocities, normalized in

dB, simulated with (bottom) and without (top) Doppler effect. The

input piston velocity is composed of two chirps and one pure tone.
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B. PROOF OF THE THEOREM 1

Proof. Let ξ be a Cn+1-regular function with n ∈ N that satisfies

(11). Point (i) results from propositions 1 and 2.

Proof of point (ii) is divided into two steps:

a. Boundary condition: v
(

ξ(t), t
)

= ξ′(t)

Because of (i), τd
ξ and v = ξ′ ◦ τd

ξ are Cn-regular. From (9), the

following equality can be computed:

Kξ

(

ξ(t), t
)

= (ξ(t), t), ∀t ∈ R. (41)

Moreover, by definition of the reciprocal function K−1
ξ ,

∀(x, t) ∈ K
a
ξ , (x, t) = K−1

ξ ◦Kξ(x, t), (42)

so that, replacing (x, t) by
(

ξ(t), t
)

,

(ξ(t), t) = K−1
ξ

(

ξ(t), t
)

. (43)

Taking the second component of (43), where [K−1
ξ ]2 = τd

ξ , yields

τd
ξ

(

ξ(t), t
)

= t. (44)

Therefore the solution ξ′ ◦ τd
ξ

(

ξ(t), t
)

verifies the boundary con-

dition (5).

b. Propagation: v(x, t) = v+(t− x/c0)
Define the function

L : K
0
ξ 7−→ K

a
ξ

(x, t) 7−→ (x, t+ x/c0),
(45)

where K0
ξ =

{

(x, t) ∈ R
2|(x, t+ x/c0) ∈ K

a
ξ

}

.

Moreover, isolating the second component of

L(x, t) = Kξ ◦K
−1
ξ ◦ L(x, t)

=
(

x, τa
ξ

(

x, τd
ξ ◦ L(x, t)

)

)

,
(46)

leads to, for all (x, t) ∈ K
0
ξ ,

t+
x

c0
= τd

ξ ◦ L(x, t) +
x− ξ ◦ τd

ξ ◦ L(x, t)

c0
. (47)

This equation is equivalent to, for all (x, t) ∈ K
0
ξ ,

t = Fξ

(

τd
ξ ◦ L(x, t)

)

, (48)

where
Fξ : R 7−→ R

t 7−→ t− ξ(t)/c0.
(49)

Now, for all t ∈ R, F ′
ξ(t) = 1−ξ′(t)/c0 > 0 and limt→±∞ Fξ(t) =

±∞ so that Fξ is a strictly increasing bijective function. It follows

that

τd
ξ ◦ L(x, t) = F−1

ξ (t), (50)

proving that τd
ξ ◦ L(x, t) does not depend on x.

Consequently, the strong solution (12) can be written, for all (x, t) ∈
K

a
ξ ,

v(x, t) = ξ′ ◦ τd
ξ (x, t)

= ξ′ ◦ τd
ξ ◦ L(x, t− x/c0),

(51)

which has the form v+(t − x/c0), with v+ = ξ′ ◦ τd
ξ ◦ L, that

concludes the proof.

C. PROOF OF THE PROPERTY 2

Proof. Let us prove by induction the following property

Cn : ǫn = Pn

(

ξ(t), ξ′(t), .., ξ(n−1)(t)
)

,

where Pn is a homogeneous multivariate polynomial of degree n.

• Step 1: C2 is true, since ǫ2 = ξ(t).ξ′(t), which is a polyno-

mial or degree 2.

• Step 2: If Cn is true, then Cn+1 is true.

Let ǫn = Pn(ξ, ξ
′, ..., ξ(n−1)). Then

ǫn+1 = (n+1).

n
∑

k=1

ξ(k).Bn,k

(

ξ(t), .., Pn−k+1(ξ, ξ
′, ..., ξ(n−k))

)

,

where the Bell polynomials are developped

Bn,k

(

ξ, .., Pn−k+1(ξ, ξ
′, ..., ξ(n−k))

)

=
∑

j1,...,jn−k∈Πn−1,k

(ξ(t)

1!

)j1 × ...

×
(Pn−k+1(ξ, ..., ξ

(n−k))

(n− k + 1)!

)jn−k+1 .

and Πn,k =

{

j1 + j2 + ...+ jn−k+1 = k

j1 + 2.j2 + ...+ (n− k + 1).jn−k+1 = n.
.

Bn,k is a sum over products of polynomials, then it is a polyno-

mial. Moreover the degree of each term of the sum over Πn,k is

1.j1 + 2.j2 + ...+ jn−k+1 + (n− k + 1) = n,

from the definition of Πn,k. Therefore the degree of all nonzero

terms of ǫn+1 is n+ 1, that concludes the proof.
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