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ABSTRACT

This work takes place in the context of the development of an ac-

tive control of instruments with geometrical nonlinearities. The

study focuses on Chinese opera gongs that display a characteristic

pitch glide in normal playing conditions. In the case of the xiaoluo

gong, the fundamental mode of the instrument presents a soften-

ing behaviour (frequency glides upward when the amplitude de-

creases). Controlling the pitch glide requires a nonlinear model of

the structure, which can be partially identified with experimental

techniques that rely on the formalism of nonlinear normal modes.

The fundamental nonlinear mode has been previously experimen-

tally identified as a softening Duffing oscillator. This paper aims

at performing a simulation of the control of the oscillator’s pitch

glide. For this purpose, the study focuses on a single-degree-of-

freedom nonlinear mode described by a softening Duffing equa-

tion. This Duffing oscillator energy proves to be ill-posed - in

particular, the energy becomes negative for large amplitudes of vi-

bration, which is physically inconsistent. Then, the first step of the

present study consists in redefining a new energetically well-posed

model. In a second part, guaranteed-passive simulations using

port-Hamiltonian formalism confirm that the new system is phys-

ically and energetically correct compared to the Duffing model.

Third, the model is used for control issues in order to modify the

softening or hardening behaviour of the fundamental pitch glide.

Results are presented and prove the method to be relevant. Per-

spectives for experimental applications are finally exposed in the

last section of the paper.

1. INTRODUCTION: PROBLEM STATEMENT

The Duffing equation αẍ+κx+Γx3 = 0 is commonly used as the

simplest nonlinear system that models geometrical nonlinearities.

However, the softening Duffing equation (Γ < 0) leads to an ill-

posed problem since the energy is negative for large amplitudes

of vibration. In this study, we propose to redefine a well-posed

energy to overcome this issue.

Besides, the softening Duffing oscillator is quite interesting

for the study of Chinese opera gongs[1] which can present either

∗ The contribution of this author has been done at laboratory
STMS, Paris, within the context of the French National Research
Agency sponsored project INFIDHEM. Further information is avail-
able at http://www.lagep.cpe.fr/wwwlagep7/anr-dfg-infidhem-fev-2017-
jan-2020/

hardening or softening behaviour in standard playing conditions.

Numerous studies detailed the nonlinear dynamical phenomena

that occur in these instruments (internal resonances, chaos, pitch

glide, harmonic distortions, etc.)[2][3][4] and their modelization

(e.g. Von Karman plate model and nonlinear normal modes[5][6]).

These works showed that most of these nonlinear features are the

result of nonlinear interactions between vibration modes and re-

quire models with a high number of degree of freedom[7][8]. How-

ever, in the case of the pitch glide, the uni-modal approximation

might be interesting: a single nonlinear mode is able to describe

the dependence between the frequency and the amplitude of vibration[5].

Nonlinear normal modes are defined as invariant manifolds in phase

space [6]. They are deduced from normal form theory which al-

lows to compute an analytical nonlinear change of variables, from

modal coordinates (Xp, Ẋp) to new normal coordinates (Rp, Ṙp),

by cancelling all the terms that are not dynamically important in

the equations of motion [9]. The dynamics onto the p-th nonlinear

normal mode is governed by the new normal coordinates (Rp, Ṙp)

and is written in free vibration regime:

R̈p + ω2
pRp + (Ap + Cp)R

3
p +BpRpṘp

2
= 0 (1)

where Rp and Ṙp are the nonlinear mode displacement and ve-

locity respectively, ωp is the modal pulsation associated with the

p-th mode, and Ap, Cp and Bp are coefficients that take into ac-

count the influence of other linear modes in the nonlinear mode

dynamics. A first-order perturbative development of this equation

[10] leads to the nonlinear relationship between the angular fre-

quency of nonlinear free oscillations ωNL and the amplitude a of

the nonlinear mode’s response at frequency ωNL:

ωNL = ωp(1 + Tpa
2)

where the coefficient Tp is Tp =
3(Ap+Cp)+ω2

pBp

8ω2
p

. In practice,

an experimental identification of Tp can be performed [11], but

afterwards it is no longer possible to identify separately the coef-

ficients Ap, Cp and Bp. However, in the case of the xiaoluo, it

can be shown that the fundamental nonlinear mode described in

(1) is equivalent (first-order of perturbation method) to a softening

Duffing equation with a negative cubic coefficient Γp:

R̈p + ω2
pRp + ΓpR

3
p = 0 (2)
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Indeed, the Tp coefficient in this case is directly related to the Γp

by Tp =
3Γp

8ω2
p

. Then, provided that:

Γp = Ap + Cp +
ω2
pBp

3

the equation (1) is equivalent to (2). Consequently, the coefficient

Γp and therefore the nonlinear mode can be experimentally iden-

tified with the measurement of Tp.

Finally, the softening Duffing model is assumed for two rea-

sons: first, it provides a convenient basis to experimentally identify

isolated nonlinear modes in the case of gongs; second, it gives the

opportunity to define a single parameter well-posed energy that

can be manipulated through energy shaping control in order to

change its softening or hardening behaviour.
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Figure 1: Spectrogram of the sound of a xiaoluo after being struck

by a mallet. The fundamental mode (∼ 449 Hz) displays a soften-

ing behaviour.

This study aims at controlling the softening behaviour of the

xiaoluo gong’s nonlinear fundamental mode, that we assume to

be a in the form of the softening Duffing equation described by

Eq. (2). The control process relies on guaranteed-passive simula-

tions that use port-Hamiltonian approach. Port-Hamiltonian sys-

tems (PHS) are an extension of Hamiltonian systems, which rep-

resent passive physical systems as an interconnection of conserva-

tive, dissipative and sources components. They provide a unified

mathematical framework for the description of various physical

systems. In our case, the PHS formalism allows for the writing

of an energy-preserving numerical scheme [12] in order to simu-

late and control the Duffing equation - note that other and more

precise guaranteed-passive numerical schemes [13] are available

but not used in this work. The first observation when tackling the

control problem is that the softening Duffing equation defined by

Eq. (2) is energetically ill-defined (Section 2). For large ampli-

tudes of vibration, the total system energy, written with the PHS

approach, becomes negative and thus, physically inconsistent. The

first step of this study consists then to redefine the energy for the

fundamental nonlinear mode. This new energy must be (i) as close

as possible of the energy of the Duffing equation described in (2)

and (ii) physically consistent. Secondly (Section 3), the Duffing

energy and the new well-posed energy are both simulated using a

guaranteed-passive numerical scheme that relies on the energy dis-

crete gradient. Simulation results confirm the relevance of using

the new energy for the control design. Thirdly (Section 4), control

simulation of the fundamental mode’s pitch glide is realized by

shaping the system’s new energy. The simulation results confirm

the ability to modify the softening behaviour of the fundamental

mode thanks to the new energy defined in Section 2. Finally, con-

clusion and perspectives for further research offered by this study

are discussed in Section 5.

2. PHYSICAL MODEL

2.1. Original Duffing model

2.1.1. Equation of motion

As explained before, the nonlinear normal mode associated with

the fundamental mode is modelled by a softening Duffing oscilla-

tor, expressed as in Eq. (2) with an added viscous modal damping:

ẍ(t) + 2ξω0ẋ(t) + ω2
0x(t)− Γx3(t) = f(t) (3)

where x is the amplitude response of the nonlinear normal mode,

ξ is the modal damping factor, ω0 is the modal pulsation, Γ is the

nonlinear cubic coefficient (Γ > 0) and f is the input accelera-

tion. These parameters have been experimentally identified, how-

ever the description of the identification methods are beyond the

scope of the paper. We assume then the following parameters val-

ues:

ξ = 1.4.10−3

ω0 = 2π × 449 rad/s

Γ = 6, 7.106 S.I

2.1.2. Dimensionless problem

For more convenience, equation (3) is written with dimensionless

amplitude x̃ and time t̃, defined such as x = X0x̃ and t = τ t̃. The

Duffing equation (3) becomes:

X0

τ2
¨̃x(t̃) + 2ξω2

0
X0

τ
˙̃x(t̃) + ω2

0X0x̃(t̃)− ΓX3
0 x̃

3(t̃) = f(τ t̃)

that is:

¨̃x(t̃) + 2ξω2
0τ ˙̃x(t̃) + ω2

0τ
2x̃(t̃)− Γτ2X2

0 x̃
3(t̃) =

f(τ t̃)τ2

X0

Choosing τ and X0 such that τ = 1
ω0

and X0 =
√

1
τ2Γ

leads to

the following Duffing equation:

¨̃x(t̃) + µ ˙̃x(t̃) + x̃(t̃)− x̃3(t̃) = f̃(t̃) (4)

where µ = 2ξ and f̃(t̃) = f(τt̃)
√
Γ

ω3

0
m

.

For sake of legibility, tilde will be omitted in the following.

2.2. Port-Hamiltonian approach

This section introduces some recalls on port-Hamiltonian systems

in finite dimensions. The calculation of the Hamiltonian H of the

Duffing system demonstrates that its potential energy H1 is nega-

tive for some displacement values. A new equivalent positive def-

inite potential energy H1⋆ is then defined for the control design.
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2.2.1. General formulation

A port-Hamiltonian system of state x(t), input u(t) and output

y(t) can be represented by the following differential equations

[14]:

ẋ =
(
J(x)−R(x)

)
∇xH(x) +G(x)u

y = G(x)T∇xH(x)

where ẋ is the time derivative of state x, ∇x denotes the gra-

dient with respect to state x, H(t) is a positive definite function

that represents the total energy of the system, matrix J is skew-

symmetric and R is positive definite (R ≥ 0). The power balance

of the system can be expressed by the temporal energy variation of

the system Ḣ(x(t)) = ∇xH(x(t))T ẋ(t), that is:

Ḣ = ∇xH
T
J∇xH

︸ ︷︷ ︸

=0 (J=−JT )

− ∇xH
T
R∇xH

︸ ︷︷ ︸

Dissipated power Pd>0

+ y
T
u

︸︷︷︸

Entering power Pe

.

This power balance equation guarantees the system passivity. The

variation of the system energy is expressed as the sum of elemen-

tary power functions corresponding to the storage, the dissipation

and the exchanges of the system with the external environment.

The dissipation term Pd is positive because R is positive definite.

The power term Pe denotes the energy provided to the system by

the ports u(t) and y(t) (external sources).

The formulation Ḣ(x) = ∇xH(x)T ẋ underlines the fact

that each power function can be expressed as the product of a flux

([∇xH(x)T ]i or [ẋ]i) with its associated efforts ([ẋ]i or [∇xH(x)T ]i).
A concrete example is given below with the Duffing oscillator de-

scribed by Eq. (4) .

2.2.2. Softening Duffing oscillator energy

The port-Hamiltonian system corresponding to the Duffing equa-

tion (4) can be defined as follow:

• State: x =

[
x1

x2

]

=

[
l
p

]

where l and p are the string elongation and the mass mo-

mentum, respectively.

• Dissipation: PD = µp2 > 0.

• Source: input u = f and output −y = p.

where p is the velocity of the nonlinear normal mode. The total

energy of the system H is the sum of the energy of the spring H1

and the energy of the mass H2:

H(x1, x2) = H1(x1) +H2(x2) =
1

2
x2
1 −

1

4
x4
1 +

1

2
x2
2

The flux and efforts associated with the energies H1 and H2 are

given in Table 1.

Spring Mass

Energy H1(x1) =
1
2
x2
1 − 1

4
x4
1 H2(x2) =

1
2
x2
2

Effort
dH1(x1)

dl
= x1 − x3

1
dx2

dt

Flux dx1

dt

dH2(x2)
dx2

= x2

Table 1: Energies and associated efforts and flux.

The port-Hamiltonian formulation of Eq. (4) can be deduced:

ẋ = (J −R)∇xH(x) +Gu
(
ẋ1

ẋ2

)

=

[(
0 1
−1 0

)

−
(
0 0
0 µ

)]

∇xH(x1, x2) +

(
0
1

)

u

The physical interpretation of a system is often analyzed through

the derivative of the potential energy (or forces), which is written

in our case:

H ′
1(x1) = x1 − x3

1

The derivative H ′
1 is plotted on Figure 2(a) with the potential en-

ergy derivative of the underlying linear system for comparison.

One can see that looking at H ′
1 does not give any information

about the physical existence of the softening Duffing system. It

is only by plotting the potential energy H1 (see Figure 2(b)) that

the softening system proves not to be physically defined for some

displacement values x1: if |x1| >
√
2, H1 < 0 and H can be neg-

ative. Moreover, the equilibrium points x1 = 1 and x1 = −1 are

saddle points, which means that the physical problem is restricted

to |x1| < 1.

The softening Duffing system (4) is then not energetically de-

fined, and a new well-posed energy needs to be sought for the con-

trol design.

2.2.3. Well-posed problem

The aim of this paper is to seek functions H1⋆ such that:

• ∀x ∈ R, H1⋆(x) ≥ 0

• H1⋆ increases on R
+

• H1⋆ decreases on R
−

• H ′′
1⋆ is equivalent at order 2 to the dynamical stiffness of

the softening Duffing H ′′
1 (x) = 1− 3x2

(5)

H ′′
1 (x) corresponds to the first terms of the Taylor expansion of

x → exp(−3x2). Then, one simple choice for H ′′
1⋆ is:

∀x ∈ R H ′′
1⋆(x) = exp(−3x2) =

+∞∑

n=0

(−3)n

n!
x2n

If we assume the conditions H ′
1⋆(0) = 0 and H1⋆(0) = 0, the

simple and double integration of H ′′
1⋆ give, for all x ∈ R:

H ′
1⋆(x) =

+∞∑

n=0

(−3)n

n!(2n+ 1)
x2n+1 = x− x3 +O(x5)

H1⋆(x) =

+∞∑

n=0

(−3)n

(2n+ 2)(2n+ 1)n!
x2n+2 =

x2

2
− x4

4
+O(x6)

and H1⋆ meets the requirements (5). Note that H ′
1⋆ can be ex-

pressed with the help of the error function erf which is defined

for x ∈ R by:

erf(x) =
2√
π

∫ x

0

e−λ2

dλ =
2√
π

∞∑

n=0

(−1)n
x2n+1

n!(2n+ 1)

leading to:

H ′
1⋆(x) =

√
π

2
√
3
erf(

√
3x)
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Figure 2: Second derivative, first derivative of potential energy

and potential energy obtained by successive integrations with re-

spect to the displacement x1, represented in the case of the Duffing

oscillator, the new well-posed energy, and the linear case. Red dot

line represents the null energy level, and blue dot line indicates the

coincidence between the turning points of the potential energy and

the zeros of its first derivative.

Finally, the new potential energy is:

H1⋆(x) =

+∞∑

n=0

(−3)n

n!(2n+ 1)(2n+ 2)
x2n+2

=

√
π

6
p(
√
3x)− 1

6

where p(x) = x× erf(x) + e−x2

√
π

is a primitive of the erf func-

tion. The potential energy H1⋆ and its derivative are represented

in Figure 2 along with H1 and the linear system potential energy

for comparison. Note that H1⋆ is positive and equals the Duffing

potential energy H1 for small amplitudes x1.

3. SIMULATION

This section describes the MATLAB guaranteed-passive structure

simulation relying on the discrete energy gradient. The simulation

of the systems defined by (i) the Duffing potential energy H1 and

(ii) the well-posed problem defined by the new potential energy

H1⋆ are performed and compared.

3.1. Discretization of the equations

The discrete-time equations to be solved for the port-Hamiltonian

system are:

{
δx
δt

= (J(x)−R(x))∇dH(x, δx) +G(x)u

y = G(x)T∇dH(x, δx)
(6)

where δx = [δx1δx2]
T and δt (δt = 1/fs where fs = 44100

Hz is the sampling frequency) are the discrete space and time step,

respectively, and ∇d denotes the discrete gradient defined by:

[∇dH(x, δx)]n =
Hn(xn + δxn)−Hn(xn)

δxn

if δxn 6= 0

= H ′
n(xn) else.

Matrices J , R and G are defined as:

J =

(
0 1
−1 0

)

R =

(
0 0
0 µ

)

G =

(
0
1

)

Equation (6) is implicit and requires an iterative algorithm

to be solved. In this work we use the Newton-Raphson method,

which is written for time step k:

δx(k+1) = δx(k) − J
−1
F

(δx(k))F (δx(k)), k ∈ N

where JF is the Jacobian matrix of function F defined by F (δx) = 0

that is:

F =

(
F1(δx1, δx2)
F2(δx1, δx2)

)

=
1

δt

(
δx1

δx2

)

−
(

0 1
−1 −µ

)(
∇dH1(x1, δx1)
∇dH2(x2, δx2)

)

−
(
0
1

)

u

3.2. Duffing case

In the Duffing oscillator case, the discrete gradient is:

∇dH1(x1, δx1) =
H1(x1 + δx1)−H1(x1)

δx1

=
1

2
(2x1 + δx1)−

1

4
(4x3

1 + 6x2
1δx1 + 4x1δx

2
1 + δx3

1) (7)
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and

∇dH2(x2, δx2) =
H2(x2 + δx2)−H2(x2)

δx2

= x2 +
δx2

2

Then we have:

F1(δx1, δx2) =
δx1

δt
−∇dH2(x2, δx2)

F2(δx1, δx2) =
δx2

δt
+∇dH1(x1, δx1) + µ∇dH2(x2, δx2)− u

and the Jacobian matrix is:

JF =

(
1
δt

− 1
2

1
2
− 3

2
x2
1 − 2x1δx1 − 3

4
δx2

1
1
δt

+ µ

2

)

The simulation of the Duffing oscillator is performed with an ex-

citation force f(t) = f0 · g(t) where g is an impulse. The poten-

tial energy H1 versus the simulated displacement x1, for the limit

excitation f0 = fmax = 9.5 · 107, is plotted in Figure 3. The

spectrogram of the oscillator response x1 is also shown in Figure

4 and highlights the softening behaviour of the oscillator. If the

value of f0 exceed fmax, the simulation fails since |x1| > 1 (see

Section 2). We will see in the next section that this difficulty can

be overcome with the definition of a new potential energy.
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Figure 3: Potential energies as a function of the displacement re-

sulting from simulations of the Duffing oscillator (black) and the

new well-posed model (grey). The excitation force is fmax = 9.5·
107. In the case of the Duffing oscillator, increasing the input force

makes the computation fail because |x1| > 1 (see Fig 2).

3.3. Well-posed problem

In the case of the new problem defined by H1⋆ the discrete gradient

is

∇dH1⋆(x1, δx1) =
H1⋆(x1 + δx1)−H1⋆(x1)

δx1

=

√
π

6

p(
√
3(x1 + δx1))− p(

√
3x1)

δx1
(8)

Figure 4: Spectrogram of the simulated Duffing system response

x1 for an input force fmax = 9.5 · 107.

∇dH2(x2, δx2) is the same as in the Duffing case. We can then

deduce the Jacobian matrix:

JF =

(
1
δt

− 1
2√

π

6

√
3p′(

√
3(x1+s1))s1−p(

√
3(x1+s1))+p(

√
3x1)

s2
1

1
δt

+ µ

2

)

It is possible to simulate the system associated with the new en-

ergy H1⋆ for an excitation force f0 = fmax, as in section 3.2. The

potential energy H1⋆ versus the simulated displacement is plotted

in Figure 3 and can be compared with the potential energy issued

from the Duffing simulation performed in section 3.2. However,

contrary to the Duffing simulation, the input force f0 can now be

increased without failing the computation. This is demonstrated

by running simulations with an input force f0 = 2 · 108 > fmax.

The resulting potential energy H1⋆ is plotted in Figure 5 and the

spectrogram of the temporal displacement x1 is represented in Fig-

ure 6: the softening behaviour of the system has been increased.

4. CONTROL DESIGN

In this section, we present the nonlinear mode’s pitch glide con-

trol design. The former Duffing model presented in Section 2 is

abandoned and replaced by the model associated with the new po-

tential energy H1⋆ defined in Section 3. The control of the pitch

glide is realized by shaping the energy H1⋆. The principles of en-

ergy shaping are recalled in the first section, and the pitch glide

control simulations are presented in the second section.

4.1. Energy reshaping

Let Hǫ
1⋆ be the potential energy parameterized by ǫ 6= 0 such that:

Hǫ
1⋆(x) =

x2

2
− ǫ

x4

4
+O(x6) (9)

DAFX-68



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

x
1

-3 -2 -1 0 1 2 3

P
o

te
n

ti
a

l 
e

n
e

rg
y
 H

1
*

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Potential energy H1∗ as a function of the displacement

x1 resulting from simulations of the new well-posed system for an

input force f0 = 2 · 108 > fmax = 9.5 · 107.

Figure 6: Spectrogram of the simulated well-posed system re-

sponse x1 for an input force f0 = 2 · 108 > fmax = 9.5 · 107.

This potential energy can be easily calculated using the same ar-

guments than in section 2.2.3:

Hǫ
1⋆(x) =

√
π

6ǫ
p(
√
3ǫx)− 1

6ǫ
for ǫ > 0 (softening)

Hǫ
1⋆(x) =

√
π

6ǫ
pi(

√
3ǫx) +

1

6ǫ
for ǫ < 0 (hardening)

where pi(x) = x× erfi(x)− ex
2

√
π

is a primitive of the imaginary

error function erfi.
The energy shaping control principle is as follows: if a system

is defined by the energy Hǫ1
1⋆ , energy shaping consists in chang-

ing the system potential energy from Hǫ1
1⋆ to Hǫ2

1⋆ (ǫ1 6= ǫ2) by

replacing at each time step t the input force f(t) by:

f1(t) = f(t) + (∇dH
ǫ1
1 −∇dH

ǫ2
1⋆)(x1(t))

The gradient term +∇dH
ǫ1
1 aims at "cancelling" the original sys-

tem defined by Hǫ1
1⋆ whereas the gradient term −∇dH

ǫ2
1⋆ intro-

duces the new target system defined by Hǫ2
1⋆ . In our case, note that

the original system is defined by ∇dH1⋆ = ∇dH
ǫ1=1
1⋆ .

4.2. Control simulations

Control simulations using energy shaping principle are performed.

The simulation parameters are:

• initial (uncontrolled) energy: Hǫ1
1⋆ = H1⋆

• target energy: Hǫ2
1⋆ , with ǫ2 ∈ {0.0746, 0.746, 1.79,−2}

• input force: f0 = 2 · 108

Note that ǫ2 > 0 and ǫ2 < 0 leads to a softening and hardening

behaviour, respectively.

Figure 7 presents the potential energy Hǫ2
1⋆ computed from

the simulated responses for the different values of ǫ2. Theoretical

quadratic energy of the underlying linear system is also plotted to

distinguish softening from hardening behaviour. The results show

that positive control parameter ǫ2 leads to a softening behaviour

(which increases with the value of ǫ2), whereas negative value of

ǫ2 results in a hardening behaviour, as expected. This is confirmed

by looking at the pitch glide variation of the system response, in

Figure 8 to 11.

These results underline the benefits of the definition of the new

energy H1⋆, i.e. the ability to compute systems dynamics with

important pitch glide (downward and upward) caused by both large

input forces and nonlinear coefficients.
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Figure 7: Hǫ
1⋆ energies of the controlled system for different values

of control parameter ǫ2.
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Figure 8: Spectrogram of the system response x1 for a control

parameter value ǫ2 = −2.

Figure 9: Spectrogram of the system response x1 for a control

parameter value ǫ2 = 0.0746

5. CONCLUSION

This paper has introduced a port-Hamiltonian formulation of a xi-

aoluo gong’s fundamental nonlinear mode described by a soften-

ing Duffing oscillator. First, the calculation of the Duffing energy

highlighted an inconsistent potential energy that has led to the re-

definition of a well-posed potential energy. Guaranteed-passive

simulations of the system associated to this new energy prove to

overcome the stability problem encountered with the ill-posed Duff-

ing modelling. The new energy formulation has then been used in

successful energy shaping control simulations, in order to mod-

ify the system’s nonlinear behaviour in a more hardening or more

softening way.

This work represents the first step toward the development

Figure 10: Spectrogram of the system response x1 for a control

parameter value ǫ2 = 0.746

Figure 11: Spectrogram of the system response x1 for a control

parameter value ǫ2 = 1.791

of an experimental control of a real xiaoluo gong. However, the

various nonlinear phenomena encountered in gong’s dynamics, in

particular internal resonances (energy exchanges between modes),

underline the limitation of a single nonlinear mode modelisation.

The control of the instrument pitch glide may require the identi-

fication of a MDOF model with interconnected port-Hamiltonian

systems.
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