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ABSTRACT

Extraction of stationary and transient components from audio has
many potential applications to audio effects for audio content pro-
duction. In this paper we explore stationary/transient separation
using convolutional autoencoders. We propose two novel unsuper-
vised algorithms for individual and and joint separation. We de-
scribe our implementation and show examples. Our results show
promise for the use of convolutional autoencoders in the extraction
of sparse components from audio spectrograms, particularly using
monophonic sounds.

1. INTRODUCTION

The problem of identifying transients in audio signals (especially
musical audio) has received significant attention in the phase
vocoder literature, given the difficulties posed by transients to sinu-
soidal models. As a consequence, a number of sines + transients +
noise models were proposed [1, 2]. Transient and stationary com-
ponents can in fact be related with general signal models prevalent
in audio effects [3].

These models are often applied to monophonic sounds, but
their application to broad polyphonic signals remains challenging.
Meanwhile, researchers focusing on separation of polyphonic sig-
nals into their component sources have developed a similar sep-
aration task, often dubbed harmonic-percussive source separation
(HPSS). This name obviously assumes the presence of harmonic
and percussive components in audio. However, techniques em-
ployed for this task often do not actually take into account har-
monicity of musical tones and instead focus on other aspects of
typically harmonic components of polyphonic signals. Most algo-
rithms are based, in one way or another, on the observation that
percussive and harmonic components tend to form straight verti-
cal and horizontal lines in the spectrogram. This property can be
called the anisotropic smoothness [4]. Several works have been de-
veloped to exploit this using non-negative factorization algorithms
[5, 6]. A very popular approach is to simply use a combination of
two median filters [7].

Separation of audio into stationary and transient components,
that is, without modeling sinusoids, was proposed in a recent study
[8]. This perspective allows the application of ideas based on
anisotropic smoothness to digital audio effects. In this sense, this
task remains in an abstract domain related to signal models, which
makes quantitative evaluation elusive.

In this paper, we propose two algorithms for tran-
sient/stationary separation using convolutional autoencoders
(CAE). Autoencoders are neural network algorithms that pur-
posely realize imperfect replicas of input signals based on some

constraints. Thanks to current neural network programming li-
braries, such constraints can be specified directly into cost func-
tions, without having to worry about their derivative. This pro-
vides a promising framework for experimenting with digital audio
effects. In this paper we explore their use for transient/stationary
separation by implementing anisotropic smoothness constraints
from the HPSS literature in the cost functions.

2. CONVOLUTIONAL AUTOENCODERS

Autoencoders are neural network algorithms that try to reconstruct
the input from a typically lower dimension hidden representation.
The encoder is typically the combination of an affine transform
with weights W and biases b with some non-linear activation �:

h = �(Wx+ b). (1)

Here, h is a hidden representation of x with dimensionality
determined by the weight matrix. The decoder then performs the
inverse operation to obtain a reconstruction y:

y = �(W 0h+ b0). (2)

This is typically accomplished using some variant of stochas-
tic gradient descent (SGD) that learns the parameters W , b, W 0

and b0 to minimize the some distance metric between x and y. Au-
toencoders have been extensively used in machine learning, usu-
ally not for the reconstruction itself but for learning useful features
from data. The parameters that produce the hidden representa-
tion h are then used in other neural networks for e.g. image clas-
sification. In order to avoid that the algorithm learns to exactly
copy the input to the output, which would not yeld useful features,
the main strategies are choosing a lower dimensionality for h or
adding some sparsity constraint to the cost function.

An analogy of traditional autoencoders with non-negative fac-
torization (NMF) algorithms used for audio separation was pro-
posed in [9] but evaluated only for the supervised case. Supervised
neural networks used in separation of musical audio [10] can be
seen as supervised autoencoders, in the sense that the output is the
same shape as the input.

Traditional autoencoders, however, process data in one dimen-
sion and thus cannot be used to learn time-frequency patterns. The
usual solution of stacking several spectral frames quickly degener-
ates into prohibitive computational costs.

Convolutional neural networks (CNNs) have become the stan-
dard algorithm for image classification and object recognition.
They have also been shown to work for speech recognition [11]
and audio classification [12]. In CNNs, the weights are typically
square convolution kernels that are shared, i.e. each kernel is
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convolved with the whole image. The resulting representation is
downsampled with respect to the input image size (which can be
further downsampled with pooling operations), but typically com-
posed by multiple channels corresponding to each learnable ker-
nel.

Convolutional autoencoders (CAEs) arose in this context, al-
lowing the use of 2D convolution operations for learning features.
In a CAE, the operation in Equation 1 is rewritten as :

hi = �(X ⇤W i + bi), (3)

where ⇤ represents a 2D convolution operation. Here the in-
put X is a matrix. The hidden representation is now a tensor,
h 2 Rd,m,n, with d determined by the number of kernels (hence
the index i for each convolution). In addition to the size of the in-
put and the kernel, dimensions m and n can be affected by several
parameters of the convolution, such as input padding and stride.
Thus, h can be in all a higher-dimensional representation than the
input, but the information has to be transmitted through the convo-
lution with small (typically 5x5) kernels.

While these are conventional convolution layers used in
CNNs, the particularity of CAEs is to introduce an upsampling
convolution that allows restoring the original size in the decoder:

Y = �(hi ⇤W 0i + b0i). (4)

This operation is informally called "deconvolution" [13], or
more technically fractionally strided convolution [14], and it in-
volves padding and re-shaping the kernels into a convolution ma-
trix of a size that allows recovering the original size through con-
volution with the hidden representation. One interesting property
of this architecture is that it can be used for images (in our case
magnitude spectrograms) of arbitrary size.

Supervised networks with deconvolution decoders have re-
cently started to appear in the source separation literature [15, 16].
In this paper, we explore the use of this architecture in an unsu-
pervised setting for stationary / transient separation of audio. It is
common in AEs and CAEs to implement restrictions in the loss
function, in addition to the output being similar to the input. This
feature can thus be used to devise new audio effects. In the case
of CAEs, the loss function can take into account both the time and
frequency dimensions and promote vertical or horizontal lines as
commonly done for HPSS.

3. TRANSIENT / STATIONARY AUDIO SEPARATION

In this section we describe different loss functions that can be used
to train a CAE. As noted, our approach consists of using the net-
work to process a magnitude spectrogram. We define X to be such
spectrogram (e.g. it has been obtained from some complex spec-
trogram C), and assume it to be a sum of two components:

X = Xt +Xs. (5)

Here Xt represents the time-frequency bins associated with
transients, and Xs the ones associated with stationary components.
We regard this as a useful abstraction and not as a physical mix-
ture, beyond the fact that musical sounds typically contain tran-
sients and steady tones. It is often useful to distinguish a noise
component that is not associated with transients. While we do not
model this component directly, we observe in Section 3.1 that a ba-
sic CAE can be used to remove background noise. In Section 3.2
we show a model that can be used to individually estimate Xt or

Xs. This allows using a different time-frequency grid that may be
more appropriate for each situation. In this case, a corresponding
complex estimate can be recovered using the original phase, e.g.
for a complex STFT:

Ĉ = X̂e�j , (6)
where X̂ can either be X̂t or X̂s, and � is the phase of the

original spectrogram.
On the other hand, for ensuring that X is recovered by the sum

of both estimates, it may be convenient to estimate a soft mask, i.e:

Mt =
X̂t

X̂t + X̂s

, (7)

Ms =
X̂s

X̂t + X̂s

, (8)

using a common transform for both components. Ĉ is then
obtained as Mt⌦C or Ms⌦C, where ⌦ denotes the element-wise
product. In Section 3.3 we describe a model for jointly obtaining
X̂t and X̂s from the same spectrogram.

3.1. Basic CAE

A basic CAE implementation simply tries to recover the input. A
suitable loss function would then be the mean square error (MSE)
between the input X and the output Y :

LMSE =
1

TF

X
(X � Y )2, (9)

where T and F are the dimensions of the spectrogram. The
goal of the algorithm is then to find an optimal set of kernels
that allow this reconstruction through 2D convolutions. Using this
function implies the danger of simply copying the input. It is easy
to see that a convolution kernel with a single active weight would
accomplish that. One common solution is to add a sparsity con-
straint on the hidden representation. However, here we are inter-
ested in the output (i.e. transient or stationary components) being
sparser than the input. Promoting a sparse hidden representation
does not directly accomplish that, because the decoder can try to
learn to re-create the (non-sparse) input from the sparse hidden
representation. Hence, we add a sparse penalty to the output di-
rectly:

L = LMSE + �1||Y ||1, (10)
where ||⇤||1 denotes the L1 norm. The parameter �1 then con-

trols the sparsity of the output spectrogram. In early experiments
with this model, we observed it may have interesting applications
to denoising and dereverberation. In this sense, traditional autoen-
coders have been applied to speech enhancement [17]. It can also
be used to implement more experimental effects. However our
main goal in this work is the transient/stationary decomposition.

3.2. Individual extraction

Estimation of transient or stationary components from the input
signal can be promoted by adding more terms to the loss function.
We regard the difference across either the time or the frequency
axis as a cost for estimating transient or stationary components
respectively:

df =

P
t,f (Y (t, f)� Y (t, f � 1))2

||Y ||22
, (11)
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dt =

P
t,f (Y (t, f)� Y (t� 1, f))2

||Y ||22
, (12)

where || ⇤ ||2 denotes the L2 norm, and t and f are time and
frequency indices. The loss for estimating either the transient or
the stationary components is then computed by adding respectively
df

dt+" or dt
df+" (where " is a small number to prevent division by

0) to LMSE :

LS = LMSE + �1||Y ||1 + �2
df

dt + ✏
, (13)

LT = LMSE + �1||Y ||1 + �2
dt

df + ✏
, (14)

Parameters �1 and �2 can here be mapped to user interface
parameters: the first one defines the level of sparsity (i.e. how
much magnitude will be lost in the process) and the second biases
it towards the desired component.

3.3. Joint extraction

Estimating both transient and stationary components simultane-
ously has the potential advantage of allowing a more discrimina-
tive model that can use the input data to provide two estimates.
The estimates can then be used to construct time-frequency masks
as described in Equations 8 and 7. Here, the output of the autoen-
coder is a tensor Y 2 R2,M,N where M and N correspond to the
original spectrogram size. For simplicity of notation, we denote
Yt 2 RT,F and Ys 2 RT,F as the outputs of the CAE for transient
and stationary components respectively. The MSE loss then needs
to be rewritten as:

LMSE =
1

TF

X
(X � (Yt + Ys))

2. (15)

The terms df and dt can now be computed separately for Yt

and Y s respectively. The loss function for the CAE is then:

LST = LMSE + �1||Y ||1 + �2
dt1

df1 + ✏
+ �3

df2
dt2 + ✏

, (16)

where dt1 / df1 are computed from Ys as in Equations 11 and
12, and dt2 / df2 are equally computed from Yt .

4. IMPLEMENTATION

In order to test the proposed approach, we implemented the CAE
models described in Sections 3.1, 3.2 and 3.3, respectively denoted
here as cae1, cae2 and cae3. The implementation was based on
the pytorch library.1 Figure 1 shows the layout that is common
to the three models. We used 5x5 convolution kernels, which are
widely used for images and have also been used for audio classifi-
cation [12]. All networks were devised with 4 convolution kernels
and one single hidden representation of 4 channels. Inputs to all
convolutions were padded with 2 bins on each side and dimen-
sion. This means there was really no downsampling neither pool-
ing, and the hidden representations had the same dimension of the
input, which helped recovering the fine details of the input. Both
the encoder and the decoder used Rectified Linear Units (ReLU)
as activation functions. Initialization for weights connected to Re-
LUs is conventionally implemented as specified in [18]. However,

1http://pytorch.org/

we found that for this unsupervised setting, results could be un-
stable due to random initialization. On one hand, different initial
balances between the components of the loss function could lead
the network to fall into a local minimum. On the other, the network
could end in a slightly different state for the same number of iter-
ations even when converging to a stable solution. In order to make
the networks predictable, we used a basic CAE trained to optimize
only LMSE to pre-initialize the weights. The proposed models
were then used to fine tune the weights with the additional loss
components. This had the side effect of choosing a random seed.
It has been shown that pre-training is robust to changes in the ran-
dom seed [19]. We verified that, for different pre-trained networks,
our models would always converge to a stable solution. However,
thinking about the use of the algorithm in an interactive effects pro-
cessor, the predictability resulting from the use of a fixed random
seed was also beneficial. All models were trained using the ADAM
[20] variant of stochastic gradient descent (SGD). Like in [9], each
spectrogram was used as a single batch, both for pre-training and
fine tuning. For the pre-training, we used two different datasets,
one composed of monophonic loops and one with polyphonic mu-
sic signals. For dealing with monophonic sounds, the pre-training
dataset was obtained by randomly sampling 100 loop sounds from
the collection bundled with Apple’s Logic Pro software. For deal-
ing with polyphonic mixtures, the pre-training dataset was created
by extracting one minute from each song in the test set (50 songs)
of the DSD100 dataset.2 For both the training and pre-training
stages, the weight_decay parameter, available in pytorch, was
used. This corresponds to an l2 regularization in the weights,
which is omitted in the formulation for clarity. A value of 0.01
was used for cae1 and cae2, while for cae3 a higher value of 0.5
helped prevent the weights getting biased towards one of the two
outputs. All networks were trained for 100 epochs. Spectrograms
were computed using 20 ms windows with 15 ms overlap except
when noted. The code for the implementation can be obtained
from https://github.com/flucoma/DAFX-2018.

5x5
Convolution

ReLU

5x5
Deconvolution

ReLU

input

output

hidden 
representation

Figure 1: Convolutional autoencoder network structure

2https://github.com/faroit/dsdtools
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(a) Original drum loop sound (b) Drum loop processed by cae1

(c) Drum loop with thresholded magnitude (d) Drum loop remixed with cae1 variations
Figure 2: Using cae 1 on a drum loop

5. EXAMPLE RESULTS

In this section we show examples of the use of cae1, cae2 and
cae3 as described in the previous sections. We first show a cre-
ative application of cae1 with a drum loop, then we analyze the
separation into steady and transient components of cae2 and cae3
using a monophonic and a poyphonic sample. All audio exam-
ples can be listened in the companion web page for this paper:
http://www.flucoma.org/DAFX-2018/.

The original drum loop is shown in Figure 2a. A sparse version
obtained with cae1 is shown in Figure 2b. A lot of the resonance
of the drums has been lost. For comparison, Figure 2c shows a ver-
sion of the original with the same number of zero entries (around
94%) as the processed version (i.e. magnitude bins were sorted
and zeroed below a threshold to obtain the same number of zeros).
It seems that cae1 focuses more on the harmonics of the drums.
We found this effect can be used for creative processing to obtain
multiple variations of the same sample. As an example, Figure 2d
shows an example where multiple copies using different values of
�1 at different window and hop sizes have been mixed with the
original.

We now focus on transient/stationary separation using cae2
and cae3. Figure 3 is a monophonic fragment of a glockenspiel

melody from Freesound.org3. The original sound includes signif-
icant background noise. Figures 4a and 4b show the magnitude
spectrograms of the separation with cae2. The background noise
has been eliminated, and the stationary and transient components
are clearly separated. When listening to the sounds, it can be noted

3https://freesound.org/people/bbatv/sounds/
332932/

Figure 3: Original glockenspiel sound
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(a) Separation of glockenspiel transients with cae2. (b) Separation of glockenspiel stationary components with cae2.

(c) Separation of glockenspiel transients with cae3. (d) Separation of glockenspiel stationary components with cae3.
Figure 4: Using cae2 and cae3 on a glockenspiel sound

Figure 5: Original polyphonic mixture

that the transients still retain some of the pitch information but the
duration is very short. In the stationary components, the attack has
been clearly removed. The parameter values for the transient esti-
mation were �1 = 8e-4, �2 = 300. For the stationary estimation,
the values were �1 = 4e-5, �2 = 10. Figures 4c and 4d show the
results with cae3. The spectrograms look also sparse, but the sta-
tionary components seem to show a stronger attack, which can be

attributed to the use of the soft mask. When listening to the audio
it can be noted that the attack is in fact very soft. In this case, the
parameters were tuned to �1 = 5e-5, �2 = 0.2, �3 = 0.3.

For both models, the strategy was to set first the target level of
sparsity with �1 and then adjust the rest of parameters. However,
we noted that the competition of both estimates in cae3 makes it
more difficult to find appropriate values for the parameters.

Figures 5, 6a, 6b, 6c and 6d correspond to a hip hop music
excerpt4. The separation is obviously more difficult. For both
networks, the separation of transients produces noticeable musi-
cal noise. They are still good indicators of the downbeat of the
rhythm. The stationary components in cae2 are biased towards
the bass, which is salient and perhaps the only instrument pro-
ducing steady tones. Contrastingly for cae3 the stationary part is
remarkably more simlar to the mix, but with smoothed transients,
which could be attributed to the joint estimation. The parameters
for cae2 were �1 = 1e-4, �2 = 100 and �1 = 4e-5, �2 = 50
for transient and stationary components, and �1 = 1e-4, �2 = 2,
�3 = 6 for the joint model cae3.

4The excerpt was extracted from Attention by Catburglaz, http://
catburglaz.com
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(a) Separation of transients in polyphonic mixture with cae2. (b) Separation of stationary components in polyphonic mixture with
cae2.

(c) Separation of transients in polyphonic mixture with cae3. (d) Separation of stationary components in polyphonic mixture with
cae3.

Figure 6: Using cae2 and cae3 with a polyphonic mixture

6. CONCLUSIONS

In this paper, we have explored the use of unsupervised convolu-
tional autoencoders for audio transformation in the time-frequency
domain. Specifically, we have shown that by programming cus-
tom loss functions they can be tuned to separate stationary and
transient components. The results are encouraging, especially for
monophonic sounds, while polyphonic mixtures are still challeng-
ing. One interesting aspect of this work is the possibility to control
the learning process, producing different levels of sparseness and
different qualities of transients and stationary components. This
brings more flexibilty than HPSS approaches such as median fil-
tering. Such flexibility is of particular interest to us as it presents
opportunities for creative exploration: being able to tune proces-
sors by ear to fit aesthetically with the materials and the context in
which they are used is a very important aspect of artistic interfaces.
For future work, we plan to work on more useful mappings of the
loss functions to user interface parameters.
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