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ABSTRACT

Nonnegative matrix factorization (NMF) is a family of methods
widely used for information retrieval across domains including
text, images, and audio. Within music processing, NMF has been
used for tasks such as transcription, source separation, and struc-
ture analysis. Prior work has shown that initialization and con-
strained update rules can drastically improve the chances of NMF
converging to a musically meaningful solution. Along these lines
we present the NMF toolbox, containing MATLAB and Python
implementations of conceptually distinct NMF variants—in par-
ticular, this paper gives an overview for two algorithms. The first
variant, called nonnegative matrix factor deconvolution (NMFD),
extends the original NMF algorithm to the convolutive case, en-
forcing the temporal order of spectral templates. The second vari-
ant, called diagonal NMF, supports the development of sparse di-
agonal structures in the activation matrix. Our toolbox contains
several demo applications and code examples to illustrate its po-
tential and functionality. By providing MATLAB and Python code
on a documentation website under a GNU-GPL license, as well as
including illustrative examples, our aim is to foster research and
education in the field of music processing.

1. INTRODUCTION

The general goal of NMF is to factorize a matrix V with nonneg-
ative entries into two other nonnegative matrices W and H which
typically are required to have much lower rank than V. Due to
the fact that NMF can learn a semantically meaningful parts-based
data representation [1], it has been used extensively in music sig-
nal processing and information retrieval, for tasks such as music
transcription [2], automatic drum transcription (ADT) [3], drum
source separation (DSS) [4], harmonic-percussive source separa-
tion (HPSS) [5, 6, 7], in combination with kernel additive model-
ing (KAM) [8, 9], redrumming [10, 11], sampling detection [12,
13], structure analysis [14, 15, 16], score-informed source separa-
tion [17], and key estimation [18], to name a few.
In the case of music tasks, we would like to learn two non-negative
matrices W and H that capture what happened (i.e., which particu-
lar sounds were produced, which drum kit parts were struck, which
piano notes were sounded), and when each one of these sound
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events was active in time. Intuitively, we can say that the tem-
plate (or spectral basis) matrix W contains the “what”—whereas
H, called the gain (or activation) matrix, contains the “when”.
We show this intuition in Figure 1, which illustrates an NMFD
model of a short drum signal. The templates are shown on the left
as color-coded component spectrograms representing kick drum
(KD), snare drum (SD), and hi-hat (HH). The activations are shown
as colored curves at the top of the figure. Throughout this paper
we present a number of didactic examples, aiming to contribute to
music processing education. In contrast to other NMF-related tool-
boxes [19], we provide an illustrated compendium of musically-
motivated applications found throughout the literature. In the spirit
of the DAFx book [20], the code examples can be used as a refer-
ence implementation in further research, whereas the figures (es-
pecially through the color-coding) provide concise illustrations of
the principles behind NMF(D), and can be used as learning mate-
rial.
The remainder of this paper is structured as follows. In Section 2
we introduce the basic theoretical framework and notation for NMF
and the variants that we use in this paper. In Section 3 we give
an overview of our toolbox code1, discussing the main functions,
parameters, and dependencies. In Sections 4, 5, and 6 we present
three application scenarios, illustrated by going through their source
code and examining the graphic output from visualization func-
tions. Although our code examples are given as MATLAB listings,
we ensured that the naming conventions and usage of our Python
implementation are basically the same.

2. NMF AND VARIANTS

In this section we give a brief formal overview of the NMF variants
that are provided as code in the toolbox.

2.1. NMF

Here we introduce NMF, closely following [21, Section 8.3] and [1].
NMF is based on iteratively computing a low-rank approximation
U ∈ RK×M

≥0 of the nonnegative matrix (typically a magnitude
spectrogram) V ∈ RK×M

≥0 , where K ∈ N is the feature dimen-
sionality and M ∈ N represents the number of elements or frames
along the time axis. Specifically, U is defined as the linear combi-
nation of the templates W ∈ RK×R

≥0 and activations H ∈ RR×M
≥0

such that V ≈ U := W ·H. The rank R ∈ N of the approximation
(i. e., number of components) is an important parameter that needs
to be specified beforehand.

1https://www.audiolabs-erlangen.de/resources/
MIR/NMFtoolbox/
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Figure 1: Output visualization generated by code in Listing L.1. NMFD model for drum source separation (KD in red, SD in green, HH in
blue). Top: activation matrix H . Bottom left: slices of template tensor P. Bottom right: color-coded approximated target spectrogram U.

NMF typically starts with a suitable initialization of the matrices
W and H. For example, both matrices could be populated with
non-negative random numbers—however, depending on the task
and availability of prior information, it might make more sense to
use other initialization strategies. After initialization, both W and
H are iteratively updated to approximate V with respect to a cost
function L. A standard choice is the generalized Kullback-Leibler
Divergence (KLD) [1], given as

L = DKL(V | U) =
∑(

V � log

(
V

U

)
−V+U

)
. (1)

The symbol � denotes element-wise multiplication; the logarithm
and division are to be performed element-wise as well. The sum is
to be computed over all K ·M elements of V. To minimize this
cost, an alternating scheme with multiplicative updates is used [1].
The respective update rules are given as

W←W �
V
U
·H>

J ·H>
, (2)

H← H�
W> · V

U

W> · J , (3)

with U := W ·H, where the symbol · denotes the matrix product.
Furthermore, J ∈ RK×M denotes a matrix of ones. Since this is
an alternating update scheme, it should be noted that Eq. (2) uses
the latest update of H from the previous iteration. In the same vein,
(3) uses the latest update of W. These update rules are typically
applied for a limited number of iterations L ∈ N.

2.2. NMFD

In this section we introduce NMFD, originally proposed in [22].
We follow the notation and formulation found in [23].
NMFD extends NMF by using two-dimensional templates (or pat-
terns) so that each of the R templates can be interpreted as a mag-
nitude spectrogram snippet consisting of T �M spectral frames.
We assume that the magnitude spectrogram V can be modeled us-
ing a mixture of R patterns Pr ∈ RK×Tr

, r ∈ [0 : R− 1] :=

{0, . . . , R − 1}. The parameter T r ∈ N is the number of feature
frames or observations for pattern Pr . Although the patterns can
have different lengths, without loss of generality, we define their
lengths to be the same T := T 0 = . . . = TR−1, which could
be achieved by adequately zero-padding shorter patterns until they
reach the length of the longest. Based on this assumption, the pat-
terns can be grouped into a pattern tensor P ∈ RK×R×T . The
subdimension (or slice) of the tensor which refers to a specific pat-
tern with index r is Pr := P(·, r, ·), whereas Pt := P(·, ·, t)
refers to frame index t simultaneously in all patterns. Thus, the
magnitude spectrogram can be modeled as

U :=

T−1∑
t=0

Pt ·
t→
H , (4)

where
t→
(·) denotes a frame shift operator [22]. Smaragdis [22] de-

fined the update rules that extend Eqs. 2 and 3 to the convolutive
case as follows:

Pt ← Pt �

V
U
·
(

t→
H

)>

J ·
(

t→
H

)> , (5)

H← H�
P>

t ·
←t[
V
U

]
P>

t · J
. (6)

As a side note, NMFD can be made to function like a regular NMF
(Section 2.1) by using a pattern tensor with dimensions K×R×1
(i. e., R patterns with a single frame).

2.3. Diagonal NMF

Diagonal NMF is a variant originally proposed by Driedger et al.
in [24] for the task of audio mosaicing. In audio mosaicing, a (tim-
bral) source is used to recreate or synthesize the sounds in a target.
In the original publication, Driedger et al. present an example con-
sisting of buzzing bees as a source and “Let It Be” by the Beatles
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as a target. Their objective is to synthesize a signal which sounds
as if the bees buzzed at different pitches to the tune of the Beat-
les’ song. In order to maximize the recognizability of the source
(buzzing bees), the authors propose using a fixed template matrix
as well as an extended set of update rules that support the devel-
opment of sparse diagonal structures in the activation matrix. The
crucial observation is that diagonals activate sequences of frames,
helping preserve temporality and recognizability. We present an
example of diagonal NMF for mosaicing in Section 6.

3. TOOLBOX

In this section we discuss the overall structure and functionality of
our toolbox, summarized in Table 1. The first four rows contain
the core functions, implementing variants of NMF. We begin with
NMFD, a core function used for the examples in Sections 4 and 5
(we briefly discussed the theory in Section 2.2).
The variant used as an application example in Section 6 is NMFdiag,
described in Section 2.3. It requires more input parameters as
fields of the structure parameter.continuity and specific
information can be found in the respective source code headers, as
well as in the original publication [24].
Next in the table we have convModel and shiftOperator.
convModel is called from within NMFD and NMFconv—it per-
forms the core convolution operation between P and H at every
iteration. On the other hand, shiftOperator is a helper func-
tion to perform the frame shifting used in Eqs. 4, 5, and 6, adding
boundary checks and zero-padding as necessary. The functions
initActivations and initTemplates are helper functions
that help us initialize the basis matrices/tensors and the activations
matrices. The user may call these functions explicitly to create
and assign parameters, but these functions are also called inter-
nally with default settings from within the core functions if the
user doesn’t pass variables in (see Sections 4 and 5 for more in-
formation on the types of initialization that are used for specific
circumstances.)
The function NEMA is used to introduce exponential decay when
initializing certain types of templates and activations with both
init functions. We also provide utility functions to transform be-
tween frequency in Hz and MIDI pitches, which are mainly used to
generate log-frequency spectrograms for visualization and to gen-
erate harmonic templates. Finally, we use forwardSTFT to com-
pute the spectrograms we use with our NMF examples. Some tasks
also require resynthesizing time-domain signals (such as DSS in
Section 4 and mosaicing in Section 6)—for these cases we in-
clude LSEE_MSTFTM_GriffinLim [28], inverseSTFT, and
alphaWienerFilter (see [29, 30]).

4. APPLICATION: DRUM SOURCE SEPARATION

We begin with an example from the task of DSS, taken from [26].
Given a recording of mixed drum kit components into one signal,
the goal of DSS is to produce individual component signals for
each instrument or piece in the drum kit as if it had been recorded
in isolation. This technique can be used within recording studio
or remixing settings, where it is often desirable to treat individual
drum kit components separately.

1 inpPath = 'data/';
2 outPath = 'output/';
3 filename = 'Winstons_AmenBreak.wav';
4

5 % 1. load the audio signal
6 [x,fs] = audioread([inpPath filename]);
7 x = mean(x,2);
8

9 % 2. compute STFT
10 % spectral parameters
11 paramSTFT.blockSize = 2048;
12 paramSTFT.hopSize = 512;
13 paramSTFT.winFunc = hann(paramSTFT.blockSize);
14 paramSTFT.reconstMirror = true;
15 paramSTFT.appendFrame = true;
16 paramSTFT.numSamples = length(x);
17

18 % STFT computation
19 [X,A,P] = forwardSTFT(x,paramSTFT);
20

21 % get dimensions and time and freq resolutions
22 [numBins,numFrames] = size(X);
23 deltaT = paramSTFT.hopSize / fs;
24 deltaF = fs / paramSTFT.blockSize;
25

26 % 3. apply NMF variants to STFT magnitude
27 % set common parameters
28 numComp = 3;
29 numIter = 30;
30 numTemplateFrames = 8;
31

32 % generate initial guess for templates
33 paramTemplates.deltaF = deltaF;
34 paramTemplates.numComp = numComp;
35 paramTemplates.numBins = numBins;
36 paramTemplates.numTemplateFrames = numTemplateFrames;
37 initW = initTemplates(paramTemplates,'drums');
38

39 % generate initial activations
40 paramActivations.numComp = numComp;
41 paramActivations.numFrames = numFrames;
42 initH = initActivations(paramActivations,'uniform');
43

44 % NMFD parameters
45 paramNMFD.numComp = numComp;
46 paramNMFD.numFrames = numFrames;
47 paramNMFD.numIter = numIter;
48 paramNMFD.numTemplateFrames = numTemplateFrames;
49 paramNMFD.initW = initW;
50 paramNMFD.initH = initH;
51

52 % NMFD core method
53 [nmfdW, nmfdH, nmfdV, divKL] = NMFD(A, paramNMFD);
54

55 % alpha−Wiener filtering
56 nmfdA = alphaWienerFilter(A,nmfdV,1);
57

58 % visualize
59 paramVis.deltaT = deltaT;
60 paramVis.deltaF = deltaF;
61 paramVis.endeSec = 3.8;
62 paramVis.fontSize = 24;
63 visualizeComponentsNMF(A, nmfdW, nmfdH, nmfdA, paramVis);
64

65 % resynthesize
66 for k = 1:numComp
67 Y = nmfdA{k} .* exp(j * P);
68

69 % re−synthesize, omitting the Griffin Lim iterations
70 y = inverseSTFT(Y, paramSTFT);
71

72 % save result
73 audiowrite([outPath,'Winstons_AmenBreak_NMFD_component_',

...
74 num2str(k)],y,fs);
75 end

Listing L.1: MATLAB code for drum source separation using
NMFD, following [26].

In lines 11–16 we define the parameters for STFT computation: a
block size N = 2048 samples, a hop size H = 512 samples, a
Hann window, a flag to discard the mirror spectrum (reconstMirror
= true), and a flag to indicate that we want to zero-pad the entire
signal with half-block lengths at the beginning and end. Now we
will discuss the most important part of this example, which is the
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Filename Description and main parameters

NMFD.m Nonnegative Matrix Factor Deconvolution with KLD and fixable components [22]. V, numComp, numIter,
numTemplateFrames, initW, initH, paramConstr, fixH

NMF.m Nonnegative matrix factorization with KLD as default cost function [21, Section 8.3], [1]. V, costFunc, numIter, numComp.
NMFdiag.m Nonnegative matrix factorization with enhanced diagonal continuity constraints [24]. V, W0, H0, distmeas, numOfIter,

fixW, continuity.length, continuity.grid, continuity.sparsen, continuity.polyphony

NMFconv.m Convolutive NMF with beta-divergence [25, Chapter 3.7]. V, numComp, numIter, numTemplateFrames, initW,
initH, beta, sparsityWeight, uncorrWeight

convModel.m Convolutive NMF model implementing Eq. (4) from [26]. Note that it can also be used to compute the standard NMF model in case
the number of time frames of the templates equals one. W, H

shiftOperator.m Shift operator as described in Eq. (5) from [26]. It shifts the columns of a matrix to the left or the right and fills undefined elements
with zeros. A, shiftAmount

initActivations.m Initialization strategies for NMF activations, including random and uniform. The pitched strategy places gate-like ac-
tivations at the frames where certain notes are active in the ground truth [27]. The strategy drums uses decaying im-
pulses at these positions [26]. numComp, numFrames, deltaT, pitches, onsets, durations, drums, decay,
onsetOffsetTol, tolerance, strategy

initTemplates.m NMF template initialization strategies, including random and uniform. The strategy pitched uses comb-filter templates [27].
The drums strategy uses pre-extracted averaged spectra of typical drum types. numComp, numBins, numTemplateFrames,
pitches, drumTypes, strategy

NEMA.m Row-wise nonlinear exponential moving average, introducing decaying slopes according to Eq. (3) from [9]. lambda
midi2freq.m,
freq2midi.m,
logFreqLogMag.m

Helper functions to convert between MIDI pitches and frequencies in Hz, as well as log-frequency and log-magnitude representations
for visualization. midi, freq, A, deltaF, binsPerOctave, upperFreq, lowerFreq

LSEE_MSTFTM_GriffinLim,
forwardSTFT.m,
inverseSTFT.m

Reconstruct the time-domain signal by means of the frame-wise inverse FFT and overlap-add method described as least squares
error estimation from the modified STFT magnitude (LSEE-MSTFT) in [28]. blockSize, hopSize, anaWinFunc,
synWinFunc, reconstMirror, appendFrame, analyticSig, numSamples

alphaWienerFilter.m Alpha-related soft masks for extracting sources from mixture. Details in [29] and experiments in [30]. alpha, binarize

Table 1: Overview of MATLAB functions, descriptions, and main parameters. The Python version of the toolbox follows the same naming
convention as far as possible.

particular setup of the NMF-related variables and parameters. In
line 28 we initialize the number of components R to 3, since we
know a priori that the drum recording contains the instruments kick
drum (KD), snare drum (SD), and hi-hat (HH). We will run NMFD
for a total of 30 iterations (of the update rules), L = 30, line 29,
and each spectral slice Pr will have a length of T = 8 time frames,
line 30. A unique thing that sets apart this example from the rest
is the fact that we initialize the templates with a particular strategy
that has proven to be very effective in DSS [26]. In line 37 we use
the string parameter drums to specify that we want to initialize the
templates by seeding them with a single-frame, data-driven statis-
tical mean of many drum sounds of that type, and then applying
a short exponential decay to that single frame in order to expand
the single frame into multiple frames across the template pattern
matrix. This initializes the template tensor to have three patterns,
each containing prototypical spectral properties of KD, SD, and
HH, respectively. For this particular application, the initial activa-
tion matrix initH can be initialized using a constant value of 1
throughout the entire matrix, indicated by the parameter uniform
in line 42. In lines 45–50 all the previously created parameters are
assigned to the parameter structure paramNMFD which will be
passed to NMFD(), the main function which we call in line 53. In
line 56 we use alphaWienerFilter() to compute spectro-
gram estimates for the components via Wiener filtering (see [29,
30]). We set visualization parameters to paramVis in lines 59–
62 and call visualizeComponentsNMF() in line 63, which
produces the output seen in Figure 1. It is important to mention
that the visualization function assigns default color schemes de-
pending on the NMF model’s rank. For instance, as seen in Fig-
ure 1, a model with R = 3 components will be colored with with
red, green, and blue, respectively. A model with R = 4 compo-

nents (Figure 2) is colored using hsv(4), and models with R > 4
(Figure 3) are colored with a grayscale colormap. Finally, we loop
over the component spectrograms, resynthesizing each one using
inverseSTFT() (line 70) and saving the result y as a WAV file.

5. APPLICATION: ELECTRONIC MUSIC STRUCTURE

Taken from [23], we show an example of the following task: Given
a downmix of an electronic music (EM) track produced with cer-
tain loops, together with individual instances of the loops that were
used to produce the track, can we use NMFD to learn an activa-
tion matrix which tells us when each loop was used in the track?
In this example, we want to highlight the fact that after initializ-
ing the template tensor pages, each pattern to one instance of one
of the loops used, we subsequently disallow updating/learning the
templates—also called fixing the templates. Thus, we are only in-
terested in allowing updates to the activation matrix, which will
end up telling us when each loop type was used.

1 % initialization
2 inpPath = 'data/';
3 outPath = 'output/';
4 filename = 'LSDDM_EM_track.wav';
5 filenameEffects = 'LSDDM_EM_Effects.wav';
6 filenameBass = 'LSDDM_EM_bass.wav';
7 filenameMelody = 'LSDDM_EM_melody.wav';
8 filenameDrums = 'LSDDM_EM_drums.wav';
9

10 % 1. load the audio signal
11 [xTr,fs] = audioread([inpPath filename]);
12

13 [xEffects, fsEffects] = audioread([inpPath filenameEffects]);

14 [xBass, fsBass] = audioread([inpPath filenameBass]);
15 [xMelody, fsMelody] = audioread([inpPath filenameMelody]);
16 [xDrums, fsDrums] = audioread([inpPath filenameDrums]);
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0 10 20 30 40 50 60
Drums
Melody
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FX

Figure 2: Top: Ground truth loop activations for the track used in Listing L.2. Middle: Activation matrix H with one row per loop/com-
ponent. Bottom left: Template tensor P with component spectrogram slices for drums (1), melody (2), bass (3), and FX (4). Bottom right:
component-colored spectrogram U.

17 % make monaural if necessary
18 xTr = mean(xTr, 2);
19 xEffects = mean(xEffects, 2);
20 xBass = mean(xBass, 2);
21 xMelody = mean(xMelody, 2);
22 xDrums = mean(xDrums, 2);
23

24 % 2. compute STFT
25 paramSTFT.blockSize = 4096;
26 paramSTFT.hopSize = 2048;
27 paramSTFT.winFunc = hann(paramSTFT.blockSize);
28 paramSTFT.reconstMirror = true;
29 paramSTFT.appendFrame = true;
30

31 % STFT computation
32 [XTr, ATr, PTr] = forwardSTFT(xTr, paramSTFT);
33

34 % get dimensions and time and freq resolutions
35 [numBinsTr, numFramesTr] = size(XTr);
36 deltaT = paramSTFT.hopSize / fs;
37 deltaF = fs / paramSTFT.blockSize;
38

39 % STFT computation
40 [XEffects, AEffects, PEffects] = forwardSTFT(xEffects,

paramSTFT);
41 [XBass, ABass, PBass] = forwardSTFT(xBass, paramSTFT);
42 [XMel, AMel, PMel] = forwardSTFT(xMelody, paramSTFT);
43 [XDrums, ADrums, PDrums] = forwardSTFT(xDrums, paramSTFT);
44 [numBinsBass, numFramesBass] = size(XBass);
45

46 % 3. apply NMF variants to STFT magnitude
47 numComp = 4;
48 numIter = 30;
49

50 initW = [];
51 initW{1} = ABass;
52 initW{2} = AMel;
53 initW{3} = ADrums;
54 initW{4} = AEffects;
55 paramNMFD.initW = initW;

56 numTemplateFrames = numFramesBass;
57

58 % generate initial activations
59 paramActivations.numComp = numComp;
60 paramActivations.numFrames = numFramesTr;
61 initH = initActivations(paramActivations, 'uniform');
62 paramNMFD.initH = initH;
63

64 % NMFD parameters
65 paramNMFD.numComp = numComp;
66 paramNMFD.numFrames = numFramesTr;
67 paramNMFD.numIter = numIter;
68 paramNMFD.numTemplateFrames = numTemplateFrames;
69 paramNMFD.numBins = numBinsTr;
70 paramNMFD.fixW = 1;
71

72 % NMFD core method
73 [nmfdW, nmfdH, nmfdV, divKL] = NMFD(ATr, paramNMFD);
74

75 %% visualize
76 paramVis.deltaT = deltaT;
77 paramVis.deltaF = deltaF;
78 paramVis.logComp = 1e5;
79 fh1 = visualizeComponentsNMF(ATr, nmfdW, nmfdH, nmfdV,

paramVis);
80

81 %% save result
82 saveas(fh1,[outPath,'LSDDM_EM.png']);

Listing L.2: Example code for learning loop activation points
using NMFD, following [23].

In lines 2–22 we prepare path names and load files for five audio
signals. These include the mixed track, as well as the four loops
that were used to produce the track: effects, bass, melody, and
drums. At the end of this block we convert all signals to mono.
In the next block (lines 25–29), we set the STFT parameters. In
lines 32–43 we use the parameter structure paramSTFT together
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with the respective signals to compute all the necessary spectro-
grams by calling forwardSTFT().
In the next lines we will be preparing the parameters that are re-
quired to run NMFD with the specific conditions for this example.
First, in line 47 we set numComp, the number of components or
patterns R, to 4 (since we know a priori that the track was com-
posed with four loops or patterns). In line 48 we specify 30 as
the desired number of iterations for the algorithm. In lines 50–55
we prepare a cell array initW containing the magnitude spec-
trograms for the loops, and set the initial template tensor to the
parameter structure paramNMFD.initW. As the number of tem-
plate frames T we use the number of frames of the bass loop, but
we could have used any loop’s length—we have constructed the
example such that all loops have the same number of frames. In
lines 59–62 we initialize the activation matrix using the uniform
strategy (i. e., with a constant value of one for all rows) and append
it to the parameter structure. In lines 65–69 we set some basic val-
ues to the parameter structure paramNMFD. Most importantly, in
line 70, we indicate with the flag fixW = 1 that we want to fix
the template tensor. Since we initialized the pattern tensor with
the loops we know to be contained in the track, we disallow mod-
ifications and only wish to learn the activation matrix. In line 73
we call NMFD() with the track magnitude spectrogram and the
previously set parameter structure, obtaining four return variables:
nmfdW, the learned templates (which are not modified during the
learning); nmfdH, the learned activation matrix, nmfdV, a cell ar-
ray containing the learned component spectrograms; and divKL,
an array with the KLD at each iteration (to visualize learning error
throughout the iterations). In lines 76–78 we set basic visualization
parameters to the structure paramVis, then visualize the learned
NMFD model with visualizeComponentsNMF() (line 79),
and save the result to disk (line 82).

6. APPLICATION: AUDIO MOSAICING

In this example we will be loading two sounds: a recording of bees
buzzing, which will act as the timbral source for the mosaicing and
a fragment of “Let It Be” by the Beatles, which is the target to be
synthesized with the sounds of bees buzzing. The main idea is to
produce a signal sounding as if buzzing bees were “playing” “Let
It Be” by the Beatles by buzzing at different pitches or frequencies.

1 % initialization
2 inpPath = 'data/';
3 outPath = 'output/';
4

5 filenameSource = 'Bees_Buzzing.wav';
6 filenameTarget = 'Beatles_LetItBe.wav';
7

8 % 1. load the source and target signal
9 % read signals

10 [xs,fs] = audioread([inpPath filenameSource]);
11 [xt,fs] = audioread([inpPath filenameTarget]);
12 % make monaural if necessary
13 xs = mean(xs,2);
14 xt = mean(xt,2);
15

16 % 2. compute STFT of both signals
17 % spectral parameters
18 paramSTFT.blockSize = 2048;
19 paramSTFT.hopSize = 1024;
20 paramSTFT.winFunc = hann(paramSTFT.blockSize);
21 paramSTFT.reconstMirror = true;
22 paramSTFT.appendFrame = true;
23 paramSTFT.numSamples = length(xt);
24

25 % STFT computation
26 [Xs,As,Ps] = forwardSTFT(xs,paramSTFT);
27 [Xt,At,Pt] = forwardSTFT(xt,paramSTFT);

28

29 % get dimensions and time and freq resolutions
30 [numBins,numTargetFrames] = size(Xt);
31 [numBins,numSourceFrames] = size(Xs);
32 deltaT = paramSTFT.hopSize / fs;
33 deltaF = fs / paramSTFT.blockSize;
34

35 % 3. apply continuity NMF variants to mosaicing pair
36 % initialize activations randomly
37 H0 = rand(numSourceFrames,numTargetFrames);
38

39 % init templates by source frames
40 W0 = bsxfun(@times,As,1./(eps+sum(As)));
41 Xs = bsxfun(@times,Xs,1./(eps+sum(As)));
42

43 % parameters taken from Jonathan Driedger's toolbox
44 paramNMFdiag.fixW = 1;
45 paramNMFdiag.numOfIter = 20;
46 paramNMFdiag.continuity.polyphony = 10;
47 paramNMFdiag.continuity.length = 7;
48 paramNMFdiag.continuity.grid = 5;
49 paramNMFdiag.continuity.sparsen = [1 7];
50

51 % reference implementation by Jonathan Driedger
52 [nmfdiagW, nmfdiagH] = NMFdiag(At, W0, H0, paramNMFdiag);
53

54 % create mosaic, replace magnitude by complex frames
55 contY = Xs*nmfdiagH;
56

57 % visualize
58 paramVis = [];
59 paramVis.deltaF = deltaF;
60 paramVis.deltaT = deltaT;
61 fh1 = visualizeComponentsNMF(At, nmfdiagW, nmfdiagH, [],

paramVis);
62

63 % save result
64 saveas(fh1,[outPath,'LetItBee_NMFdiag.png']);
65

66 % resynthesize using Griffin−Lim, 50 iterations by default
67 [Xout, Pout, res] = LSEE_MSTFTM_GriffinLim(contY, paramSTFT);

68

69 % save result
70 audiowrite([outPath,'LetItBee_NMFdiag_with_target_',

filenameTarget],res,fs);

Listing L.3: Example of audio mosaicing using NMF model
with diagonality-enhanced activation matrix and fixed templates,
following [24].

We will now go through the code in Listing L.3. In lines 2–14 we
load the audio files for both source and target signals, making them
mono for further processing. We then compute the source spectro-
grams Xs (complex-valued), As (magnitude), and Ps (phase) by
calling forwardSTFT() in line 26, and the same for the target
signal (yielding Xt, At, and Pt, in line 27). In lines 30–33 we ob-
tain the spectrogram dimensions, as well as the time and frequency
resolutions under the current settings. Since we want to learn ac-
tivations that will tell us which source frames to use to synthesize
the target, we initialize the activation matrix H0 with random val-
ues in line 37. We then initialize the template matrix W0 with
the source magnitude spectrogram As, normalized so that each
column has unit sum (line 40). We also normalize the complex-
valued spectrogram Xs on line 41. The following lines 44–49
define crucial parameters in the structure paramNMFdiag. In
line 44 we set fixW = 1, indicating that the template matrix W0
should not be updated during the NMF learning (i. e., we do not
want to modify the source’s timbral characteristics). In line 45 we
set the number of iterations to 20. In line 46 we set the degree of
polyphony to 10—this means that during learning, for every col-
umn in the activation matrix, the 10 highest entries will keep their
original magnitude, and the rest will be scaled down. In line 47 we
set continuity.length to 7, which controls the filter kernel
length that will be used to smooth the diagonal lines that we wish
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Figure 3: Visual output generated by code in Listing L.3: diagonally enhanced NMF for audio mosaicing. Top right: Diagonally enhanced
activation matrix H . Top left: Detail of diagonal structures in subregion of activation matrix (subplot was added manually). Bottom right:
Approximated magnitude spectrogram resulting from the diagonal NMF model U = W · H. Bottom left: Magnitude spectrogram used as
timbral source for mosaicing, used directly as template matrix W. The timbral source consists of bees buzzing sounds, pitched up stepwise
throughout an entire octave.

to enhance in the activation matrix. This choice is empirical since
it corresponds to perceived sound quality and can be varied ac-
cording to combinations of source and target signals. In line 48 we
set continuity.grid to 5, indicating that we want to filter the
activation matrix at every fifth iteration. If the user wishes to inter-
vene less in the NMF algorithm updates, a higher number can be
set (i. e., filtering will be performed every continuity.grid
iterations).
We use the field parameter.sparsen (line 49) to increase the
distance between neighboring diagonal structures. We now call the
main function, NMFdiag() (line 52), which returns the templates
nmfdiagW and diagonally enhanced activations nmfdiagH. It
only remains to create the mosaic by multiplying the learned acti-
vations nmfdiagHwith the previously normalized source complex-
valued spectrogram, in line 55. In lines 58–60 we set the visualiza-
tion parameters as fields of paramVis, and call the visualization
function in line 61, producing the output seen in Figure 3, and
saving it as a png file in line 64. To make the mosaicing result
audible, we apply LSEE_MSTFTM_GriffinLim() to the com-
plex mosaic spectrogram contY (line 67) and write the audio file
to disk (line 70).

7. SUMMARY

We have presented the NMF Toolbox, an easy-to-use collection of
illustrated code examples intended for research and learning of the
principles behind NMF, through real-world music processing ap-
plications. In particular, the toolbox provides baseline implemen-

tations and a small dataset for tasks such as drum source separa-
tion, structure analysis of electronic music, and audio mosaicing.
Although the toolbox is not optimized for high execution speed
and is not comprehensive (considering the large number of exist-
ing NMF variants), we hope that it serves an educational purpose
and as a starting point for integrating these techniques into existing
projects.
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