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ABSTRACT

The simulation of a bowed string is challenging due to the strongly
non-linear relationship between the bow and the string. This re-
lationship can be described through a model of friction. Several
friction models in the literature have been proposed, from sim-
ple velocity dependent to more accurate ones. Similarly, a highly
accurate technique to simulate a stiff string is the use of finite-
difference time-domain (FDTD) methods. As these models are
generally computationally heavy, implementation in real-time is
challenging. This paper presents a real-time implementation of
the combination of a complex friction model, namely the elasto-
plastic friction model, and a stiff string simulated using FDTD
methods. We show that it is possible to keep the CPU usage of
a single bowed string below 6 percent. For real-time control of the
bowed string, the Sensel Morph is used.

1. INTRODUCTION

In physical modelling sound synthesis applications, the simulation
of a bowed string is a challenging endeavour. This is mainly due
to the strongly non-linear relationship between the bow and the
string, through a model of friction. Such friction models can be
categorised as static or dynamic; models of the latter type have
only recently seen a major effort. As opposed to static friction
models, where friction depends only on the relative velocity of the
two bodies in contact, dynamic models describe the friction force
through a differential equation.

A recently popular dynamic model is the elasto-plastic model,
first proposed in [1]. The model assumes that the friction between
the two objects in contact is caused by a large ensemble of bristles,
each of which contributes to the total friction force. The average
bristle deflection is used as an extra independent variable for calcu-
lating the friction force. As shown in [2], the elasto-plastic model
can be applied to a bowed string simulation and it exhibits a hys-
teresis loop in the force versus velocity plane due to this multivari-
able dependency. This is consistent with measurements performed
using a bowing machine in [3]. The elasto-plastic model has been
thoroughly investigated in a musical context by Serafin et al. in
[2, 4, 5].

Regarding bowed string simulations, the first musical non-
linear systems, including bowed strings, were presented by McIn-
tyre, et al. in [6]. Smith published the first real-time implemen-
tation of the bowed string using a digital waveguide (DW) for the
Copyright: c© 2019 Silvin Willemsen et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

string and a look-up table for the friction model in [7]. Simultane-
ously, Florens, et al. published a real-time implementation using
mass-spring systems for the string and a static friction model for
the bow in [8].

The dynamics of musical instruments are generally described
by systems of partial differential equations (PDEs). Specialised
synthesis methods such as DWs [9] and modal synthesis [10] are
derived from particular solutions. Mainstream time-stepping meth-
ods such as finite-difference time-domain (FDTD) methods were
first proposed in [11, 12, 13], and developed subsequently [14, 15].
In [16] the authors adapted the thermal model proposed by Wood-
house in [3] for real-time applications using a DW for the string
implementation and a combination of the DW and FDTD meth-
ods for the bowing interaction. In [17, 18], Desvages used FDTD
methods for the implementation of the string in two polarizations
and a static double exponential friction model introduced in [19].
This was, however, not implemented in real-time. To the best
of the authors’ knowledge, the only known real-time implemen-
tation of any bow model applied to complete FDTD strings was
presented in [20] where the soft exponential friction function pre-
sented in [14] was used. The current work can be considered an
extension of this work.

We are interested in bridging the gap between highly accurate
physical models and efficient implementations so that these mod-
els can be played in real-time. In this work, we present an imple-
mentation of the elasto-plastic friction model in conjunction with
a finite-difference implementation of the damped stiff string. Fur-
thermore, we show that it is possible to play the string in real-time
using the Sensel Morph controller [21].

This paper is structured as follows. In Section 2, the elasto-
plastic bow model in conjunction with a PDE model for a stiff
string is described. Discretisation is covered in Section 3, and im-
plementation details appear in Section 4. In Section 5, simulated
results are presented and discussed. Some concluding remarks ap-
pear in Section 6.

2. ELASTO-PLASTIC BOW MODEL

Consider a linear model of transverse string vibration in a sin-
gle polarization, where u(x, t) represents string displacement as
a function of time t ≥ 0, in s, and coordinate x ∈ [0, L] (in m) for
some string length L (in m). Using the subscripts t and x to denote
differentiation with respect to time and space respectively, a partial
differential equation describing the dynamics of the damped stiff
string is [14]

utt = c2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)
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Here, c =
√
T/ρA is the wave speed (in m/s) with tension T

(in N), material density ρ (in kg·m−3) and cross-sectional area A
(in m2). Furthermore, κ =

√
EI/ρA is the stiffness coefficient

(in m2/s) with Young’s Modulus E (in Pa) and area moment of
inertia I (in m4). For a string of circular cross section we have
radius r (in m), cross-sectional area A = πr2 and area moment
of inertia I = πr4/4. Lastly, σ0 ≥ 0 (in s−1) and σ1 ≥ 0
(in m2/s) are coefficients allowing for frequency-independent and
frequency-dependent damping respectively.

In our implementation we assume simply supported boundary
conditions, which are defined as

u = uxx = 0 where x = 0, L . (2)

a)

b)

c)

d)

vB

z

string

bow

z = 0

0 < |z| ≤ zba

zba < |z| < |zss|

|z| ≥ |zss|

Figure 1: Microscopic displacements of the bristles between the
bow and the string. The bow moves right with a velocity of vB.
a) The initial state is where the average bristle displacement z =
0. b) The bow has moved right relative to the string. The purely
elastic, or presliding regime is entered (stick). c) After the break-
away displacement zba, more and more bristles start to ‘break’.
This is defined as the elasto-plastic regime. d) After all bristles
have ‘broken’, the steady state (slip) is reached and the purely
plastic regime is entered.

As mentioned in the introduction, the elasto-plastic bow model
assumes that the friction between the bow and the string is due to
a large ensemble of bristles, each of which contributes to the total
friction force. See Figure 1 for a graphical representation of this.
The bristles are assumed to be damped stiff springs and can ‘break’
after a given break-away displacement threshold. An extra term
can be added to (1) to include the bowing interaction

utt = . . .− δ(x− xB)f(v, z)/ρA. (3)

Here, the spatial Dirac delta function δ(x − xB) (in m−1) allows
for the pointwise application of the force f (in N) at externally
supplied bowing position xB(t) (in m).

In the following we will use the definitions found in [1]. The
force f is defined in terms of the relative velocity v (in m/s) and
average bristle displacement z (in m) (see Figure 1) as

f(v, z) = s0z + s1ż + s2v + s3w, (4)

where
v = ut(xB)− vB, (5)

where vB(t) is an externally supplied bow velocity, s0 is the bristle
stiffness (in N/m), s1 is the damping coefficient (in kg/s), s2 is the
viscous friction (in kg/s) and s3 is a dimensionless noise coeffi-
cient multiplied onto pseudorandom function w(t) (in N) as done
in [4] and adds noise to the friction force. Here, ż indicates a time
derivative of z, and is related to v through

ż = r(v, z) = v

[
1− α(v, z) z

zss(v)

]
, (6)

where zss is the steady-state function

zss(v) =
sgn(v)

s0

[
fC + (fS − fC)e

−(v/vS)
2
]
, (7)

with Stribeck velocity vS (in m/s), Coulomb force fC = fNµC

and stiction force fS = fNµS (both in N). Here µC and µS are the
dynamic and static friction coefficient respectively and fN(t) is the
normal force (in N) which is, like vB(t), externally supplied. See
Figure 2 for a plot of (7).
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Figure 2: A plot of the steady-state function zss(v) with a force of
5 N.

Furthermore, the adhesion map between the bow and the string
is defined as

α(v, z) =


0 |z| ≤ zba

αm(v, z) zba < |z| < |zss(v)|
1 |z| ≥ |zss(v)|

 if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z),
(8)

where the transition between the elastic and plastic behaviour is
defined as

αm =
1

2

[
1 + sgn(z) sin

(
π
z − sgn(z) 1

2
(|zss(v)|+ zba)

|zss(v)| − zba

)]
,

(9)
with break-away displacement zba, i.e., where the bristles start to
break (see Figure 1 c)). A plot of the adhesion map can be found
in Figure 3.1

One of the difficulties in working with this model is that, due
to the many approximations, the notion of an energy balance, relat-

1It is interesting to note is that in the literature on this topic such as
[1, 2, 4, 5], a few inaccuracies can be found in the definition of α(v, z):
1) all uses of zss in (8) and (9) lack the absolute value operator, 2) the
multiplications with sgn(z) in (9) are excluded, 3) α(v, z) is undefined
for |z| = zba and |z| = |zss(v)| (correct in the original paper by Dupont
et al. [1]). It can be shown that only with the definitions presented here, is
it possible to obtain the curve shown in Figure 3.
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ing the rate of stored energy in the system to power input and loss
is not readily available. Such energy methods are used frequently
in the context of physical modeling synthesis and virtual analog
modeling as a means of arriving at numerical stability conditions
for strongly nonlinear systems, as is the present case. See, e.g.,
[14]. This means that we do not have a means of ensuring numer-
ical stability in the algorithm development that follows. This does
not mean, however, that an energy balance is not available.

Figure 3: A plot of the adhesion map α(v, z) plotted against z
when the signs of v and z are the same. The different regions
of the map are shown with the coloured areas and correspond to
Figure 1 according to: yellow - a) & b), orange - c) and red - d).

3. DISCRETISATION

Finite-difference schemes for the stiff string in isolation are cov-
ered by various authors [13, 14].

Equation (1) can be discretised at times t = nk, with sample
n ∈ N and time-step k = 1/fs (in s) with sample-rate fs (in Hz)
and locations x = lh, where grid spacing h (in m) needs to abide
the following condition [14]

h ≥ hmin =

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
(10)

and grid points l ∈ [0, ..., N ], where N = floor(L/h) and N + 1
is the total number of grid points. It is important to note that the
closer h is to hmin, the more accurate the scheme will be. Ap-
proximations for the derivatives found in (1) are described in the
following way [14]:

ut ≈ δt·unl =
1

2k

(
un+1
l − un−1

l

)
, (11a)

utt ≈ δttunl =
1

k2
(
un+1
l − 2unl + un−1

l

)
, (11b)

uxx ≈ δxxunl =
1

h2

(
unl+1 − 2unl + unl−1

)
, (11c)

utxx ≈ δt−δxxunl =
1

hk2
(
unl+1 − 2unl + unl−1

− un−1
l+1 + 2un−1

l − un−1
l−1

)
,

(11d)

uxxxx ≈ δxxxxunl =
1

h4

(
unl+2 − 4unl+1 + 6unl

− 4unl−1 + unl−2

)
,

(11e)

with grid function unl denoting a discretised version of u(x, t) at
the nth time step and the lth point on the string. Note that in (11d),

the backwards time difference operator is used to keep (12) explicit
and thus computationally cheaper to update. Using the approxima-
tions shown in (11), (3) can be discretised to

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l

+ 2σ1δt−δxxu
n
l − J(xnB )f(vn, zn)/ρA,

(12)

where the relative velocity described in (5) can be discretised as

vn = I(xnB )δt·u
n
l − vnB . (13)

Here, I(xnB ) and J(xnB ) are weighting functions where the former
interpolates the string displacement and velocity and the latter dis-
tributes the bowing term around time-varying bowing position xnB
(see Figure 4 and [14] for more details on this). Furthermore,

f(vn, zn) = s0z
n + s1r

n + s2v
n + s3w

n (14)

is the discrete counterpart of (4) where

rn = r(vn, zn) = vn
[
1− α(vn, zn) zn

zss(vn)

]
(15)

is the discrete counterpart of (6).

J3(xB)f(v, z)

ulB−1 ulB ulB+1 ulB+2

NR

I3(xB)ul

×

×

xB

Figure 4: Cubic interpolation at bowing point xB. The interpolator
I retrieves the values of four grid points which are then used in
the Newton-Raphson (NR) solver. This outputs the force function
f(v, z) that the spreading function J in turn distributes over the
same four grid points. This process happens every single sample.

At the bowing point we need to iteratively solve for two un-
known variables: the relative velocity between the bow and the
string vn and the mean bristle displacement zn of the bow at sam-
ple n. We can solve (12) at xnB using (13) and identity [14]

δttu
n
l =

2

k

(
δt·u

n
l − δt−unl

)
(16)

resulting in

I(xnB )J(x
n
B )f(v

n, zn)/ρA+
( 2
k
+ 2σ0

)
vn + bn = 0, (17)
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where

bn =
2

k
vnB −

2

k
I(xnB )δt−u

n
l − c2I(xnB )δxxunl + κ2I(xnB )δxxxxu

n
l

+ 2σ0v
n
B − 2σ1I(x

n
B )δt−δxxu

n
l

(18)
and can be pre-computed as its terms are not dependent on vn or
zn. Recalling (4), this can be rewritten to

I(xnB )J(x
n
B )

(
s0z

n + s1r
n + s2v

n + s3w
n

ρA

)

+
( 2
k
+ 2σ0

)
vn + bn = 0.

(19)

To obtain the values of vn and zn, multivariate Newton-Raphson
(NR) is used. If (19) is defined to be g1 = g1(v

n, zn) and

g2(v
n, zn) = rn − an = 0, (20)

with
an = (µt−)

−1δt−z
n (21)

(where the operators applied to zn denote the trapezoid rule [14])
we obtain the following iteration[

vn(i+1)

zn(i+1)

]
=

[
vn(i)
zn(i)

]
−
[
∂g1
∂v

∂g1
∂z

∂g2
∂v

∂g2
∂z

]−1 [
g1
g2

]
, (22)

where i is the iteration number capped by 50 iterations, and the
convergence threshold is set to 10−7.

4. IMPLEMENTATION

In this section, we will elaborate on the implementation; the pa-
rameters used and the system architecture. The real-time imple-
mentation of the discrete-time model shown in the previous section
has been done using C++ together with the JUCE framework [22].
The application is shown in Figure 5. The parameters we used
can be found in Table 1, most of which are based on implementa-
tions by Serafin in [4]. These parameters will be static, i.e., are not
user-controlled (except for zba and s3 which rely on fN). A demon-
strative video can be found in [23]. We use the passivity condition
proposed by [24] for our choices of different parameter-values. As
this condition applies to the LuGre model first proposed in [25, 26]
from which the elasto-plastic model evolved, further investigation
is required to conclude whether these conditions are identical for
the elasto-plastic model.

4.1. Sensel Morph

As mentioned in Section 1, the Sensel Morph (or Sensel for short)
is used as an interface to control the bowed string (see Figure 6).
The Sensel is a highly sensitive touch controller containing ca.
20,000 pressure sensitive sensors that allow for expressive control
of the implementation [21].

4.2. Interaction

The first finger the Sensel registers is linked to the following pa-
rameters: the normal force of the bow fN (finger pressure), the
bowing velocity vB (vertical finger velocity) and bowing position
xB (horizontal finger position). The parameters are limited by the
following conditions: 0 ≤ fN ≤ 10, −0.3 ≤ vB ≤ 0.3 and

Figure 5: The elasto-plastic bowed string application. The bow is
shown as a yellow rectangle, moves on interaction and its opacity
depends on the finger force. The state un is visualised using the
cyan curve and stopping-finger position is shown as a yellow cir-
cle. The grey lines show the ‘frets’ corresponding to semi-tones as
a visual reference for the stopping position and do not influence
the model.

Figure 6: The Sensel Morph: an expressive touch sensitive con-
troller used for controlling the real-time elasto-plastic bowed
string implementation.

0 < xB < L. The second finger acts as a stopping finger on the
string. As done in [20], for a string stopped at location xf ∈ [0, L]
and lf = floor(xf/h) we use

unl =


0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(23)

where αf = xf/h− lf and ε = 7 is a heuristic value that has been
found to most linearly alter pitch between grid points.

4.3. System Architecture

Implementation of the scheme shown in (12) starts by expanding
the operators shown in (11) and solving for the state at the next
sample un+1 where u is a vector containing the values for all grid
points l ∈ [0, ..., N ].

An overview of the system architecture can be found in Fig-
ure 7. The three main components of the application are the Sensel
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Table 1: Parameter values. Values for the fundamental frequency
f0 can be found in Section 5.

Parameter Symb. (unit) Value (notes)
Material Density ρ (kg·m−3) 7850

Radius r (m) 5 · 10−4

String length L (m) 1
Wave speed c (m/s) 2f0/L

Young’s modulus E (Pa) 2 · 1011
Freq. indep. damping σ0 (s−1) 1
Freq. dep. damping σ1 (m2/s) 5 · 10−3

Coulomb friction µC (-) 0.3 (< µS)
Static friction µS (-) 0.8 (> µC)
Normal force fN (N) 10
Bow velocity vB (m/s) 0.1
Bow position xB (m) 0.25

Stribeck velocity vS (m/s) 0.1
Bristle stiffness s0 (N/m) 104

Bristle damping s1 (kg/s) 0.001
√
s0

Viscous friction s2 (kg/s) 0.4
Noise coefficient s3 (-) 0.02fN

Pseudorandom func. w (N) −1 < w < 1
Break-away disp. zba (m) 0.7fC/s0 (< fC/s0)

Sample rate fs (Hz) 44,100
Time step k (s) 1/fs

controlling the application, the violin string class that performs the
simulation and the main application class that moderates between
these and the auditory and visual outputs. The black arrows indi-
cate instructions that one of these components can give to another
and the hollow arrows indicate data flows. Moreover, the arrows
are accompanied by coloured boxes, depicting what thread the in-
struction or data flow is associated with and at what rate this runs.

The graphics thread has the lowest priority, is denoted by the
green boxes and runs at 15 Hz. The redraw instruction merely
retrieves the current string state un and bow and finger position
and visualises this as shown in Figure 5.

The thread checking and receiving data from the Sensel runs
at 150 Hz and is denoted by the blue boxes. The parameters that
the user interacts with (bowing force, velocity and position) are
also updated at this rate.

The highest priority thread is the audio thread denoted by the
orange boxes and runs at 44,100 Hz. The violin string class gets
updated at this rate and performs operations in the order shown in
Algorithm 1.

5. RESULTS AND DISCUSSION

Figure 8 shows the output waveforms for a string with f0 = 440
Hz at different points along the string. The bowing parameters are
fN = 5 N and vB = 0.1 m/s. The figure shows the traditional
Helmholtz motion, which is the characteristic motion of a bowed
string.

To test whether the implementation exhibits a hysteresis loop,
the force vs. relative velocity plane was visualised. In Figure 9,
this plot can be found for which the same parameters have been
used. The figure shows values for 500 samples around t = 0.5fs.
As can be seen from the figure, the hysteresis loop is achieved and
is similar to the one observed in [19]. The group of values around

graphics

 redraw 15 Hz44,100 Hz update

check
150 Hz

state

output

Sensel

set
parameters

Violin string

NR �(�, �) FDS

1 2 3

audio

=�
�−1

�
�

=�
�

�
�+1

Switch pointers

Main
Application

�
�

Figure 7: The system architecture. See Section 4.3 for a thorough
explanation.
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1.5
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-4 Output position = bowing position (1/4 N)
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b)

Figure 8: Output waveforms of the simulation at different positions
along the string whereN denotes the number of points of the string
(f0 = 440 Hz, fN = 5 N and vB = 0.1 m/s).

v = 0 are due to the sticking behaviour, and the others (the loop
on the left) to the slipping behaviour.

For testing the speed of the algorithm, a MacBook Pro with
a 2.2 GHz Intel Core i7 processor was used. The algorithm was
tested using different frequencies according to the violin tuning of
empty strings: f0 = 196.0 (G3), 293.66 (D4), 440.0 (A4) and
659.26 (E5) Hz corresponding to N = 95, 71, 49, and 33 grid
points respectively. The results can be seen in Table 2. When
the total number of strings is smaller than 4, always the lowest
frequency strings are used.

From Table 2 it can be observed that for one string, the CPU
usage is < 6% with the graphics thread disabled. This is a great
result, given the fact that both the bow and the string model are
computationally complex. Empirical investigation shows that the
NR algorithm converges after ca. 3-4 iterations and the capping of
50 iterations never has to be used. A single string (but also more)
could thus safely be used as an audio plugin in parallel to others
without the user having to worry about auditory dropouts.
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for t = 1:lengthSound do
calculate computable part bn (Eq. (18))

ε = 1

i = 0

while ε < tol ∧ i < 50 ∧ fC > 0 do
calculate..
1. zss(v

n
(i))

2. α(vn(i), z
n
(i))

3. r(vn(i), z
n
(i))

4. g1, g2

(Eq. (7) in discrete-time)

(Eq. (8) in discrete-time)

(Eq. (15))

(Eqs. (19) and (20))

5.–9. Compute derivatives of 1.–4. in the same

order.

10. Perform vector NR to obtain vn(i+1) and zn(i+1)

11. Calculate ε: ε =

∥∥∥∥∥
[
vn(i+1)

zn(i+1)

]
−

[
vn(i)

zn(i)

]∥∥∥∥∥
12. Increment i: i = i+ 1

end
Repeat 1.–3. using the values for vn and zn from the

NR iteration.
Calculate f(vn, zn)

Calculate un+1

(Eq. (14))

(Eq. (12) expanded)

un−1 = un

un = un+1

end

Algorithm 1: Pseudocode showing the order of calculations.

6. CONCLUSIONS

In this paper, we presented a real-time implementation of an elasto-
plastic friction model with applications to a bow exciting a string,
discretised using a finite-difference approach.

With a single string we are able to keep the CPU usage down
to< 6% making for an efficient implementation that could be used
in parallel with other virtual instruments or plugins.

Future work includes parameter design and including an in-
strument body for more realistic sounding results, as well as lis-
tening tests to verify the perceivable differences between simpler
friction models versus the elasto-plastic model.
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