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ABSTRACT

A multisensory virtual environment has been designed, aiming at
recreating a realistic interaction with a set of vibrating strings.
Haptic, auditory and visual cues progressively istantiate the envi-
ronment: force and tactile feedback are provided by a robotic arm
reporting for string reaction, string surface properties, and further-
more defining the physical touchpoint in form of a virtual plectrum
embodied by the arm stylus. Auditory feedback is instantaneously
synthesized as a result of the contacts of this plectrum against the
strings, reproducing guitar sounds. A simple visual scenario con-
textualizes the plectrum in action along with the vibrating strings.
Notes and chords are selected using a keyboard controller, in ways
that one hand is engaged in the creation of a melody while the
other hand plucks virtual strings. Such components have been
integrated within the Unity3D simulation environment for game
development, and run altogether on a PC. As also declared by
a group of users testing a monophonic Keytar prototype with no
keyboard control, the most significant contribution to the realism
of the strings is given by the haptic feedback, in particular by the
textural nuances that the robotic arm synthesizes while reproduc-
ing physical attributes of a metal surface. Their opinion, hence,
argues in favor of the importance of factors others than auditory
feedback for the design of new musical interfaces.

1. INTRODUCTION

Along with the continuous miniaturization and proliferation of dig-
ital hardware, the research domain of computer interfaces for mu-
sical performance is increasingly taking advantage of the growing
market of haptic devices. Traditionally confined to the loudspeaker
set, the output channel in these interfaces now often incorporates
force and tactile feedback targeting the performer [1] and/or the
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audience [2]. In spite of the debate around the effects that syn-
thetic tactile cues have on the precision of the execution [3] and in
general on the quality of the performance [4], no doubt exists on
the impact that haptic feedback has as a conveyor of realism, en-
gagement and acceptability of the interface [5]. This design trend
has developed to the point that a specific research line has been
recently coined: musical haptics [6].

In parallel to such hardware opportunities, several software
architectures have become available. These architectures contain
libraries which provide relatively fast access to functionalities that,
until few years ago, needed significant labor of researchers in-
terested in programming a new musical interface. Conversely,
modern software development environments such as Max/MSP or
Unity3D have enough resources in-house for realizing digital in-
strument prototypes yielding a credible image of the final appli-
cation. The latter software, in particular, already in its freeware
version offers an unprecedented support to existing multimedia
devices in the context of a visual or, at the developer’s conve-
nience, traditional programming environment. Originally intended
for computer game design, Unity3D is being embraced by an in-
creasing community of programmers with interests in virtual and
augmented reality, as well as cultural and artistic applications on
multimodal technologies.

Among the numerous assets Unity3D makes available, basic
objects can be found for defining elastic strings which dynami-
cally respond to colliding bodies and, at that moment, play an au-
dio sample or launch a sound synthesis algorithm. Such a core
scenario can receive messages by external devices including Mu-
sical Instrument Digital Interface (MIDI)-based controllers like a
keyboard, and haptic devices like e.g. a robotic arm.

Using these components we have started a project, now called
Keytar, aiming at understanding the perceptual importance of hap-
tic, auditory and visual feedback during a point-wise interaction
with a virtual string set. This idea is not new: multisensory en-
vironments with visual, auditory and haptic feedback have for ex-
ample been developed for several decades in the context of the
Cordis-Anima framework [7]. Our approach, however, aims at an
efficient yet accurate simulation in a widely accessible virtual real-
ity environment. We have reproduced a standard and a bass guitar
employing different string sets, and then compared sample-based
rather than synthesized sounds under different visual viewpoints
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of the instruments. Later we have integrated melodic control via
MIDI keyboard. This paper reports the current status of the Key-
tar project, documenting what has been done and what is ongoing
based on the lessons learnt so far: Sec. 2 specifies the hardware
in use; Sec. 3 describes the software component realizing commu-
nication with the devices, haptic workspace, sound synthesis and
visualization; Sec. 4 explains how Keytar was first calibrated and
then preliminary tested; Sec. 5 concludes the paper.

2. PHYSICAL INTERFACE

The Keytar interface is shown in Fig. 1. While users pluck a string
through the robotic arm using their dominant hand, they simulta-
neously feel its resistance and textural properties. This way, the
plucking force results from a natural perception-and-action pro-
cess involving users and the string. In the meantime, with the
other hand they select notes and/or chords through the keyboard
controller. The setup is completed by a screen displaying the ac-
tion of the virtual plectrum against the vibrating strings, as well as
by the audio.

Figure 1: Keytar: desktop configuration.

Besides the presence of a monitor and a loudspeaker or head-
phone set, the most interesting physical component of the output
interface is certainly the robotic arm (Fig. 2). A SensAble (now
3D Systems) Phantom Omni was available for this project. The
limited force its motors exert on the mechanic arm is compen-
sated by extremely silent and low-latency reactions, making this
device still an ideal candidate for virtualizing point-wise manip-
ulations that do not need to render stiff materials. Particularly in
the case of elastic string simulation, the Phantom Omni revealed
ideal characteristics: since only rotation and lift are actuated, the
arm renders elastic reactions while leaving users free to select the
angular position of the plectrum at their own taste through the sty-
lus. Even more surprisingly, while rendering the textural prop-
erties of wound metal strings its motors produced sounds that are
very similar to the scraping effect a plectrum creates when it is slid
over a bass guitar string. This acoustic by-product coming from
the robotic arm added much realism to the multi-sensory scenario,
completing the audio-tactile feedback with nuances whose acous-
tic component would be otherwise particularly difficult to synthe-
size and keep synchronized with the haptic channel.

Figure 2: Phantom Omni robotic arm.

Concerning the input interface, the robotic arm is once more
interesting for its ability to instantaneously detect the stylus po-
sition and force exerted on it when its motors are resisting to the
arm movement. Position was used to detect when the plectrum
collided against the strings. Aside of the robotic arm, a Novation
ReMOTE 25SL controller was set to acquire standard MIDI notes
across its two-octave keyboard. Finally, two buttons located on the
arm stylus at immediate reach of the index finger (both visible in
Fig. 2) allowed for selecting major (blue button pressed) or minor
(grey button pressed) chords instead of single notes through the
keyboard. In other words, users could play chords or alternatively
solos respectively by pressing either button or by leaving both but-
tons depressed. Since there is no obvious mapping from piano to
guitar keys, rules were adopted to create a link between the two
note sets which will be discussed at the end of Sec. 3.2.

3. SOFTWARE ARCHITECTURE

Due to the efficiency of the applications built for many computer
architectures, Unity3D is gaining increasing popularity also among
musical interface designers. Moreover, this programming envi-
ronment adds versatility to the development of a software project
thanks to its support to a number of peripherals for virtual real-
ity. Finally, software development is made easier by a powerful
graphic interface, making it possible to visually program several
C# methods and classes that would otherwise need to be tradi-
tionally coded through textual input of the instructions. The same
interface allows also to preview the application at the point where
the project development is.

For the purposes of the Keytar project, Unity3D supported i)
communication with the robotic arm and MIDI controller, ii) agile
virtual realization of vibrating strings, iii) implementation of col-
lision detection between such strings and a virtual plectrum, iv)
access to an algorithm capable of interactively synthesizing string
tones, and finally v) relatively easy development of the graphical
interface. In the following we browse such components, empha-
sizing aspects whose knowledge may help researchers in computer
music interfaces reproduce the prototype, or take inspiration from
Keytar while designing their own instrument.

3.1. Communication with peripherals

Bi-directional communication with the Phantom Omni is made
possible by Unity3D’s Haptic Plugin for Geomagic OpenHaptics,
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developed for Windows and (in beta version) for Linux by the
Glasgow School of Art’s Digital Design Studio. Through this asset
it was possible to get the position of the Phantom’s arm and simul-
taneously send control messages to its motors, hence defining the
instantaneous behavior of the robotic device. In particular, Haptic
Plugin manages force through higher level parameters: stiffness,
damping, static friction, dynamic friction, tangential stiffness, tan-
gential damping, punctured static friction, punctured dynamic fric-
tion, and mass. Expansions of this palette appearing in the newer
versions of Unity3D have outmatched such parameters, in prac-
tice forbidding the Phantom Omni to interact with dynamic (i.e.,
moving) virtual objects.

Concerning the communication with the keyboard, Keijiro Ta-
kahashi’s MIDI Jack is an open project1 enabling Unity3D to ac-
quire and interpret some types of MIDI events coming from a con-
troller that sends messages in this protocol. In particular, it features
automatic recognition of input MIDI devices and returns non-zero
velocity values of notes when a key is pressed. This software mod-
ule immediately establishes a communication between the con-
troller and the note selector running in Keytar (see Fig. 3). Though,

Figure 3: MIDI input inspector in Unity3D.

if the application is ported on another PC then care must be taken
in keeping the MIDI channel that was chosen during building. Fu-
ture versions of Keytar will accept this value as an initial argument.

3.2. Strings, plectrum, and collision detection

Each string was created using Cylinder objects. Such objects are
instantiated by a primitive class of Unity3D once their length, di-
ameter and position in the virtual space are set. The plectrum
was instead obtained by putting one passive and one active ob-
ject together: the former gave visual appearance by realizing the
traditional shape, while the latter was responsible of the collision
against the strings and was instantiated as a Sphere object having
minimum (i.e. almost point-wise) diameter.

The little sphere was placed on one edge of the plectrum and
then made invisible by disabling its display. Like we did also for
each string, the sphere activity was enabled by interfacing it with
the classes RigidBody and Collider, containing methods for the
real-time detection and management of collisions. Since users of-
ten move the plectrum beyond the plane containing the strings, the
interaction was made more robust by positioning an active surface
just beyond this plane. This object, invisible to the user and having
the same role as a fretboard, cannot be crossed by the sphere and

1https://github.com/keijiro/MidiJack

hence avoids occasional backward collisions entangling the plec-
trum behind the strings.

Figure 4: Haptic workspace in Keytar. The colliding sphere is
visible as a white tip on the edge of the plectrum.

Active objects become part of the haptic workspace, accessi-
ble to the robotic arm, if they are labeled as Touchable. In this
way, their position and shape define areas of the virtual scenario
that become inaccessible to the tip of the arm stylus, as obviously
no more than one solid object at a time can occupy a single vol-
ume of the workspace. In parallel such object surfaces inherit the
haptic parameters listed in Sec. 3.1, which are used at runtime
while computing the collisions occurring between touchable ob-
jects. Fig. 4 shows the final appearance of the haptic workspace.
Initially we had labeled the entirely visible plectrum as touchable,
i.e. with no distinction between active and passive region. Unfor-
tunately, distributing contact areas across objects having irregu-
lar shapes can encumber the computation of the haptic workspace
with occasional crashes of the application especially when run-
ning on slower machines. This issue was solved in Keytar by tying
a tiny touchable sphere to the plectrum.

Clearly, this simplification leads to visuo-haptic mismatching
as soon as a passive region of the plectrum intersects with the
string. The net effect was that the plectrum often went through
strings with no apparent contact. A more subtle visuo-haptic mis-
match manifests when the active edge of the plectrum touches, but
does not penetrate a string enough: in this case the active objects
interact each other as one could clearly see also from the screen,
but no collision event is triggered inside the haptic workspace. The
latter problem was solved by wrapping each string with an invis-
ible, inactive meanwhile touchable shield, which was set to be as
thick as the diameter of the sphere active in the plectrum—see
Fig. 5. This shield in fact paired the contact point positions set by
the Touchable and Collider methods. Such string wrappers also
attenuate the former problem, as their inclusion made it more dif-
ficult to dip the plectrum into the string without production of re-
active force from the robotic arm due to collision of the sphere
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Figure 5: Mismatching positions of visual and haptic collision
point. Solution using string wrappers.

against the wrapper.
A strategy for estimating each string velocity after a collision

was needed. To this regard, Haptic Plugin gives runtime access
to the contact point coordinates immediately before (b) and after
(a) every collision. We decided to estimate velocity as the dis-
tance between such two positions divided by the haptic frame rate,
readable from the static property Time.deltaTime:

velocity =

√
(xa − xb)2 + (ya − yb)2 + (za − zb)2

Time.deltaTime
.

Velocity was then used to determine the amplitude of vibration in
each string.

3.3. Sample-based, interactive, and physical sounds

In Unity3D, sound source and listening point are respectively de-
fined by AudioSource and AudioListener objects. In the case of a
guitar simulation the Keytar workspace contained six sound sources,
one for each string. In parallel, a default audio listener was associ-
ated to the standard Camera object, corresponding to the viewpoint
in the virtual scenario. On their way from the sources to the lis-
tening point, sounds can be additionally routed in an AudioMixer
object. On top of mixing down such sources to pick-up points
for the audio card, the AudioMixer class allows for interconnec-
tion of, and interaction at runtime with several sound processing
methods including filters, reverberators, compressors, and further
digital audio effects. Alone, these methods turn Unity3D in an
effective digital audio workstation.

We kept the AudioMixer object to the simplest, by just picking
up sounds from the strings and mixing them down before repro-
duction from the virtual listening point. The corresponding con-
sole, shown in Fig. 6, was sufficient for reproducing a bank of gui-
tar samples we use in the initial prototype. This prototype had no
note selection, and for this reason just six tones corresponding to
the freely vibrating strings were recorded to form this bank, from
a guitar playing at several dynamic levels.

Later, when the note selection was introduced, we switched to
interactive synthesis by including the well-known Karplus-Strong

Figure 6: AudioMixer object in Keytar.

algorithm2 in the software architecture [8]. Once imported, this

Figure 7: Karplus-Strong control panel in Unity3D.

synthesizer exposes the control panel as in Fig. 7, containing five
parameters. Except for damping, all such parameters can be set
at runtime to values between zero and one. For this reason it was
necessary to program a method mapping every tone fundamental
frequency into this interval. Apart from the freedom of choice of
the notes and their timbre using Unity3D’s Karplus-Strong—see in
particular the simultaneous presence of damping and decay, alter-
natively absent in the traditional algorithm instead—the net result
of the switch from sample-based to interactive synthesis was a def-
initely more reactive instrument with empoverished sound quality.
Some preliminary sound engineering using standard guitar effects
available in Unity3D, however, suggests that it should not be dif-
ficult to synthesize acceptable virtual electric guitar sounds with
Keytar.

As anticipated in Sec. 2, Keytar features three different play-
ing modes that can be selected through the stylus buttons: solo,
harmonic major and harmonic minor. Any switch of these buttons
calls a script that activates the corresponding playing mode. In solo
mode, the related script simply runs an instance of the Karplus-
Strong algorithm at the time when a collision happens, by tuning
the synthesizer to the tone that has been set by the controller key—
not below the lowest note the excited string can produce, however.
The harmonic modes instead launch several instances of the same

2https://github.com/mrmikejones/KarplusStrong
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algorithm, by building major and minor chords based on the last
key pression on the controller. This event dictates the fundamen-
tal note of corresponding chord. All chords were standard forms
based on the chord voicing music theory. They were formed only
by tones belonging to the fundamental tonality.

Last, but not least, the acoustic feedback includes real sounds
that are a by-product of the effort the robotic arm makes while
reproducing the plectrum-string contact. As it can be seen from
Fig. 3, each string results by alternating cylinders of two different
diameters. The resulting surface geometry hence reproduces a tex-
ture assimilable to that of a wound string coating, as it contains
regular discontinuities. While following the longitudinal motion
of a plectrum scraping along such a string, the motors simulate
a motion similar to friction, producing not only haptic, but also
acoustic cues of convincing quality, with substantial improvement
of the overall realism of the interaction.

3.4. Visual display

In a scenario populated by elements belonging to a typical guitar
playing set, the plectrum and the strings are the only animated ob-
jects visible from the standard camera viewpoint. Plectrum move-
ments directly reproduce the shifts and rotations of the arm sty-
lus, proportionally to the workspace size. Strings visually vibrate
thanks to the Animator interface, whose methods implement Unity
3D’s Mecanim Animation System. This system concatenates ba-
sic Animation objects along time, together realizing the visual flow
visible from the Camera object.

In Keytar each animation object models an oscillatory transver-
sal shift having specific frequency and decaying amplitude along
time. By concatenating few such objects, each string vibrates up
and down with decreasing amplitude. This model demands low
computational effort in ways that each string position can be re-
freshed every 10 milliseconds, that is, about 1.6 times the refresh
rate of the video. This ratio creates an effect of occasional semi-
transparency of the vibrating string, which is beneficial for the
realism—see Fig. 8.

Figure 8: Semitransparency of one animated string in Keytar.

In practice, each collision triggers a script that determines the
initial vibration amplitude. Then, vibrations are rendered by an
Animator method that destroys a visual string while cloning it into
a shifted instance. This workflow continues until the original string
returns at rest or, conversely, a new collision happens against the

initial string position. In other words, the clones were not in-
terfaced to the Collider class nor did they inherit any Touchable
property, as the definition of a haptic workspace evolving dynam-
ically at such a fast refresh rate would suffer from the instability
mentioned in 3.1. This limit defers any realization of vibratory
feedback in Keytar to a version capable of driving vibrotactile de-
vices not using data about the interaction point, but rather higher
level information about amplitude and pitch of the string vibrating
in contact with the plectrum.

In spite of its efficiency and versatile management of collision
events, an accurate visual rendering of the string would require
to realize a rectangular surface that shrinks, and becomes pro-
gressively less semitrasparent across time until reducing to a solid
string at rest position. Finally, the virtual string did not model rigid
edges. This approximation results in strings moving up and down
as stiff bars would do, with apparent artefacts whose removal will
eventually require a different design of the visual string.

4. CALIBRATION AND PRELIMINARY TESTING

The strings’ physical parameters were tuned by two students, who
regularly perform with their guitar and bass in a pop band. Then,
Keytar was preliminary tested during two experiments that have
been documented in previous papers [9, 10] when Keytar had no
polyphonic keyboard control yet. Both such experiments focused
on the realism of the multi-sensory interaction with the strings.
Here we report limitedly to the answers participants gave concern-
ing the audio-haptic interaction.

In experiment 1, seven participants with different music expe-
rience and knowledge of the technology were asked first to pluck a
guitar and a bass guitar using a plectrum. Then, they tested Keytar
and answered a questionnaire. Regarding the realism of audio-
haptic feedback, participants were asked to rate roughness of each
string surface, longitudinal motion friction while sliding the plec-
trum, sound friction during the same sliding, and finally string re-
sistance. While the first three attributes were essentially tactile and
depended on the vibratory activity of the arm motors, the fourth at-
tribute was kinaesthetic and linked to the force feedback generated
by the robotic arm.

Figure 9: Experiment 1: Results from haptic evaluation.

Fig. 9 shows good scores for the first three attributes. Con-
versely, string resistance scored lower. The reason for this dffer-
ence might be due to the need to grasp a stylus instead of a plec-
trum during playing.

Experiment 2 aimed at evaluating the relative importance of
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force and vibrotactile feedback for the creation of a realistic expe-
rience [10]. For this reason, the arm stylus was modified for the
occasion by applying a 3D printed plectrum on its tip. This physi-
cal plectrum was embedded with a Haptuator Mark II vibrotactile
actuator by Tactile Labs. Each time a collision occurred, the vi-
brotactile actuator rendered an impact generated using the Sound
Design Toolkit for Max/MSP [11]. Twenty-nine subjects were first
asked to pluck a real string, then they were exposed to four condi-
tions: no haptic feedback (N), vibrotactile feedback (V, made with
the Haptuator), force feedback (F, made with the Phantom Omni),
and combination of force and vibrotactile feedback (FV). Finally,
subjects reported the perceived realism through a questionnaire.
Results are reported, among others, in Fig. 10. Both show that

Figure 10: Experiment 2: Overall perceptual similarity and real-
ism.

the combined force and vibrotactile feedback was rated as signifi-
cantly more realistic. This conclusion suggests that expanding the
feedback of Keytar with vibrations in both its keyboard and stylus
controllers should further increase its realism.

5. CONCLUSIONS

Keytar prototypes a point-wise physical interaction with a set of
virtual strings. With relatively low software programming effort,
it can model essentially any compact stringed instruments that is
played using a plectrum. Ongoing work is oriented to reproduce
interactions capable of taking full advantage from alternative pro-
totypes. The lap steel guitar, for instance, could be realized by
displaying the strings horizontally below the robotic arm; in par-
allel the keyboard, if not substituted by a continuous controller,
could be used to set the final chord where the steel bar is sliding
to. In the longer term, the keyboard (or any other controller) and
the plectrum could convey string vibrations through proper actu-
ation, as well as the plectrum position could be used to modulate
the spectral content of tones as it happens with real guitars.
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