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ABSTRACT

An improved and expanded method for carillon bell synthesis is
proposed. Measurements of a carillon bell and its clapper were
made to serve as the basis for an efficient synthesis framework.
Mode frequencies, damping, and amplitudes are used to form a
modal model fit to measurements. A parameterized clapper inter-
action model is proposed to drive the bell model, reproducing vari-
ation of timbre as the bell is played in different dynamic ranges.
Reverberation of the belfry was measured from several listener
perspectives and an efficient modal reverberation architecture is
shown to model the sound of the bell from locations inside and
outside the belfry.

1. INTRODUCTION

Musical acousticians and composers have long held interest in car-
illons and other bells. Rossing and others seek to understand the
physics of how bells vibrate [1, 2]. Others, such as Lehr, work
for bell foundries and are interested in improving their casting and
tuning techniques [3, 4]. Recently, some researchers have mod-
eled bells using finite element analysis [5]. Romantic composers
have often evoked and imitated the sound of bells in their music.
Twentieth century works by John Chowning, Jean-Claude Risset,
and Jonathan Harvey have all prominently feature synthesized bell
timbres. More recent “Hack the Bells” initiatives such as [6] have
lead to an increased interest in music for carillon and live electron-
ics.

In contrast to [7], where the authors’ goal was to provide a
simple model for carillon bell synthesis suitable for processing by
composers of electroacoustic music, in this paper we provide a
more sophisticated model. Like in previous work, a modal archi-
tecture is presented where a bell is modeled as a sum of exponen-
tially decaying sinusoids. One of the issues of [7] was that the
authors were limited to a single recording of each bell of the car-
illon they were modeling. This means they were unable to model
the spectral differences between quiet and loud bell hits and were
restricted to the perspective of the single microphone.

For this work, we made a comprehensive set of measurements
of the bell we model with the idea that the results can be applied
for modeling other bells. These measurements include multiple
microphone locations, laser Doppler vibrometer (LDV) measure-
ments from the impact position, and accelerometer measurements
of the clapper’s movement. We additionally made impulse re-
sponse measurements of the belfry. With these measurements, we
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perform better when estimating the modal parameters, incorporate
a driving function that adequately controls the spectral changes
associated with quiet and loud bell strikes, and demonstrate an ef-
ficient modal reverberation algorithm allowing the possibility to
control and modify the position of the listener.

A carillon is a musical instrument consisting of multiple cup-
shaped cast bronze bells. The bells are stationary and struck on
the inside by clappers. The bell measured and modeled in this
study comes from the Stanford Carillon located in the tower of the
Hoover Institution. This carillon consists of thirty-five bells origi-
nally cast by Michiels in Tournai, Belgium for the 1939 New York
World’s Fair [8]. In 2002, The Dutch foundry Royal Eijsbouts re-
cast eleven of these bells and added an additional thirteen bells,
bringing the total to forty-eight bells. Additionally, they upgraded
several other components of the instrument such as the keyboard
and the hanging mechanism. The instrument is equally tempered.

We begin by outlining the measurements of the bell and belfry
in §2. Then in §3 we describe the modal synthesis model and
how we estimate the various parameters. We discuss results in §4.
Finally, §5 offers some concluding remarks.

2. CARILLON BELL MEASUREMENTS

For this study, we measured a large carillon bell tuned to C3, hav-
ing a fundamental frequency of 129 Hz. An accelerometer was
used to measure the keyboard driven clapper interaction while a
laser Doppler vibrometer and various microphones were used to
measure the resulting bell vibrations. Figure 1 shows the locations
of the microphones, LDV, accelerometer, and loudspeaker in rela-
tion to the tower, belfry, and bell.

2.1. Clapper Interaction

An accelerometer was placed on the back of the clapper to measure
its acceleration as it strikes the bell. It was in line with the clapper’s
primary direction of motion, orthogonal to the shell of the bell. It
was assumed that the arc of the clapper path was negligible and
only in one spacial direction. A laser Doppler vibrometer was used
to measure the surface velocity at a point on the outside of the bell
corresponding to the location of the clapper hit. The measurement
locations were chosen to be at an approximation of the driving
point, taking physical considerations into account.

2.2. Near Field Radiation

In addition to the contact measurements, several measurement-
quality omnidirectional pressure microphones were used to record
the sound radiated by the bells at various locations. One micro-
phone was placed in the belfry about 1 m away from the carillon
bell to capture the close field radiation. A second microphone was
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Figure 1: Measurement setup.

placed in the belfry below the bells, in a location similar to where
a person may stand in the tower while the carillon is played. A
third microphone was suspended on a pole 3 m out of a window
in the belfry. This captures the on axis portion of the signal that
would pass through the windows of the carillon tower. While this
measurement is not from a listener’s perspective, it is from an ac-
cessible location partway between the belfry and the ground and
provides a different prospective of the bell sound.

2.3. Far Field Radiation

In an attempt to measure impulse responses of the bell tower to
common listening positions, inexpensive portable recorders were
placed at four locations outside of the tower. One recorder was
located 25 m from the base of the tower, and the other three were
approximately 150, 600, and 1000 m away, at ground level. Two-
minute-long exponential sinusoidal sweeps covering the audible
frequency range from 20–20000 Hz were played from a loud-
speaker in the tower and recorded using all near field and far field
microphones. Several of the far field recorders were corrupted by
noise caused by other sound sources in the area and the large dis-
tance from the tower.

2.4. Bell Coupling

To test if the bells are acoustically coupled, an LDV was used to
measure the surface vibration of one bell while other bells were
played. Two pairs of bells were tested—one pair was adjacent to
each other and the other tonally separated by an octave. In both
cases, no significant coupling was measured, so this was not con-
sidered further in the model.

3. MODAL CARILLON BELL MODEL

The sound of a bell can be described as an inharmonic series of
partials. Like in [7], we use a modal model to represent each bell
as a sum of exponentially decaying sinusoids,

g(t) =

M∑
m=1

αme
jωmte−t/τm , (1)

where αm is the complex amplitude, ωm the frequency, and τm
the decay rate for each mode m.

Throughout this section, we will describe our methods for esti-
mating the modal parameters for synthesizing carillon bell sounds.
We extend the modal analysis proposed in [7] using simple and
robust methods rather than complex high resolution methods such
as the one described in [9].

3.1. Estimating Partial Frequencies

First, the clapper impact is deconvolved from the time domain bell
measurements. Then, all ten measurements at different loudness
levels are averaged in the time domain for further analysis. This
improves the signal to noise ration (SNR) as the spectral peaks are
common in all measurements. Additionally, nulls in the spectrum
of the clapper are dependent on the loudness of the strike while
the mode parameters of the bell itself should be independent of
loudness. By averaging recordings at several loudness levels, we
reduce the bias in the peak picking and amplitude fitting that would
over-fit to a single bell loudness.

Similar to [7], the deconvolved bell signal is high-passed fil-
tered half an octave below the hum tone before its Fourier Trans-
form is taken. This reduces the likelihood of picking spurious
peaks in the lower frequencies that are simply background noise.

The method for peak picking proposed in [7] is not able to
detect close-frequency beating partials (doublets) and it misses a
number of high frequency partials which decay very quickly, re-
sulting in inaccurate reconstruction of the bell attack. The follow-
ing subsections explain the updated method for overcoming these
shortcomings.

3.1.1. Resolving doublets

In the previous method, peaks that were very close to each other
were discarded. For resolving doublets, this constraint is removed.
Even with a larger FFT size, resolving doublets can be tricky. The
Hann window used in [7] has a side lobe height of−31.5 dB. This
poses the danger of partial side lobes being detected as peaks. To
fix this, we use the Hann-Poisson window (2) instead, which is
essentially a Hann window multiplied with an exponentially de-
caying Poisson window [10]. The advantage of this window is that
for γ ≥ 2, the side-lobes are smoothed. For high γ, this win-
dow has no side-lobes. With the Hann-Poisson window, the peaks
detected are guaranteed to be partials and not their side-lobes.

w(n) =
1

2

[
1 + cos

( 2πn

M − 1

)]
exp

(−2γ|n|
M − 1

)
(2)

3.1.2. Adaptive threshold for peak picking

In the previous method, the threshold for peak picking was kept
constant. However, as can be seen from Fig. 2, the spectral enve-
lope shape is not flat, but resembles a low-pass filter. This means
that a constant threshold will not be able to detect higher partials,
which fall below it. A smarter decision is to pick a threshold that
follows the spectral envelope. To do so, first we use a median fil-
ter with a filter order of 100 to smooth the spectrum and estimate
the spectral envelope. We then fit a straight line to the spectral
envelope, and add a constant value to it to get the new threshold.
Flattening the spectrum with a “pre-emphasis” filter would have
also worked.
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Figure 2: Mode frequency estimates.

3.1.3. Two FFT sizes

We pick two different FFT sizes for low and high frequency par-
tials, with a transition frequency at 3 kHz. A larger FFT size of
215 for detecting lower partials ensures that beating partials are re-
solved. For higher frequency partials, resolution is not an issue.
Lower partials have a small beat frequency, however the beat fre-
quency increases for higher partials, which is why resolving high
frequency doublets is possible with a smaller FFT size. Instead,
too large an FFT size for higher partials results in poor signal to
noise ratio in estimation of decay rates. So, we choose an FFT
size of 213 for higher partials. For lower partials, we use a Hann-
Possion window with γl = 7 and for higher partials, γh = 3.
We can get away with less smoothing of side lobes for higher par-
tials because we ensure that two nearby candidate peaks are not
detected as two separate partials. This ensures no side lobes are
incorrectly labeled as partial peaks. The peaks picked with two
different FFT sizes are shown in Fig. 2. We do not detect any peaks
above 10 kHz because the accelerometer is band-limited and there
is a high noise floor so we are not confident in the measurements
in this region. Instead, we statistically generate higher frequency
modes as described in §3.4.

3.2. Estimating Partial Decay Rates

As in [7], we use each frequency found in §3.1 as the center fre-
quency for a fourth-order Butterworth band-pass filter. We find
the energy envelope for each partial by averaging the band-pass
filtered signals using a 100 ms RMS procedure. However, in [7],
the decay rate of each partial was estimated by performing a linear
fit to the amplitude envelope using least squares. The region over
which the linear fit was performed was selected manually. Since
many more partials are detected in our updated method, this proce-
dure is inefficient and time consuming. Instead, we use the method
in [11] to automatically estimate the decay rates. This algorithm is
based on nonlinear optimization of a model for exponential decay
plus stationary noise floor. It works well, even for beating partials
that are coupled. For higher modes that decay quickly, we use a
weighting function that fits an exponential decay only over the first
second of the energy envelope and discards the rest, so that high
frequency noise does not perturb the calculation of decay rates.
This method was rejected in [7] because the SNR of the single-

bell recordings often challenged the algorithm. Here, our SNR is
much higher so the algorithm performs better. A disadvantage of
this method is that it solves a large optimization problem, and is
therefore, quite slow.

3.3. Estimating Partial Amplitudes

Once we have estimated the frequency and decay rate of each
mode, we estimate the initial amplitude of each partial required
to reconstruct the original bell recording. To do this, we form a
matrix where each column holds each partial independently as in

M =


1 . . . 1

e(jω1−1/τ1) . . . e(jωM−1/τM )

... . . .
...

e(jω1−1/τ1)T . . . e(jωM−1/τM )T

 , (3)

where ωm are the frequencies, τm the decay rates, and T is the
length of the time vector. We use least squares to find the complex
amplitudes

α = (MᵀM)−1Mᵀg , (4)

where g is the original bell recording and α is the vector of com-
plex amplitudes.

3.4. Statistically Generating High Frequency Modes

While the low frequency modes are louder and decay more slowly
than the high frequency modes, the high modes play a role in de-
veloping the transient attack sound. It is difficult to measure and
estimate modal parameters for the high modes for a variety of rea-
sons. The signal energy at high frequencies is much lower than the
low frequencies and the noise floor becomes a significant impedi-
ment. Additionally, the measurements from the accelerometer are
band-limited, making it impossible to accurately estimate the high
frequency modes.

Since the resonant structure of the bell is inharmonic and hu-
man hearing has low acuity in high frequencies, it is possible to
synthesize artificial high frequency modes. The idea here is to
synthesize enough high frequency modes to produce the transient
sound without increasing the computational cost too much. To do
this, we generate a set of modal frequencies above the frequency
we stop fitting modal parameters, i.e. 10 kHz. Figure 3a shows the
frequency of estimated modes in black circles, along with the cut-
off frequencies of the Bark critical bands of hearing in grey [12].
We can see that mode density increases with critical band number.
We fit a quadratic function along with some sinusoidal modulation
to the existing mode frequencies and generate new mode frequen-
cies in the range of 10–16 kHz (shown as blue crosses). For the
decay rates and amplitudes, we extrapolate from the lower modes.
We fit a decaying exponential to the existing decay rates to gener-
ate new data points (Fig. 3b). For the amplitudes, we sample from
a Gaussian distribution with a mean given by that of the estimated
mode amplitudes from §3.3 and a variance of 10−5 (Fig. 3c).

3.5. Modeling the Bell-Clapper Interaction

Previous literature suggests that when the carillon is performed at
higher dynamic ranges, the high harmonics become more promi-
nent in the timbre. It is suggested that this change in timbre is
due to the contact time of the clapper interaction, with a louder hit
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(a) Extrapolated mode frequencies (Bark band cutoff frequencies in grey).
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(b) Extrapolated mode decay rates.
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(c) Extrapolated mode amplitudes.

Figure 3: Extrapolated mode parameters (in blue crosses).

having a shorter contact time [13, 14]. To confirm this effect, the
clapper acceleration of the initial impact was recorded during nine
different dynamic levels. It was assumed that the acceleration of
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(b) Frequency domain.

Figure 4: Measured impact acceleration of the clapper striking the
bell.

the clapper during the time when it was in contact with the bell
is proportional to the force exerted by the clapper, so the acceler-
ation can be used as an input signal to drive the carillon model.
The measured acceleration during impact of nine hits as well as
the corresponding frequency response of the impulses are shown
in Fig. 4.

As confirmed by our measurements, when the carillon is per-
formed at a louder dynamic level, the impact time is shorter and the
pulse shape changes in an asymmetrical manner. The frequency re-
sponse shows that the locations of the nulls change, and the louder
hits boost frequencies in the range of 1.5–3 kHz in relation to the
quiet hits.

To create a musically usable synthesis model, it is desirable
to have as few variable parameters as possible. In this case, it
would be ideal to have one parameter for strike amplitude which
can drive the carillon model. There have been multiple solutions
proposed to model the impact ranging from a half-cycle sine wave
proposed by Rayleigh [15], or a Gaussian [5], to numerical solu-
tions [5, 16, 17]. However, the half-cycle sine wave and Gaussian
solutions are oversimplified and a numerical solution is not practi-
cal for real-time synthesis, so a compromise was made to generate
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Figure 5: Data used to fit curves for parameterized clapper impact
model.

impact signals which are created to fit the data and are parameter-
ized by the impact peak acceleration.

The two defining characteristics of the impacts were chosen
to be the time of the acceleration peak and the length of the de-
creasing portion of the acceleration. Figure 5a shows the time of
the acceleration peak plotted against the peak acceleration, while
Fig. 5b shows the time taken for the acceleration to decrease to
zero after the peak acceleration, against the peak acceleration.

The impact peak time was fit using the logarithmic function:

p(ap) =
− ln

(
ap

29170(ms−2)

)
7193(s−1)

, (5)

where ap is the peak amplitude, and ln is the natural logarithm.
The time taken for the impact acceleration to decrease was fit using
the linear function:

d(ap) = 6.658× 10−8(m−1s3)× ap + 5.056× 10−4(s), (6)
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Figure 6: Synthesized impact acceleration of the clapper striking
the bell.

where ap is the peak amplitude. The curve fits are shown in Fig. 5a
and 5b.

Synthesized clapper impulses were created by combing the
left and right portions of two window functions. The left portion
of the impulse is the left half of a Blackman window,

wl(n) = 0.42− 0.5 cos

(
2πn

N

)
+ 0.08 cos

(
4πn

N

)
, (7)

for 0 ≤ n ≤ N − 1, where N = 2fs × p(ap), and fs is the
sample rate. The right portion of the impulse is the right half of a
Bartlett-Hann window,

wr(m) = 0.62− 0.48
∣∣∣m
M
− 0.5

∣∣∣− 0.38 cos

(
2πm

M

)
, (8)

for 0 ≤ m ≤ M − 1, where M = 2fs × d(ap) [10]. These
windows are parameterized by the peak amplitude of the desired
hit (ap), and created to be of length 2p(ap) and 2d(ap) seconds re-
spectively for the Blackman an Bartlett-Hann windows. Figure 5
shows time and frequency domain plots of synthesized impact sig-
nals having the same peak acceleration as the measured impacts
shown in Fig. 4.
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(a) Belfry impulse response.

(b) Ground impulse response.

Figure 7: Impulse responses taken from Hoover tower.

3.6. Efficient Belfry Reverberation

The belfry where the bells are housed can have a large impact on
the sound of a carillon in addition to affecting how the sound ra-
diates from the tower. Figure 7 shows impulse responses of the
reverberation of Hoover tower measured 3 m outside the belfry
and from the bottom of the tower. The response from the bottom
of the tower contains much less high-frequency energy and has a
prominent slapback echo from a nearby building. Needless to say,
the bells sound very different from inside the tower.

The sound of a carillon bell ringing in a belfry can be rep-
resented as the convolution of the bell with the reverberation of
the belfry. Since we are using a modal bell model, we can also
implement the reverberation with a modal architecture [18]. The
computation time is independent of the fact that this architecture
is a combination of series and parallel components. For each time
step, the number of operations scales linearly with the total num-
ber of modes. That being said, we can implement an even more
efficient reverberation algorithm by taking advantage of the modal
architecture.

Most of the modes of the carillon bell are orthogonal to most of
the modes of the reverb. If we assume that the majority of the en-
ergy of each bell mode only drives the reverb modes that are close
in frequency, we find an efficient way to implement the reverbera-

(a) Synthesized bell.

(b) Synthesized bell with belfry convolution reverb.

(c) Synthesized bell with efficient modal reverb.

Figure 8: Comparison of a synthesized bell without reverb (8a),
with convolution reverb (8b), and with an efficient modified modal
reverb (8c).
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tion. Instead of processing each mode of the bell through the full
complement of reverberation modes, we can pass each bell mode
through the reverberation mode nearest in frequency. Furthermore,
we fold the reverberation model into the bell model by replacing
the decaying exponential amplitude envelopes of the bell modes
and reverberation modes by the convolution of the envelopes. Now
(1) can be replaced by

g(t) =

M∑
m=1

αmβme
jωmt

τmζm
(
e−t/τm − e−t/ζm

)
τm − ζm

, (9)

where βm is the amplitude and ζm the decay rate of the belfry
reverberation nearest the mth mode where the frequency term is
shared for the bell and reverb. Figure 8 shows a synthesized bell
without reverb and the same bell resynthesized with the belfry re-
verberation implemented with convolution reverberation and with
the efficient scheme shown in (9).

4. RESULTS AND DISCUSSION

Sound examples of the original measurements and resynthesized
bells with and without reverb can be found at https://ccrma.
stanford.edu/~kermit/website/morebells.html.
The modal bell driven with synthesized impacts to emulate differ-
ent loudness levels is shown in Fig. 9. As the impact force on the
bell increases, higher modes become more perceptually prominent
and ring longer. There is also more energy imparted into all modes,
as is intuitive and clear from the figure. A comparison of a mea-
sured and modeled bell strike can be seen in Fig. 10. Note that the
resynthesized bell has significantly less noise than the recording
but they otherwise sound similar.

The clapper interaction model is simple and controlled by one
parameter, providing a reasonable approximation of the spectral
variation one would expect when playing a carillon at varying dy-
namic ranges. However, the model is an approximation based on
measurements and not derived analytically from the physics gov-
erning contact dynamics of the interaction. This leads to the high
frequency nulls not appearing at the exact location of the measured
impulses. A more accurate model based on the physics would be
a large improvement, but it must be easily parameterizable and re-
quire low computation to be useful in a performance context.

The efficient reverberation algorithm presented in §3.6 does
not sound exactly the same as the convolution reverb. This is due
to the fact that some energy spreads to modes at other frequencies.
One solution to this issue would be to compute a small subset of
the reverberation modes for each bell mode. At the expense of a
little more computation, this will more accurately implement the
reverberation. Another possibility would be to implement a hybrid
reverberation algorithm where the efficient modal implementation
is used in combination with a short FIR filter containing the a win-
dowed version of the few milliseconds of the belfry reverberation
with the shared mode frequencies removed. This would implement
the mode coupling while remaining computationally efficient.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an accurate modal model of a car-
illon bell capable of being driven by different impact functions
which have been derived from physical measurements of the clap-
per striking the bell. Artificial high frequency modes have been

Figure 9: Synthesized bell at different dynamic levels: ff (top), mf
(middle), and p (bottom).

Figure 10: Measured bell (top) and modeled bell (bottom).

generated using data extrapolation for more accurate reconstruc-
tion of the bell transient. We also measured the belfry impulse
responses and proposed an efficient implementation of the belfry
reverberation with a modal architecture. This model is more accu-
rate than previous attempts, can be run real-time, and takes musical
dynamics into consideration. We hope that this added flexibility in
modeling bells will aid composers to conceive pieces with novel
and interesting uses of the carillon bell aided with live electronics.

A method for modeling bells has been presented, but has only
been tested on one bell. Future work may include further valida-
tion on multiple bells. Of particular interest is testing how the clap-
per interaction model will translate to smaller bells. We attempted
to measure a smaller bell as well, but the accelerometer clipped
due the higher acceleration of the less massive clapper. We hope
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to continue working on carillon models to increase their accuracy
and expand the flexibility for composers.
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