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ABSTRACT

In this paper we present a new method for the pseudo black-box
modelling of general continuous-time state-space systems using
a discrete-time state-space system with an embedded deep neural
network. Examples are given of how this method can be applied
to a number of common nonlinear electronic circuits used in mu-
sic technology, namely two kinds of diode-based guitar distortion
circuits and the lowpass filter of the Korg MS-20 synthesizer.

1. INTRODUCTION

Virtual analog (VA) modelling is a well-established and active field
of research within musical signal processing that focuses on the
digital emulation of electrical or electro-mechanical systems used
in music production. Previous VA research has studied a wide
variety of music systems, such as analog filters and oscillators like
those used in subtractive synthesis [[1H5]], guitar effects pedals [6-
8], and guitar amplifiers [9], to name but a few examples. VA
modelling can generally be separated into two broad categories,
’white-box” modelling and *black-box’ modelling.

White-box modelling, so called because it requires full knowl-
edge of the structure of the device under study (e.g. via circuit
schematics), focuses on deriving the underlying differential equa-
tions governing a system and then discretizing them to generate
a numerical solution. For simple circuits this process can be per-
formed manually, which typically allows for a tailored solution to
the problem [[10H12]. However, for more complicated systems this
approach can quickly become unwieldy and the use of an auto-
mated general-purpose framework is generally preferred. Exam-
ples of these frameworks include state-space models [13}/14], the
wave digital filter (WDF) formalism [15/16]], and port-Hamiltonian
systems [[17].

Black-box techniques, on the other hand, focus on measuring
the system which is being modelled, and then using these mea-
surements to provide parameters or coefficients to a standard mod-
elling structure. Prominent forms of black-box modelling include
Volterra series [18]], dynamic convolution [19,20] and Wiener-
Hammerstein models [21,[22]]. Some work has focused on auto-
matically tuning a hand-designed model system for a specific class
of systems, e.g. a guitar amplifier, using measurements from a spe-
cific example of such a system [23}24]]. This kind of approach is
commonly named ’grey-box’ as it requires some insight into the
construction of the system.

Recent applications of Machine Learning (ML), specifically

Convolutional Neural Networks (CNNs), to the topic of VA mod-
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elling [25] are promising but computationally expensive and lim-
ited to systems with no autonomous or higher-order nonlinear be-
haviour. Other recent work has examined the modelling of nonlin-
ear time-series data by using a compound neural network structure
including an autoencoder to estimate the internal state of the pro-
cess and then model the evolution within this inferred space [26].
Both of these approaches do not consider measurements inside the
system, and work with only input/output data. They are broadly
therefore in the black-box category.

In this paper we present a new structure consisting of a deep
neural network, embedded within a discrete-time state-space sys-
tem. We call this structure a State Trajectory Network (STN). We
show how this structure can be trained to approximate a number of
the common circuits of music electronics using not just input and
output measurements, but also measurements of signals within the
circuits.

This paper is structured as follows. In Sec.[2] we describe the
principles behind the method. In Sec. [3|we describe the proposed
Artificial Neural Network (ANN) structure, and discuss both how
it can be trained to fit a system, and how it can be applied to process
signals. In Sec.[d we apply the technique to a number of circuits
and discuss the results. Sec[5gives concluding remarks.

2. METHOD

The state-space (also known as phase-space) approach is a pow-
erful mathematical formalism that can describe any system which
can be characterised by a system of ODEs [27]. In continuous-
time, it can be written as:

x(t) = f(u(t),x(t)) (1
y(t) = g(u(t), x(t)) @)

where u is the vector of inputs to the system, y is the vector of
outputs and x are the ’states’ of the system. This can also be writ-
ten in a single equation form, by concatenating the states with the

input or output:
x(t) u(t)
MONES (x(t)) ' ®

The function f, therefore completely describes the behaviour of
the system. Note that in cases where the state of a system is di-
rectly taken as the output, there is no need for any y variables.
This is quite common in the types of systems we will be consider-
ing. The discrete-time analogue (given constant time-steps, where
n = 7t with 7 being the sampling interval) is given by:

Xn+1 _ fd <Un> (4)

yYn Xn
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which allows the behaviour of the system to be calculated itera-
tively based on its inputs and previous states.

Much of the literature on VA modelling is concerned with de-
riving a set of equations in the form described by (3) which define
the continuous time system of a particular circuit, and then using
various methods to discretize it into the corresponding discrete-
time state-space system to allow replication of its behaviour in a
digital device like a computer. The discretization problem there-
fore becomes essentially the problem of transforming the function
f into the function f,.

2.1. Approximating f,

If we have access to the system being modelled, we generally can
also access the input and output signals u(t) and y(¢). In many
practical situations, e.g. when modelling an electrical circuit, we
will also have access to the signals x(t) corresponding to the states
of the system. If we feed the system with test signals u(¢), and
sample the state and output signals x(¢) and y(t), respectively,
we now have a large set of data-points describing the input and
output relationship of the function f4. If we want to replicate the
behaviour of the system for arbitrary input, we can use this data to
produce a new function fd that approximates fq to an appropriate
degree of accuracy.

This is essentially a regression task, and could be tackled via
any number of standard techniques. However, it is well suited to
the application of an artificial neural network (ANN) which are
known to be universal approximators, i.e. they are capable of ap-
proximating any continuous function of NV real variables arbitrar-
ily well [28}/29]. The system can then be simulated iteratively as
usual, but using the approximated function fd instead of an fy de-
rived analytically through discretization. The system can then be

written as
Xn+1 ;[ Un
= fq . 5
o <x”) s)

The choice of what quantities to take as the states of the sys-
tem is not as strict as it might first appear. Whilst the real states of
the system are the quantities that store energy, and hence informa-
tion (e.g. capacitors), other quantities in the system will be related
to those states by a mapping (linear in the best case, but likely
nonlinear). This means that as long as we have sufficient mea-
sured quantities compared to the number of states of the system,
we should be able to learn its dynamics. The formal upper bound
on the number of independent measurements needed is given by
the Whitney embedding theorem as 2m + 1, where m is the num-
ber of states [30]. Additionally Taken’s theorem [31]] allows us
to replace some (or all) of these measurements with time-delayed
versions of another measurement. In practice, the dynamics in this
transformed state-space may be more complicated, and hence it
is preferable to use measurements as close as possible to the real
states of the system.

3. NEURAL NETWORK ARCHITECTURE

The formulation of the problem in state-space terms is advanta-
geous, as it means that the function f; we need to approximate
is purely a static, i.e. memoryless, mapping. Consequently, net-
work structures with embedded memory, such as recurrent neu-
ral networks (RNNs) [32], in particular LSTM networks [33]] or
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Figure 1: Proposed network structure, as it appears during training

echo state networks [34], which are standard candidates for se-
quence modelling, are unnecessary. The proposed method is also
distinct from autoregressive modelling which predicts the next (of-
ten scalar) output based on a sequence of past observations [35],
e.g. the celebrated WaveNet architecture [36]). Instead of consider-
ing only the input-output behavior of the system, we map from the
state space into itself. Speaking in terms of dynamical systems,
this means we are learning the piece-wise flow along the trajectory
of the system [37]. The input u can be considered as a parameter
that influences this flow.

The core of the network is a Multilayer Perceptron (MLP),
i.e. series of k densely connected layers with an activation func-
tion. The number of layers and the layer width is tuned to suit
the particular system being modelled, with small systems poten-
tially needing only small networks. The activation function can be
changed to fit the system, but generally saturating nonlinearities
such as tanh produce good results. This intuitively makes sense,
as the type of systems we are examining - electronic circuits, gen-
erally contain nonlinearities of the saturating type. Simpler activa-
tions such as Rectified Linear Units (ReLU) can be used, with the
caveat that the size of the network will then generally need to be
larger.

The states x,, and their values at the new time step X,1 are
likely to be closely related. We therefore structure this part of
the network in a residual fashion using a skip-layer connection.
Skip-layer connections have been successfully applied in different
domains [36}/38]]. The implication of this is that the network is
learning a residual of the state signals compared to their previous
value, rather than the new values directly. This consistently im-
proved training speed and accuracy in the case of the considered
systems.

The proposed network structure is shown in Fig. [I] As the
network is able to iteratively move along the trajectories of the
learned state-space, we call this structure a State Trajectory Net-
work (STN).

3.1. Training

In initial experiments with the structure, a Mean Squared Error
(MSE) loss function was used for training:

_ l n - A' 5
MSE—HZ(YZ Y;)?, (6)

i=1
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where Y and Y are respectively the desired output and the actual
output of the neural network |’} and n is the size of the training
batch.

Using this loss function, the network structure showed some
difficulty with training accurately. Investigation showed that the
cause of this difficulty was large variance in the state residuals
needed to fit the training data. This meant that MSE was priori-
tising the accuracy of the large residuals, and often leaving the
smaller residuals completely incorrect. To combat this, a normal-
ized version of MSE was used for the initial 10 epochs of the train-
ing:

V)2
MSEnorm — l Z u (7)

i=1 H

This seemed to provide a better foundation for further training us-
ing MSE, resulting in better overall accuracy. The Nesterov Adam
(Nadam) optimizer was used, with learning rate and other meta-
parameters set as recommended by Dozat [39]. Training and ver-
ification of the models was conducted using Keras [40] with Ten-
sorFlow [41] as a backend.

3.2. Application to sound synthesis and processing

Fig. 2] shows the structure of the network when used for process-
ing or generating audio signals. The feedback connection repre-
senting the iterative calculation of the modelled system behaviour
is shown. Also shown is an additional gain element h, used to
scale the state residual calculated by the network. This element
highlights another advantage of skip-level structure. Having di-
rect access to the residuals is useful, as the residuals are entirely
responsible for the time-evolution of the modelled system. Mul-
tiplying the residuals by an arbitrary gain allows us to effectively
alter the time-scale of the simulated system. With some caveats,
this allows the model to be run at sampling periods other than the
one used to train the model. This gain can be defined as:

Tp F; t .
he= = ®)
where 7, 7; are the time-steps used for processing and for training
respectively, and equivalently F}, and F) are the sampling frequen-
cies used for processing and for training.

Care must be taken when using this facility to run the system
at a different sampling frequency than the one which it was trained
for. Whilst the time-scale will be correctly altered, this does not
make the system equivalent to one trained at the new sampling fre-
quency. Running the system at a lower sampling frequency than
used for the training raises the possibility of aliasing being intro-
duced by elements of the learned behaviour that exceed the new
Nyquist limit. Running the system at a higher sampling rate than
it was trained at poses less risks, although the modelled system
will potentially lack high-frequency behaviours that might have
been present if the system had been trained at a higher sampling
frequency. Oversampling compared to audio-rate is recommended
in most situations, as the system does not utilize any specific anti-
aliasing and hence will produce aliasing in the same situations as
a normal nonlinear state-space system.

!Note that the neural network output Y should not to be confused with
y, the output of the system being modelled.

Xn41 f--=

Figure 2: Proposed network structure in form used for processing
signals.

4. MODELLING MEASURED SYSTEMS

In order to test the performance of the proposed method, a number
of test circuits were built. A measurement signal was applied to the
circuit, and the state and output signals recorded using an analog-
to-digital converter (ADC). Unity gain op-amp buffers were used
to isolate the measurement points from the load of the ADC. In
some situations, node voltages were recorded instead of differen-
tial voltages across capacitors (i.e. the required states). In these
cases, the differential voltage was recovered in post-processing by
linear combination with other recorded node voltages.

For each circuit several models were trained, and then two se-
lected for presentation here - one smaller and one larger network.
All of the data referenced below is available on the accompanying
websittﬂ including verification signals and model outputs.

4.1. Measurement Signal Design

Theoretically, any signal can be used to generate the measurements
used to train the network. In practice, some important considera-
tions have to be made. In contrast to other black-box modelling
techniques, measurements with varying frequency input, e.g. a
sine-sweep, are not strictly necessary to capture the behaviour of
the system under consideration. This is because behaviour at all
time-scales is captured in the learnt state trajectories. However,
the chosen measurement signal does have a number of important
impacts on the process.

The measurement signal defines the subset of the state space
which will be sampled. In complicated systems, particular inputs
could potentially be needed in order to access particular parts of
the state space. A simple example of this could be a resonant fil-
ter circuit. In this case, an input signal at the resonant frequency
would excite the circuit much more strongly than signals at other
frequencies, potentially revealing nonlinear behaviours that only
apply at high state magnitudes.

Care must also be taken to restrict the upper frequency of the
measurement signal to significantly below the Nyquist frequency
at the sampling rate used for the measurements. This is because the
process of sampling the state signals and outputs is bandlimited.
Components that exceed the Nyquist will be removed during the
sampling process. Hence, harmonics produced in the real system
may be lost. This means that state signals recorded in response
to too high of a frequency will no longer accurately reflect the true
state-space trajectory. This leads to measurements which appear to
violate the constraint that each point in space space can correspond

Zhttps://github.com/julian-parker/DAFX-NLML
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to only one trajectory (effectively there are now further states in
the bandlimiting filter of the sampling apparatus, which are not
reflected in our system model).

In practice, the selection of a measurement signal is a balance
between these two constraints, and can be tailored to the system
under consideration. Typical input signals for the system can work
well (e.g. guitar playing if modelling a distortion pedal), as can
carefully specified sweeps. In this paper we used 10-second loga-
rithmic sine-sweeps combined with low-level (-20dB) white noise.
The noise was bandlimited to 22 kHz. This combined signal was
then increased in amplitude linearly from zero to unity over half
of the length of the measurement signal, in order to ensure the
capture of sufficient data-points near the origin of the state-space.
The minimum frequency of the sweep was taken as 20 Hz, and the
maximum frequency was chosen to be 10 kHz in order to cover
a sufficient amount of the state-space without corrupting the data
with fictional trajectories. A spectrogram of the measurement sig-
nal is shown in Fig. El A sampling rate of 192 kHz was used for
measurement and training.

In all the examples presented here, training was done over 300
epochs, with a batch size of 256. Due to the small size of the
networks under consideration, a GPU is not needed for the training
process (and is in-fact slower than training on a CPU with SIMD
functionality).

10 4.
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Figure 3: Spectrogram of sine-sweep and noise signal used to gen-
erate training data from the systems.

For time-domain verification of the results, two signals were
chosen - a 500 Hz sawtooth wave, and a short passage of elec-
tric guitar. Short extracts from the sawtooth and guitar signals are
shown in Fig.[d] The guitar signal contains a variety of signal lev-
els, and the sawtooth was chosen to have a peak voltage of 2V,
S0 as to stress the nonlinear behaviours in the circuits. Verification
was primarily conducted in the time-domain, but a 1 kHz sinusoid
with a a peak voltage of 2V was also used to check frequency-
domain behaviour of the models.

------- sawtooth

—— guitar

Voltage/V

Figure 4: Extracts of the signals used for verification of the mod-
elled circuits
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Figure 5: Schematic for the first-order diode clipper.

4.2. First-order diode clipper

The single-capacitor diode clipper, shown in Fig.[3} is a common
object of examination in the VA literature, starting from the work
of Yeh [[10]. For small input signals, (i.e. peak voltages below ap-
proximately 0.6 V) the current flowing through the diodes is close
to zero and the circuit reduces to a simple RC lowpass filter. For
larger signal values the diodes will cause the output to saturate and
the circuit becomes a nonlinear lowpass filter, with its instanta-
neous cutoff frequency rising as the circuit is driven harder.

The circuit looks simple, but has proven somewhat challeng-
ing for white-box techniques due to its inherent stiffness. A con-
ventional discretization of this circuit will generally need to em-
ploy an implicit numerical scheme, with iterations necessary at
each time-step in order to find the correct state value [42]. In this
circuit, the output y and the single state x; are the same quantity,
i.e. the voltage across the single capacitor.

4.2.1. Training

Selecting training data is simple in this case. There is only one
capacitor and hence state, and the value of this state is the output
of the system. Fig. [f] shows a visualization of the training data.
We can clearly see the saturating behaviour of the system as the
prominent dark s-shape. Whilst the shape of the space may seem
relatively simple, smaller networks had trouble fitting the curve
shape exactly - even when using saturating activation functions.

o
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Mag. of residual/V

0.25

T T T T T 0.00
—10 =5 0 5 10
u/V

Figure 6: Visualization of a subset of the state-space data used to
train diode clipper model.

4.2.2. Results

The MSE for the chosen models, calculated over the entirety of the
verification signals is:
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Model struct. | Sawtooth Guitar
2x128 ReLU | 0.237mV | 0.276 mV
2x8 tanh | 0.079mV | 0.135mV

Fig.[7]shows extracts from the verifications signals, processed with
the chosen models and with the real circuit. The match appears to
be good on both the sawtooth and guitar signal. Surprisingly, the
larger ReLU based model shows lower accuracy. The frequency
domain verification also shows a very close match to the real out-
put, with odd and even harmonic levels matched very closely apart
from a small amount of error in high-frequency even harmonics.
The model output is indistinguishable from the output of the real
circuit in casual listening.
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Figure 7: Results of processing the verification signals with two
different trained diode-clipper models, compared to the output
measured from the real circuit.

4.3. Second-order diode clipper (Boss DS-1)

|047uF

u(t) 10nF
2. ZkQ
zl(t I 12(t

Figure 8: Schematic for the second-order diode clipper. Figure
adapted from [43]].

The next circuit considered in this study is the second-order
diode clipper shown in Fig. 8] This circuit adds a capacitor be-
tween the input and the diodes, and is a simplified version of the
core distortion section in the well-known Boss DS-1 pedal [43]. In
this study we have omitted the preceding op-amp gain stage and

the subsequent tone control. The behaviour of this circuit is simi-
lar to that of the first-order clipper, but more complex. The series
capacitor introduces additional highpass filtering which in turn can
cause asymmetry in the overall clipping behaviour [44].

This circuit exhibits stiffness properties similar to those of the
first-order clipper when discretized using standard numerical tech-
niques. The voltages across both capacitors were chosen as the
states of the circuits. The first state, x1, was retrieved by measur-
ing the node between the input resistor and series capacitor, and
computing its difference with x2, which was measured directly at
the output node y.

4.3.1. Training

Again, it is valuable to visualize the measured training data to gain
insight into the system. This can be seen in Fig. [J] where we see
a projection of the data onto the input u vs x2 plane. We can still
see the characteristic s-shape of the single diode-clipper. If we
view the data in 3d, with z1 providing the third dimension, we see
that the s-shape is actually a manifold rotated around the x> axis.
Training proceeded as in the single-capacitor case.
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Figure 9: Visualization of state-space data used to train DS-1
model.

4.3.2. Results

The MSE for the models, calculated over the entirety of the verifi-
cation signals is:

Model struct. Sawtooth Guitar
2x128 ReLU | 0.082mV | 0.191mV
3x4 tanh | 0.232mV | 2.67mV

Again, we can see extracts from the verification signals in
Fig.[T0] The match is again very good, with a small advantage
in accuracy from the larger ReLU based model. The frequency
domain results show a very close match for odd harmonics, with
even harmonics being a worse fit. The ReLU model in particu-
lar seems to produce stronger even harmonics than needed. The
model output is again indistinguishable from the output of the real
circuit in casual listening.

4.4. Sallen-Key Filter (Korg MS-20 REV2)

The last system examined is an adapted version of the lowpass
filter circuit from the Korg MS-20, a classic monophonic analog
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Figure 10: Results of processing the verification signals with two
different trained DS-1 models, compared to the output measured
from the real circuit.

synthesiser released by Korg in 1978. The particular version exam-
ined in this study corresponds to the second revision of the circuit,
commonly known as ‘REV2‘. This filter is a Sallen-Key topol-
ogy, and utilizes operational transconductance amplifiers (OTAs)
as current-controlled gain elements used to set the cutoff of the fil-
ter. An op-amp-based non-inverting amplifier with clipping diodes
is used in the feedback path as a resonance control [45]. These
diodes are responsible for the characteristic distorted sound of the
filter. The schematic for this circuit is shown in Fig.[T3] For clar-
ity, the cutoff control section has been omitted and ideal buffers
have been used to represent the transistor buffers contained within
the LM 13700 OTAs [46].

This circuit was chosen for modelling as it exhibits strongly
nonlinear self-oscillatory behaviour. This behaviour would not be
possible to model using existing black-box techniques. For the
purpose of this work, the parametric elements were set to fixed val-
ues. This meant feeding a constant control current /.4 to the OTAs
to fix the cutoff, and fixing the resonance potentiometer at a partic-
ular gain. As in the DS-1 circuit, 1 was computed by measuring
the voltages at the outputs of the first OTA (IC 1) and the feedback
amplifier, and computing their difference in post-processing. The
second state of the circuit x2 is simply the voltage difference be-
tween the output of the second OTA (IC 2) and ground. Since this
node is connected to y by a unit-gain buffer, it can be measured
directly at the output filter. For this circuit, the peak amplitude of
the input sweep as seen by the circuit was adjusted to be 1.1 V.

4.4.1. Training

The MS-20 filter exhibits much more complex behaviour than the
simpler clipper circuits. A plot of the training data is shown in
Fig. [TT] which again shows a projection of the data onto the u

vs x2 plane. The 3-dimensional structure of the state space is
already quite visible in this plot. Two main components can be
seen, a saturating s-shaped manifold similar to that seen in the
clipper circuits, along with a closed orbit corresponding to the self-
oscillating behaviour.

Despite the more complex seeming behaviour of the circuit,
training of the model networks proceeded more quickly than with
the clipper circuits.
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Figure 11: Visualization of state-space data used to train MS-20
filter model.

4.4.2. Results

The MSE for the chosen models, calculated over the entirety of the
verification signals is given by:

Model struct. | Sawtooth Guitar
2x32RelLlU | 2.01mV | 684mV
3x4 tanh | 1.29mV | 794mV

The error values are somewhat higher than seen in the case of the
clipper circuits, especially in the case of the guitar verification sig-
nal. As can be seen in Fig. @ the behaviour of the circuit seems
to be replicated rather well by the models with self-oscillation oc-
curring at the correct frequency and being damped with increased
input level as expected. The major difference between the mea-
sured and modelled results in the case of the guitar signal appears
to be the phase of the self-oscillation. This can be explained by the
fact that even very small errors in the learned state-space trajectory
will accumulate to produce a phase difference when the dynamics
are dominated by free self-oscillation. The phase of the oscillation
isn’t important perceptually in this case, so we conclude that the
poor MSE numbers do not imply a poor model. Listening to the
verification signals processed through the models confirms this,
as they appear indistinguishable from the verification signals pro-
cessed by the real circuit. The frequency-domain results also show
a very close correspondence between the models and the real cir-
cuit, with small differences seen only in some higher harmonics.

4.5. Computational Complexity

We computed the number of floating point operations by counting
all multiplications, additions, and nonlinear function evaluations
in the network. For the activations functions we assume three op-
erations for ReLUs (abs, add, mul) and an average of 30 operations
for tanh. Assuming that the models are run at the same sampling

DAFX-6



Proceedings of the 22" International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2—6, 2019

\ i ! | '
| I\ \ it |
Hi n i i\ i
S I 1 H I I
Z R I \ i\ I
“\ 1, S 1
% [N N [N 1] i
& 1 \ 1N 1 \ 1 I
= | N i \ | N 1 \ |
SOO0H b ML T MAL L ML b MaL \i
GO N T T O A WO T
N N N N "V\\I Y
1 N N Y Y
>
S~
i)
o0
LU
)
=

'''''' tanh 3x4
---- relu 2x32

measured

Magnitude/dBV
|
= |
(=3 ot
(=] (=]
n :
—_

102 109 ‘ 101
Frequency/Hz

Figure 12: Results of processing the verification signals with two
different MS20 filter models, compared to the output measured
from the real circuit for the same input.

frequency used for training, 192 kHz, we can then extrapolate this
into a value in floating point operations per second (FLOPS):

Model | ops/sample | GFLOPS
DS-1 2x128 ReLU 34822 6.7
Clipper 2x128 ReLU 34307 6.6
MS-20 2x32 ReLU 2620 0.50
Clipper 2x8 tanh 686 0.13
MS-20 3x4 tanh 524 0.10
DS-1 3x4 tanh 524 0.10

The values lie well within the bounds of real-time operation on a
modern computer. However, the values should only be taken as a
rough guideline for performance. The actual performance of the
algorithm will depend strongly on the processor architecture used.

5. CONCLUSIONS

In this work we introduced a new technique for modelling the
behaviour of nonlinear state-space systems, using a discrete-time
state-space system with an embedded neural network. The net-
work learns trajectories in state-space from measurements in a
residual manner, and can be used to reproduce these trajectories
in response to arbitrary input. We call the network structure a
State Trajectory Network (STN). We showed how this structure
can be used to accurately model the behaviour of a number of non-
linear circuits, using measurements from within the circuit to train
the model. We also showed that the produced models are of suffi-
ciently low computational complexity to be run for real-time audio
usage.

Future work will concentrate on extending the STN to work
with larger systems, and those with parametric control. We be-
lieve the STN may be an interesting structure for application to the

modelling of stateful systems outside of the virtual-analog domain,
and also intend to investigate this avenue.
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