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ABSTRACT

Dispersive delay and comb filters, implemented as a parallel sum
of high-Q mode filters tuned to provide a desired frequency-de-
pendent delay characteristic, have advantages over dispersive fil-
ters that are implemented using cascade or frequency-domain ar-
chitectures. Here we present techniques for designing the modal
filter parameters for music and audio applications. Through exam-
ples, we show that this parallel structure is conducive to interac-
tive and time-varying modifications, and we introduce extensions
to the basic model.

1. INTRODUCTION

Dispersion filters, in which the various frequency components of
an input signal are delayed by different amounts, find widespread
use in audio processing. Often they are used to emulate the disper-
sive characteristic of physical systems. For example, [1] proposes
a method for designing high-order allpass filters which were ap-
plied in [2] to model spring reverberators where low frequencies
propagate faster than high frequencies and in [3] to model the dis-
persion of stiff strings where the high frequencies travel faster.

Other times, dispersive filters are designed to compensate for
unwanted frequency-dependent delay. For example, [4–6] propose
methods for designing allpass filters to equalize the group delay
of elliptic filters. Recently, [7–9] and others have shown applica-
tions of dispersive filters for delay compensation between multiple
drivers in a loudspeaker.

Rather than compensating for unwanted delay, some situa-
tions call for dispersive systems that add frequency-dependent de-
lay with specific characteristics. For example, [10, 11] propose
methods for decorrelating audio signals using high-order allpass
sytems. Additionally, [12,13] have proposed using high-order dis-
persive systems for abstract sound synthesis and processing.

In many applications, the dispersion filters are of very high
order, having dozens to hundreds of poles. They are often im-
plemented as high-order difference equations or biquad cascades.
In the case of dispersion filters having thousands of poles, DFT-
based convolution with the associated impulse response has been
used [10]. A drawback to both high-order difference equations
and biquad cascades is that they are prone to numerical difficul-
ties. While biquad cascades are robust compared with high-order
difference equation implementations, numerical errors accumulate
through the cascade. DFT-based convolution techniques can pro-
duce high-order systems with large amount of dispersive delay,
however they add latency.
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Another drawback to both high-order difference equations and
biquad cascades is that it is difficult to interactively change the de-
sired group delay, τ(ω). First, designing new filter coefficients to
produce the new desired dispersive delay may be computationally
costly. Second, substituting the new coefficients in the IIR filters
is difficult, as the substitution interacts with the filter state, likely
producing unwanted artifacts while the change ripples through the
system. Third, certain changes, such as increasing or decreasing
the number of coils in a simulated spring reverberator or modifying
the length of a modeled string, change the number of poles needed
to implement the desired dispersion—something that is difficult
to do without artifacts. Frequency-domain implementations also
present real-time interaction difficulties. Since frequency-domain
methods process data in blocks, they produce computational la-
tency precluding sample-by-sample processing and real-time in-
teraction.

We recently proposed a modal approach for designing and im-
plementing dispersive systems [14] that uses the modal architec-
ture described in [15]. Two modal dispersion filters were intro-
duced: a modal comb filter with multiple dispersive arrivals, and
a modal delay filter with a single dispersive arrival. As will be
shown in this work, the parallel structure is conducive to interac-
tive modification of the dispersive characteristics and avoiding nu-
merical issues associated with other methods. This paper will fo-
cus on time-varying dispersive audio effects and other extensions
for modal dispersive filters.

2. DISPERSION FILTER DESIGN

We use a modal architecture, as shown in Fig. 1b to implement
dispersive delay and comb filters. Its system impulse response,
denoted by h(t), is the sum of M parallel resonant filters with
mode responses hm(t), m = 1, 2, . . . ,M ,

h(t) =

M∑
m=1

hm(t) . (1)

The resonant mode responses hm(t) are complex exponentials,
each characterized by a mode frequency ωm, mode damping αm,
and complex mode amplitude γm,

hm(t) = γme
(jωm−αm)t . (2)

The system output y(t) in response to an input x(t) is then
seen to be the sum of mode outputs

y(t) =

M∑
m=1

ym(t), ym(t) = hm(t) ∗ x(t) , (3)

where the mth mode output ym(t) is the mth mode response con-
volved with the input.
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Figure 1: Modal filter architecture consisting of a parallel combi-
nation of resonant mode filters.

In the remainder of this section, we will show how to set the
modal parameters to implement a desired dispersive filter. The
desired delay τ(ω) is used to specify the number of modes M
and the mode frequencies ωm. The desired decay time T60(ω)
and desired magnitude equalization q(ω) are used to fix the mode
dampings αm and mode amplitudes γm.

We begin by developing the formulation for dispersive comb
and delay filters through Fourier theory.

2.1. Derivahrough Fourier Transform

Consider the M -point Inverse Discrete Fourier Transform

x(n) =
1

M

M/2−1∑
m=−M/2

X(m)e
j2πmn
M , (4)

where X(m) represents the coefficients of M basis frequencies,
indexed by m, and where n is the discrete time index. In the case
where the coefficients X(m) are independent of frequency (e.g.,
X(m) = M ),

x(t) =

M/2−1∑
m=−M/2

e
j2πmfs
M

n
fs =

M/2−1∑
m=−M/2

ejωmt . (5)

The time domain signal is a band-limited, sampled, periodic sinc
function with peaks every M samples as seen in Fig. 2a. We have
introduced a sampling rate fs which allows us to write angular
frequency in radians per second, ωm = j2πmfs/M , and time in
seconds, t = n/fs.

If we double M while maintaining the same sampling rate,
meaning we double the frequency density of sinusoidal basis func-
tions, the sinc has twice the period in the time domain as seen in
Fig. 2b. Following this logic, the delay at each frequency is pro-
portional to the frequency density of sinusoidal basis functions.
Instead of a pure delay, a dispersive system can be formed by set-
ting the frequencies of the sinusoidal bases according to the desired
frequency-dependent delay τ(ω).

To further unite this derivation of dispersive delay filters with
our modal implementation, we introduce two more concepts. First,
we introduce a damping factor α that causes the signal to subside
over time,

x(t) =

 M/2−1∑
m=−M/2

ejωmt

 e−αt , (6)
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Figure 2: An upsampled sinc function showing the periodicity of
the DFT (a). When the length of the DFT is doubled, the delay
doubles (b). (c) shows the inclusion of the damping filter and (d)
shows the effect of the shift theorem.

as seen in Fig. 2c. This damping can also be frequency-dependent
αm and factored inside the sum,

x(t) =

M/2−1∑
m=−M/2

e(jωm−αm)t . (7)

Additionally, we can use the shift theorem,

x(t−∆)←→ e−jωm∆X(m) , (8)

to modify the time of the initial delay arrival. For example, we can
achieve an odd integer set of arrivals by introducing a phase term
of ejπm = (−1)m into (5), as seen in Fig. 2d.

2.2. Dispersive Comb Filter Design

Following [14], the number of modes M is the number of samples
of delay, averaged across the band from DC to the Nyquist limit,
fs/2,

M =

N∑
n=0

τnfs
2N

, (9)

where τn, n = 0, 1, . . . , N , represents the desired delay τ(ω)
evaluated at the N discrete frequencies τ(2πnfs/2), and where
M can be rounded or otherwise adjusted to be an integer.

The mode frequencies ωm are chosen to be those frequencies
at which the cumulative delay ϕ(ωm) hits integer multiples of 2π,

ϕ(ωm) =

∫ ωm

0

τ(ν)dν = 2πm . (10)

The mode dampings αm may be set according to a desired
60 dB decay time as a function of frequency T60(ω),

αm =
ln(0.001)

T60(ωm)
. (11)

Alternatively, αm may be set to have a 60 dB decay after a given
number of arrivals, N60(ω). We then have

αm =
ln(0.001)

(2N60(ωm)− 1) · τ(ωm)
, (12)

DAFX-2



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

where the factor 2N60(ωm) − 1 is used assuming arrivals at odd
integer multiples of the designed arrival time τ(ωm).

Since the energy in a given mode is proportional to its decay
time, we set the mode gains according to

γm =
ejθmαm
τ(ωm)

· q(ωm) , θ ∈ [0, 2π) , (13)

where θ controls the initial time delay according to the shift the-
orem (8), the denominator τ(ω) performs an allpass equalization,
and q(ω) provides the desired frequency equalization. Unless oth-
erwise stated, we use θ = π for odd integer multiples of the de-
signed delay in this paper.

An example dispersive comb filter designed to have regions
consisting of both smooth and staircase dispersion is shown in
Fig. 3. The first arrival of the desired frequency-dependent spec-
tral delay is shown as a dotted line overlayed on the spectrogram.
Note that the impulse response’s first arrival closely tracks the tar-
get time delay, and the subsequent arrivals are seen to have the
anticipated odd integer multiples of the designed dispersive time
delay. Fig. 4 shows the same dispersive characteristic as Fig. 3,
but designed to decay 60 dB after eight arrivals.

2.3. Dispersive Delay Filter Design

There are two approaches for converting a dispersive comb filter
into a dispersive delay filter that has only one arrival. First, the
mode decay rates could be set to achieve a significant amount of
attenuation between arrivals. For a system with odd integer multi-
ples of the desired delay, we design the dampings to produce λ dB
of decay between successive arrivals,

αm =
ln(10−λ/20)

2τ(ωm)
, (14)

and scale the mode gains by λ/2 dB. This means the first disper-
sive arrival will have a roughly unit level and subsequent arrivals
will be attenuated by at least λ dB. For audio applications, λ in the
range 60–80 dB would render the unwanted subsequent arrivals
inaudible. For instance, an attenuation of λ = 60 dB was used to
design the dispersive delay shown in Fig. 5.

Since the λ/2 dB gain could create numerical difficulties, an
alternative approach is to use a truncated IIR (TIIR) filter [16] to
eliminate the unwanted subsequent echos as described in [14].

3. EXTENSIONS

In addition to the dispersive delay and comb filters shown above,
the parameters exposed by the modal framework provide a power-
ful resource additional modification. Throughout this section, we
will show the powerful effects of some simple modifications to the
modal parameters and show some time-varying examples.1

When implementing time-varying filters it is important that
the filters remain stable and avoid irritating artifacts that may arise
from changing parameters quickly. We use Max Mathews’s pha-
sor filter [17] to implement these modal dispersion filters as seen
in (3). This filter uses the property that when complex numbers
are multiplied together, the magnitude is the product of their mag-
nitudes and the phases sum [18]. With this implementation and

1Audio examples associated with the figures in the paper can be
found at https://ccrma.stanford.edu/~kermit/website/
ddf.html

Figure 3: Impulse response (top) and spectrogram (bottom) of an
example dispersive comb filter. The desired dispersive delay τ(ω)
is shown as a dotted line overlaid on the spectrogram.

Figure 4: Impulse response (top) and spectrogram (bottom) of the
dispersive comb filter from Fig. 3, set to decay 60 dB after eight
arrivals.

Figure 5: Impulse response (top) and spectrogram (bottom) of a
dispersive delay filter constructed using decay time approach and
the same designed delay as Figs. 3 and 4.
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the parallel structure, the dampings, frequencies, amplitudes, and
input level can all be functions of time without introducing tran-
sients or other artifacts when the filter state is changed since the
state of each filter does not depend on the state of the others.

3.1. Modifying the Number of Necessary Modes

The number of modes necessary to implement a dispersive filter
is equivalent to the average delay as described by (9). In certain
situations, it could be desirable to implement one of these filters
with a specific number of modes (e.g., running with limited com-
putational resources). Modifying the number of modes, however,
comes at the expense of distorting the amount of delay at each fre-
quency. A target group delay implemented with a desired number
of modes τM (ω) can be found by normalizing the old group delay
by the average delay and scaling the result by the desired number
of modes M ,

τM (ω) = M
τ(ω) + k∑N
n=0

(τn+k)fs
2N

, k > −min
t
τ(ω) , (15)

where τn, n = 0, 1, . . . , N , represents the desired delay τ(ω)
evaluated at the N discrete frequencies τ(2πnfs/2) and k rep-
resents added delay that is independent of frequency. This ad-
ditional delay controls how the M modes are distributed in fre-
quency. When k = 0, the entire group delay curve is scaled by
the amount necessary to have M samples of average delay. As
k approaches −mint τ(ω), any constant delay in τ(ω) will be
eliminated and the frequency regions with the most delay will ex-
aggerated. As k becomes large, the detail of the group delay will
be reduced until it is constant across frequency. Fig. 6 shows an
example group delay curve warped with different values of k.

3.2. Transitioning Between Delay Characteristics

The amount of delay in a local frequency neighborhood is propor-
tional to the density of modes in that neighborhood.

If we want to transition between two delay characteristics that
have the same average delay, τa(ω) and τb(ω), we can interpolate
between their mode frequencies over time. Because the mode fre-
quencies will move, causing the delay to change, we will observe
some Doppler shift during the transition. This may or may not be
desirable. An example can be seen in Fig. 7

Another scheme for transitioning between delay characteris-
tics can be accomplished by computing the output of the mode
filters of both delay trajectories simultaneously, and crossfading
the mode amplitudes. Here there will be no pitch shift, however
during the transition, both dispersive characteristics will be audi-
ble simultaneously. Fig. 8 shows an example amplitude crossfade
using the same dispersion filters and transition time as compared
to Fig. 7. Fig. 9 shows a guitar track processed by dispersive comb
filters with time-varying mode frequencies.

If the average delay is different (i.e., the number of modes
is not the same), or we want to prevent mode frequencies from
moving beyond a prescribed amount, we need a scheme for “birth
and death” of mode filters [19]. This can be accomplished by using
the mode amplitudes to fade “new” modes in and fade out “dead”
modes in combination with amplitude and/or frequency morphing.

3.3. Damping Modifications

It is trivial to lengthen or shorten the decay time associated with
each mode. The number of echos in each frequency band can be
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Figure 6: A set of group delays τ(ω) that have the same average
delay (i.e. the same number of modes) using (15) and different
values of k—black: k = 0; red: k > 0; blue: k < 0.

Figure 7: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter with time-varying
mode frequencies. Note that the dispersive characteristic changes
with the local mode density and some pitch shifting occurs.

Figure 8: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by two dispersive comb filters using ampli-
tude modifications to cross-fade between the dispersive character-
istics. Note that during the transition, both dispersive characteris-
tics are audible and visible in the spectrogram.
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Figure 9: Time domain (top) and spectrogram (bottom) of a gui-
tar track processed with dispersive comb filters with time-varying
mode frequencies.

Figure 10: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter set to have time-
varying scaling applied to the damping coefficients.

Figure 11: Time domain (top) and spectrogram (bottom) of a gui-
tar track processed by a dispersive comb filter set to have damping
coefficients that vary according to the input level of the guitar sig-
nal. The dispersion filter models a spring reverb where the reverb
lasts longer when the input signal is louder.

Figure 12: Time domain (top) and spectrogram (bottom) of a dis-
persive comb filter set to have a constant repeat rate and piecewise
linear phase shift as a function of frequency.

Figure 13: Time domain (top) and spectrogram (bottom) of a dis-
persive comb filter set to have a piecewise frequency-dependent
delay to match the second reflection of Fig. 12. Notice that the
lowest frequencies repeat on the same time interval in both fig-
ures while short initial delay time of the high frequencies causes a
shorter period between subsequent arrivals.

frequency-dependent or be allowed to vary over time. For exam-
ple, a dispersive comb filter could be designed that decays more
quickly in the high frequencies than the low frequencies. Fig. 10
shows an example dispersive filter where the damping factors are
frequency-dependent and time-varying.

Alternatively, a level tracker could be employed to modulate
the number of echos that appear in the output based on the ampli-
tude of the input signal. Fig. 11 shows a guitar track processed by
a dispersive filter that reacts to its tracked level.

3.4. Phase Modifications

At each mode frequency a pulse is observed at repeated intervals
that depend on the the desired delay τ(ω) and the phase angle θ.
We can have multiple frequency-dependent initial time offsets by
allowing the phase angle to also be a function of frequency θ(ω).
As an example, Fig. 12 shows a filter constructed to have piecewise
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constant phase on the interval [0, 2π) such that all frequencies have
the same repeat rate in time but a different initial phase. As a
comparison, Fig. 13 models the same second dispersive arrival as
frequency-dependent delay rather than with phase modifications.
As a result, the periodicity of the subsequent arrivals is frequency-
dependent.

If the phase of each mode is randomized, the result is a noisy
signal constrained in time by the decay rates. This signal is akin
to the description of late-field reverberation synthesis described
in [15]. By allowing the phase to vary with time, and smoothly
change between a coherent phase (where θ is constant) and a ran-
dom phase (where each mode output is rotated by an independent,
unit magnitude complex number), we can morph between disper-
sive delay and reverberant effects, such as seen in Fig. 14.

3.5. Echos Subsiding to Noise

Instead of a dispersive comb with clear, decaying echos, it is some-
times desirable to have a comb filter where each subsequent echo
is a little more diffuse. After some number of echos, the signal
is a noise-like wash where individual reflections are no longer de-
tectable. The idea here is to perturb the frequencies of the modes
by an amount small enough to be initially inaudible but cause the
succeeding echos to be more spread out in time. The bandwidth
of the perturbation is proportional to the number of desired audi-
ble echos. To have p distinct arrivals audible above the noise-like
wash, the mode frequencies ωm should be perturbed by noise with
standard deviation of 1/p of the local frequency difference,

ω̃m =
ωm+1 − ωm−1

2p
νm + ωm, (16)

where νm is a sample of zero-mean unit-variance noise, e.g. hav-
ing a Gaussian or triangular distribution. The small perturbations
are amplified with each subsequent arrival creating the desired ef-
fect. Fig. 15 shows an example dispersion filter, compared to
Fig. 16 where the frequencies were perturbed to cause the echos
to turn into noise after five reflections. This processing has appli-
cations for reverberation type effects.

4. CONCLUSION

Dispersive filters have music and audio applications ranging from
physical modeling of dispersive systems to abstract sound synthe-
sis. In this work, we explored extensions and applications of the
modal dispersive delay and comb filters introduced in [14].

We began by showing how the modal formulation of these dis-
persion filters can be interpreted through Fourier theory. We then
described how to set the modal parameters to achieve a desired dis-
persion characteristic based on the modal frequency density. Fol-
lowing that, we showed how the parallel structure of the modal
architecture and the numerical properties of the phasor filter make
it possible to efficiently and interactively modify the properties of
these dispersion filters. Unlike frequency-domain or cascade ar-
chitectures, it is simple to implement time-varying dispersion ef-
fects using the modal approach.

We showed a range of simple modifications for the modal pa-
rameters, and backed with examples, demonstrated an assortment
of musical uses of dispersive comb and delay filters. Even so,
there are certainly many more ways to extend this flexible struc-
ture, such as incorporating the pitch, time, and distortion process-
ing described in [20] with the approaches presented here.

Figure 14: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter set to have peri-
odic phase synchronization/desynchronization.

Figure 15: Time domain (top) and spectrogram (bottom) a disper-
sive comb filter without frequency perturbation.

Figure 16: Time domain (top) and spectrogram (bottom) a disper-
sive comb filter with frequency perturbation designed to transition
to noise after 4 arrivals.
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