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ABSTRACT

This paper presents Gamelanizer, a novel real-time audio effect in-
spired by Javanese gamelan music theory. It is composed of antici-
patory or “negative” delay and time and pitch manipulations based
on the phase vocoder. An open-source real-time C++Virtual Stu-
dio Technology (VST) implementation of the effect, made with the
JUCE framework, is available at|github.com/lukemcraig/
DAFx19-Gamelanizer, as well as audio examples and Python
implementations of vectorized and frame by frame approaches.

1. INTRODUCTION

Gamelan music is the traditional court music of Indonesia, fea-
turing an orchestra of pitched-percussion instruments. It has had
a profound influence on Western composers, most famously on
Debussy [1}/2]. Gamelanizer is a real-time audio effect plug-in
inspired by the music theory of the Javanese variety of gamelan
music.

This paper is organized as follows: Section [I.T] gives back-
ground information on gamelan music theory. Section com-
pares Gamelanizer to similar works and explains the motivation
for creating it. Section [2] details our method for achieving this ef-
fect as a real-time Virtual Studio Technology (VST). Section 3]
details our results. Section 4] discusses the considerations of our
user interface, potential applications, and future work.

1.1. Background

There is a large variety of gamelan music theory. Our work is in-
fluenced specifically by the Javanese variant because it is arguably
the most rule-based [3|]. Specifically, we are concerned with the
process known as Mipil, which translates to “to pick off one by
one” [4]]. The following is a description of the Mipil process. Be-
cause there is still debate in the ethnomusicology community con-
cerning gamelan music, we stress that this description is an over-
simplification. However, for our audio effect, this oversimplified
understanding is still useful.

The numeric notation system used for gamelan music only in-
dicates the balungan (melodic skeleton) that the saron instrument
plays. This is because the notes that the bonang barung and bo-
nang panerus instruments play can be generated, to a degree, from
this base set [5]]. In a hypothetical piece, if the first balungan notes
are those in Table[T]then the elaborating bonang barung musicians
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will know to play the notes in Table[2] However, their notes will be
played twice as fast as the saron and will occur half a beat earlier.

Table 1: The balungan, or base melody.

lsaron[3[5[2[6‘

Table 2: The first level of subdivision.

[ bonangbarung [ 3 [5[3[5]2]6[2]6]

Therefore, the fourth note that the bonang barung plays will coin-
cide with the second note that the saron plays. The eighth note of
the bonang barung will coincide with the fourth note of the saron.
The bonang panerus, which is an octave higher than the barung,
repeats this subdivision process, now playing the notes in Table 3]
twice as fast as the bonang barung and four times as fast as the
saron. The combination of these three interlocking parts is shown
in Table @

1.2. Motivation

There has been previous work related to gamelan and digital audio.
Some have focused on synthesizing the unique harmonic structure
of the instruments in a gamelan orchestra [6]. Others have tried
to infer compositional rules by using real compositions [7]]. Oth-
ers have noted the algorithmic nature of some types of gamelan
music [3]]. Various computer-aided composition tools have been
developed that apply the processes of gamelan music theory to
numbered musical notation [8H10].

There is potential to extend concepts from gamelan music the-
ory to audio signals, rather than note numbers, for music produc-
tion and sound design. Given a digital audio workstation (DAW)
with standard time and pitch modification tools, an audio engineer
or musician could manually apply the process known as Mipil (see
Section [I.T)) to audio clips. We tested the suitability of the effect
by performing this manual operation in a variety of musical mix-
ing contexts. The results were intriguing. While it is a difficult
effect to characterize, it is probably most similar to granular delay
effects [[11]], specifically ones that can operate on large grain sizes.

Performing this process manually with the editing tools of a
DAW is slow and can become monotonous. Furthermore, if a pro-
ducer decides to alter a single note in the source, that change must
be propagated down the chain of subdivision levels. It is hard to
maintain perspective in this situation. Additionally, the process
could only be applied to audio clips and thus is not insertable at ar-
bitrary points in the signal chain without rendering audio. If audio
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Table 3: The second level of subdivision.

[ bonangpanerus [ 3 [5[3[5[3[5[3[5]2[6[2][6[2]6[2]6]

Table 4: All three instruments.

has to be rendered, the non-destructive editing workflow of digital
audio production is lost.

This paper proposes a solution to achieve this digital audio
effect without the arduous and creatively limiting manual work.
Specifically, a real-time VST plug-in. The effect has three respon-
sibilities:

e time-scaling the quarter notes into eighth, sixteenth thirty-

second, and sixty-fourth notes,

e pitch shifting the notes by a user defined amount, and

e placing and repeating the altered notes correctly in time,
including earlier than the input signal.

2. METHOD

It is easiest to think of the problem from the perspective of a quar-
ter note (hereafter referred to as a beat). Each beat needs to be pitch
shifted and time scaled by the correct factor for each subdivision
level and placed and repeated correctly. Then each level, including
the base, would need to be delayed by the summation of the dura-
tion of one note of each of the levels that are higher pitched than
it. Then latency compensation would be used to realign the base
level with the input signal and place the subdivision levels earlier
than the input.

While this naive method is relatively straightforward, it is not
usable for a real-time plug-in. For one audio callback, the process-
ing time of the naive method is often smaller than our proposed
method. However, the naive method occasionally has too long of a
processing time during a single audio callback, which causes audio
dropouts from buffer underflow. Considering the different general
audio effect frameworks of [[12]], the naive method is like a “frame
by frame” approach that treats an entire beat as a frame, rather than
the usual case of the block size of the audio callback. Our method,
outlined in Figure[l] is a “frame by frame” approach that instead
treats the much smaller fast Fourier transform (FFT) frames as the
fundamental unit of work. In this manner, the computational load
is more evenly distributed. We consider the process from the per-
spective of an individual sample:

1. For each sample, we pass it to each of the subdivision level
processors (Section[2.T). These independently perform time
compression and pitch shifting through the use of the phase
vocoder technique (Section [2.2). They also handle dupli-
cating the notes in the correct positions (Section 2.3)).

2. We also copy each sample to a delay buffer for the base
level and use latency compensation to make part of the out-
put signal occur earlier than the input signal (Section[2.4).

3. We then update the subdivision levels’ write positions if the
play head in the DAW would be on a beat boundary (Sec-

tion 2.3).

saron 3 5 2 6
bonang barung 3 5 3 5 2 6 2 6
bonang panerus [3 5[3 5[3 5[3 5[2 6[2 6[2 6[2 6[

-1 | Subdivision Level |
Processor M

[

sample in
V
sample out

L

- - £ Delay Base Level |-

’ Handle Beat Boundaries ‘

Figure 1: An overview of our method.

2.1. Subdivision level processors

The bulk of the work on each input sample is done by each of the
subdivision level processors. Each subdivision level processor in
the plug-in corresponds to the role of an elaborating instrument in
the gamelan orchestra. The pitch shifting parameter of a subdivi-
sion level in the plug-in corresponds to the tessitura (normal pitch
range) of an elaborating instrument. The time scaling factors of a
subdivision level in the plug-in correspond to the rhythmic densi-
ties of an elaborating instrument.

In each subdivision level processor i, where ¢ € {1,2..., M},
we perform time compression and pitch shifting via the classical
phase vocoder technique [13]. Then we overlap-and-add (OLA)
the synthesis frames multiple times in an output buffer channel as-
sociated with the subdivision level.

2.2. Phase vocoding

The phase vocoding consists of two stages: pitch shifting by re-
sampling and time scaling. The effective time scaling factors r of
the subdivision levels are

1

rli] = 5

(L
Given pitch shift amounts c, in cents, the frequency scaling factors
p are
c[i]
pli] = 21200, @)

and the actual time scaling factors v applied after resampling are
vli] = rlilpli]. ©)

In other words, if the pitch shift amount is an octave (1200 cents),
then no actual time scaling needs to be done because the resam-
pling operation of pitch shifting will result in a note length that
is + the original beat length.
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The frame size of the time scaling operation is fixed and in-
dependent of p[i] and v[i]. If v[i] > 1, as is the case in the usual
operation of our plug-in, the number of samples output from the
resampler will be less than the number input to it. Therefore, by
ordering the resampler first in the phase vocoders, we reduce the
number of analysis-to-synthesis frame conversions that need to be
performed per unit of time.

2.2.1. Pitch shifting by resampling

We use a stateful interpolator to accomplish resamplingﬂ It needs
to be stateful otherwise there would be discontinuities between
blocks of data. The phase vocoders operate on overlapping frames
that are one analysis hop size, h,, samples apart

ha = —, (C))

where NV is the length of the FFT and o, is a constant analysis
overlap factorE] Therefore, we always request h, samples of out-
put from the resampler. Because it is stateful and will be operating
at subsample positions, the number of samples consumed by the
resampler will vary each time. Therefore, we push the input sam-
ples onto a first-in, first-out (FIFO) queue and only pass them to
the resampler when there is at least the number needed by the re-
sampler available on the queue. After the resampler finishes, we
pop the number of input samples it used off the queue. We then
put the h, samples of resampled audio data into a circular buffer
of length N. The buffer is filled one hop at a time and we do not
read from it until it is full. Each time we read from it, we will
convert the analysis frame it contains to a synthesis frame.

2.2.2. Converting an analysis frame to a synthesis frame

Converting analysis frames to synthesis frames and OLA are the
core elements of the phase vocoder technique, which has been
written about extensively [[13H21]. Normally, the phase vocoder
is presented as operations done on a short-time Fourier transform
(STFT) matrix [21]]. For our real-time implementation, we instead
follow the approach of only considering the current and previous
length N overlapping frames of audio samples [18} Sec 5.3]. We
also follow the common approach of analysis and synthesis win-
dowing with a Hann window of length NV [21]]. Because we know
when the beat boundaries occur, we can take advantage of the
scheme proposed in [[16} p. 327] of initializing the phases with the
first analysis frame of each new beat. To scale the phases of the
current frame each subdivision level processor only needs to store
the scaled phases of the previous frame, the unmodified phases of
the previous frame, and the synthesis overlap factor of the subdi-
vision level #:

os[i] = —= . (%)

2.3. Adding synthesis frames to output buffers

The number of samples s[¢] in one note of subdivision level 4, is
given by:
. Sb
=2 6
sli] 51 (6)

'We implemented this resampling with the CatmullRomInterpolator
class from the JUCE framework.
2 An overlap amount of 75% is suggested in [[14] so we set o to 4.

sp being the number of samples per beat in the base level:

o = s )
t
where f; is the sample rate of the DAW in Hz and ¢ is the tempo
in BPM. Figure[2] which we will refer to throughout this section,
shows a hypothetical situation with a tempo of 80 BPM and a sam-
ple rate of 44.1kHz. On the right side of Figure 2} s[i] and s, are
visualized by the lengths of the final “D” notes of each subdivision
level and the delayed base.

There are M subdivision levels and each one has a channel in
the M channel circular buffer B. When playback is begun from
sample 0 in the DAW, we initialize w, the lead write head positions

in B, with:

M

wli] = 25 + s[M] + > s[j], (8)
j=i+1

so that the subdivision level M, which has the highest rhythmic
density, will have the earliest position in time. Additionally, the
beginning of subdivision level M — 1 will occur with the begin-
ning of the second note of subdivision level M. The initial values
of w, each at the beginning of the first note of their associated
subdivision level, can be seen on the left side of Figure 2c]

We OLA the N samples from the synthesis frame u to B,
repeating the appropriate number of times for the subdivision level
i. This is shown in Algorithm [T} To simplify the notation, the
modular indexing of the circular buffer is ignored.

Algorithm 1 OLA while duplicating notes for subdivision level ¢

1: for j < 0to 2° do

2 w; — wli] + j(2s[i])

3: Bli,w; : w; + N]+=u
4: end for

> note number j

In line 2] of Algorithm([I] the offset j(2s[i]) specifies that we skip a
note every time we duplicate a synthesis frame u. In Figure[2] the
play head in the DAW (the blue triangle at sample 33075 in Fig-
ureZa) has just reached the end of beat “A.” The diagonal shading
in Figures [2b| and [2c| shows the data that has been written to the
output buffers at this time. Algorithm|[I]is what creates the fractal-
like pattern of these shaded regions. The gaps between the shaded
regions will be filled, one overlapping synthesis frame of length N
at a time, as the play head in the DAW moves over the next beat,
«g»

Next, the lead write position of the subdivision level 4 is incre-
mented by its synthesis hop size h][i]

wli] = wli] + hsli], ©)

following the standard phase vocoder technique [[13]. The syn-
thesis hop size, the number of samples between the beginnings
of overlapped synthesis frames, is determined by the analysis hop
size h, and the actual time scaling factor v[3] of the subdivision
level i:

hsli] = hqvli] . (10)
In Figure 2] the write positions have already been incremented
many times by equation (9). Their current values, each at the end

of the first shaded note for an associated level, are displayed on the
left side of Figure

DAFX-3



Proceedings of the 22" International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2—6, 2019

fs = 44100,¢ = 80

A B C

D

T
0 33075

T T T
165375 198450 231525

66150 99225 132300
(a) Input audio
sy = 33075
| 1 = 99225 |7
T T T i
0 33075 66150 99225 132300 165375 198450 231525

@ Plug-in output: delayed base

initial w[1] = 82687

—|;5[1] — 16537

B{1]{ X B B/ C/DICID
current w[1] = 99225 , 1 /
Ve // 4..... B - _ ,
initial w(2] = 74418 ——— [/ —|§5[2} = 8268
B[2] - ,A/B B B BiC{D{C{D{C{D|{C|D:
current w[2] = 82687 ,4 :
L .................... I fod.. I T
T T T T T T T T
0 33075 66150 99225 132300 165375 198450 231525
Plug-in output: subdivision levels 1 and 2

Figure 2: The output of the plug-in without latency compensation. The play head in the DAW has just reached the beginning of the beat
labeled “B” in the input audio (d). The x-axis tick marks indicate the sample positions of the beat divisions at a tempo of 80 BPM. In (B)
and (), the diagonally shaded regions show the data that has been written at this point. The unshaded regions with faded text show where
data will be written as the play head progresses. When latency compensation takes effect the base level output (b)) will realign with the
input (@) and the subdivision level outputs () will occur earlier than the input.

2.4. Delaying the base level

To place time-compressed versions of the entire first beat before
the first beat begins in the DAW, we need to request a latency
compensation amount that is larger than the initial positions of the
lead write heads. Then we need to delay the base level by this same
amount to realign it with the input signal and the rest of the tracks
in the DAW. The plug-in needs to request [ samples of latency
compensation from the DAW:

1 =3sp, (11)

which is also the number of samples we delay the base level by.
Given an input of four beats from the DAW, refer to Figure [2] to
see what the output from the plug-in would be before latency com-
pensation is applied. The area marked ! on Figure @ shows how
delaying the base level aligns it with the subdivision levels in Fig-
ure 2c] Keeping this relative alignment and requesting ! samples
of latency compensation would realign the base level with the in-

put audio (Za) and each subdivision level would begin before the
input, as we desire.

2.5. Handling beat boundaries

Whenever the play head of the DAW moves into a new beat, we
adjust the lead write heads (Section [Z5.1). If the beat we just
finished processing was the second beat in a pair, we adjust the
lead write heads further (Section [2:3.2). We also reset the phase
vocoders now because the next piece of audio input should be from
a new note with unrelated phases, as mentioned in Section[2.2.2]

2.5.1. Adjust lead write heads

When beginning each new beat, we reset Aw(1]... Aw[M], the
number of samples each lead write head has moved during a beat,
to zero. Every time a lead write head position w/[i] is incremented

DAFX-4



Proceedings of the 22" International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2—6, 2019

with equation (9), we accumulate that change:
Awli] < Awl[i] + hs[i], (12)

where 0 < Awl[i] < s[i]. Using Aw, when the play head of
the DAWﬂ is on a beat boundary (for example 33075 or 66150 in
Figure[24), we move all the lead write head positions, w, forward
a small amount to the exact starting positions of their next subdi-
vided notes:

wli] < wli] + (s[i] — Awli]). (13)

This is necessary because their normal movements are not syn-
chronized, due to the different resampling factors. Moving the
write heads like this may leave a small gap between notes. How-
ever, it will never cause a “click” artifact from a sample-discontinuity
because we are only ever adding windowed and complete synthe-
sis frames.

2.5.2. Handling second beats

Every time we transition to a new beat we also determine if we
were on the second beat of a pair. In Figure[2a] these are the beats
labeled “B” and “D.” If we are finishing with the second beat, then
we increment each lead write head position to the starts of their
next unwritten regions:

wli] + wli] + s[i] (27" — 2). (14)

Each level has 2°7! notes per pair of beats. After processing the
data for a pair of beats, the lead write head of a subdivision level
will be two note-lengths, 2s[i], past their initial position. That is
why we subtract two in equation (T4).

For example, as the play head in the DAW reaches the end
of beat “B,” at sample 66150 in Figure [2a| w[2] in Figure [2c| will
be at the beginning of the second “A” note of level 2, at sample
90956. Accordingly, by moving six notes ahead it will be at the
beginning of the first “C” note in level 2, at sample 140568. Due
to these increments and the duplication of notes, the plug-in always
maintains an equal output rate with the input rate, even though we
are consistently time-compressing.

2.6. Starting playback from arbitrary timeline positions

If the user of the DAW starts playback from some arbitrary po-
sition, we must determine what the values of w would be at this
position, had the user started from the beginning of the session.
Likewise, the user could also change playback positions without
stopping the DAW, so we have to check for that as well. Instead of
writing a mathematical function to determine the correct values of
w, we instead choose to simply run through the main processing
method until reaching the play head position of the DAW, skip-
ping any costly operations unrelated to updating w. This way, the
software is more flexible to change because we do not have to keep
remodeling the behavior.

3From the perspective of a plug-in, the reported play head position from
the DAW is incrementing an entire block size at a time, rather than sample
by sample. Therefore, we have to calculate the expected position of the
play head internally, for every sample that we process.

Frequency (Hz) Frequency (Hz)

Frequency (Hz)

(TR
N o & =
AN N Ao

|
—
(gl

|

o

Time (Measures.Beats)
Manual (level 2)

Time (Measures.Beats)
(@) Plug-in (level 2)

Figure 3: Spectrograms comparing the outputs of the manual pro-
cess (our desired result made with editing tools of a DAW) and the
plug-in. The input signal (dland[D) is four ascending quarter notes
at 120 BPM. The first note of the input signal begins on beat 1 of
measure 2.

3. RESULTS

Figure [3] shows the output of the manual process, as described in
Section[I.2] compared to the output of our real-time plug-in, using
the same input signal. One can see the results are similar. Our
method successfully time-compressed and placed all the notes in
their correct places, including before the input signal. For level 1,
the pitch shift factor was seven semitones (700 cents) and, as can
be seen on the spectrogram of the plug-in output (3d), it matches
the manual output sufficiently. For level 2, the pitch shift fac-
tor was fourteen semitones (1400 cents) and the plug-in output (3f)
matches the manual output (3¢) sufficiently again.

Figure ] shows the performance measurements of the naive
algorithm that is described in the beginning of Section |Z| and our
method. The measurements were collected with the plug-in run-
ning four subdivision levels with an FFT length of 1024 samples
for each phase vocoder. Tests were conducted with block sizes
of 32 and 2048 samples at a sample rate of 44.1 kHz. In both
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Figure 4: Performance measurements, relative to available call-
back time, of four subdivision levels with pitch controls set to
stacked fourth and an FFT length of 1024 samples. The tempo
was 80 BPM. The four annotated points indicate the maximum
time used for processing in the 32 bars that were measured for
each test. Points above the dashed line are unacceptable.

cases, the naive method has dramatic increases in processing time
on the beat boundaries. The amount of samples being processed
on these boundaries is independent of block size. In this example,
33075 samples are being processed at the beat boundaries because
the tempo is 80 BPM. When the block size is 2048 samples, the
plug-in has no more than 46 milliseconds (ms) to process these
samples, so the naive method is still usable if no other plug-ins are
running. However, when the block size is 32 samples, the plug-in
has no more than 0.73 ms to do the same amount of work and so it
causes buffer underflow and is unusable. Additionally, if the ses-
sion tempo were slower, even a block size of 2048 may result in
buffer underflow due to the increased number of samples per beat.

Our method, in both block size cases, has much better per-
formance. The processing load is decoupled from the number of
samples per beat and so there are no longer dramatic time increases
at the beat boundaries. In fact, there are decreases in processing

time at the beat boundaries because the initialization scheme we
use does not alter the first frame of each beat. For the resampling
stage of our processor (Section 2.2.1)), the processing load scales
with the block size, which is good. However, for the other part
of the phase vocoding technique (Section [2.2.2), the processing
load is independent of the block size, scaling instead with the FFT
frame size. Still, because the load is independent of the number of
samples per beat, lowering the tempo will not cause the block size
of 32 samples to become unusable. If better performance for small
block sizes was needed, reducing the FFT frame size would help,
at the expense of audio quality.

4. DISCUSSION

4.1. Accompanying Material

The accompanying repository is available athttps://github.
com/lukemcraig/DAFx19-Gamelanizer, Included is the
C++ code and VST builds for macOS and Windows. Audio exam-
ples of input and output are also included. Python implementations
of vectorized and frame by frame approaches are also available in
the repository.

The VST has only been tested to work in the DAW REAPER.
Because of the necessity of unusually large amounts of latency
compensation, DAWs that limit the amount of latency compensa-
tion a plug-in can request will not be able to use the effect, unless
the user is comfortable with the subdivision levels occurring after
the input. The user could render the output and then drag it into
place, which would still be faster than doing it manually.

Another limitation is that the tempo cannot change. Likewise,
if the input audio is not perfectly quantized to the grid, the output
may sound random, in terms of the rhythmic context. This is be-
cause an instrument’s note that begins before the beat will have the
portion of the signal before the beat treated as if it were the end of
the previous note and be moved and repeated in that manner.

4.2. User interface

The user interface is shown in Figure[5] The tempo in the DAW can
be specified by the user in the text box at the top. This box is un-
changeable during playback. The leftmost vertical slider controls
the gain of the delayed input signal (the base level). Sometimes in
gamelan music the balungan is not played by any instrument but
merely implied by the elaborating instruments [22]. Likewise, it
can be useful for the user to completely remove the input signal by
pressing the mute button (labeled “M”), and only output the subdi-
vision levels. This works well if the first subdivision level has no
pitch-shifting applied to it.

Each subdivision level has an identical set of controls that are
grouped by a thin rectangle. These can be thought of as channel
strips on a mixing console. The largest rotary slider controls the
pitch shift factor of that level. The long gray lines inside the rotary
arc indicate the octave positions. The small ticks inside the arc in-
dicate the positions of perfect fourths. The small ticks outside the
arc indicate the positions of perfect fifths. The user can optionally
snap to any of these three intervals by holding different modifier
keys while dragging. Changes to pitch shifting are allowed during
playback but do not take effect until the subdivision level processor
that is being changed is between analysis frames.

Each subdivision level processor also has a gain slider and
high and low-pass filters that are applied after pitch-shifting. They
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Figure 5: The Gamelanizer GUI with four subdivision levels. Pitch shifting controls are set to stacked octaves.

each also have a horizontal slider that specifies the o parameter
of a Tukey window [23]] that is applied to the input signal before
phase vocoding. This can be useful for tapering the input signal to
achieve different attack and release characteristics per level. The
displays above the horizontal sliders show the resultant Tukey win-
dows.

When any of the four buttons labeled “Drop Note” are toggled,
those notes become muted. For instance, if the fourth note was
dropped from the fourth subdivision level, then every fourth sixty-
fourth-note would become a rest.

Each subdivision level can be output independently or mixed
into stereo. By routing them independently the user has more con-
trol and can apply other plug-ins and routing to mix them as they
wish. When mixed into stereo the pan knobs below the mute but-
tons can be used.

4.3. Applications

The plug-in is useful for at least two general scenarios. First is
the scenario of a composer or musician who is writing new mu-
sic. If a composer was writing a base melody that they wanted the
Mipil process to be applied to, they could use the Gamelanizer to
get almost instant feedback and make adjustments. In this scenario
the plug-in could be considered a computer-aided composition tool
similar to those mentioned in Section[I-2] The advantage of using
Gamelanizer over those tools is that the composer can transform
any sound, such as a human voice, rather than just transforming
Musical Instrument Digital Interface (MIDI) input to virtual in-
struments. Another advantage is that many tech-savvy musicians
today compose purely by ear, and using our plug-in would be more
intuitive for them than thinking about symbolic representations of
notes. For this use case, we suggest starting with only the first and
second subdivision levels because higher levels can sound irritat-
ing.

Second is the scenario of an audio engineer mixing someone
else’s music, or creating strange effects for sound design. In this
scenario the plug-in is more of an effect that alters the character of

the signal without altering the tonal harmony of the music. We rec-
ommend pitch shifting with octaves or no pitch shifting to achieve
this use case. Filters are useful for adding depth by moving sub-
division levels into the background. This can help perceptually
separate the effect from the dry signal. Tapering is also useful here
for imposing a rhythmic structure on an input signal that does not
have one. The third and fourth levels are more useful in this use-
case than they were in the first because the rapid rhythmic density
of these levels can be mixed to sound less separated from the input
source.

4.4. Future work

There are several possible future works, related to gamelan the-
ory, that would improve this software. First, in gamelan music the
elaborating instruments often sustain notes instead of playing on
top of the second beat in a pair. We have implemented turning the
notes into rests but not sustaining the previous notes. This sus-
tain could be achieved by implementing the “spectral freeze” as
described in [24]]. Similarly, gamelan musicians add variations to
their pitch and octave choice [5]. It may make the digital audio ef-
fect sound more organic to introduce some stochastic variation to
emulate this. Another unimplemented aspect of gamelan music is
that the orchestra’s instruments are crafted in pairs that are inten-
tionally out of tune to create a shimmering amplitude modulation
that is intended to induce a religious trance-like effect [S|]. There-
fore it would be nice to include a stereo detuning parameter to the
plug-in. Lastly, sliding tempo changes are an important part of
gamelan music. Our method does not handle tempo changes. We
are interested in Celemony Software’s new Audio Random Ac-
cess (ARA) [25] as a means to deal with this.

There are also possible future works unrelated to gamelan the-
ory. One would be making use of beat detection so that the in-
put signal does not have to already be perfectly quantized in time.
Perhaps the work in [26] would prove useful for this. Another
improvement would be to implement pitch detection on the input
notes and limit the shifted notes to only be mapped to MIDI side-
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chain input. That way, the tonal harmony of a song being mixed
would not become cacophonous. Another improvement we are in-
vestigating is performing the pitch shifting without resampling as
described in [17]]. Another improvement would be to implement
something like a noise gate with hysteresis so tails of notes that
extend past the beat borders are not repeated. This may be sim-
ple to implement given that our method is aware of its location
in the beat, and thus should know when to expect low and high
amplitudes. Finally, spatialization with head-related transfer func-
tions (HRTF) [27]] would be an interesting feature to include.
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