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ABSTRACT

A family of spectrally-flat noise sequences called “Velvet Noise”
have found use in reverb modeling, decorrelation, speech syn-
thesis, and abstract sound synthesis. These noise sequences are
ternary—they consist of only the values −1, 0, and +1. They
are also sparse in time, with pulse density being their main design
parameter, and at typical audio sampling rates need only several
thousand non-zero samples per second to sound “smooth.”

This paper proposes “Crushed Velvet Noise” (CVN) general-
izations to the classic family of Velvet Noise sequences includ-
ing “Original Velvet Noise” (OVN), “Additive Random Noise”
(ARN), and “Totally Random Noise” (TRN). In these generaliza-
tions, the probability of getting a positive or negative impulse is a
free parameter. Manipulating this probability gives Crushed OVN
and ARN low-shelf spectra rather than the flat spectra of standard
Velvet Noise, while the spectrum of Crushed TRN is still flat. This
new family of noise sequences is still ternary and sparse in time.
However, pulse density now controls the shelf cutoff frequency,
and the distribution of polarities controls the shelf depth.

Crushed Velvet Noise sequences with pulses of only a single
polarity are particularly useful in a niche style of music called “1-
bit music”: music with a binary waveform consisting of only 0s
and 1s. We propose Crushed Velvet Noise as a valuable tool in 1-
bit music composition, where its sparsity allows for good approx-
imations to operations, such as addition, which are impossible for
signals in general in the 1-bit domain.

1. INTRODUCTION

In 2007, Karjalainen and Järveläinen defined a new type of sparse
noise sequences which they called “Velvet Noise” [1]. This was
later more specifically termed “Original Velvet Noise” (OVN) by
Välimäki et al. [2]. These noise sequences have some similarities
to sparse noise investigated by Schreiber in 1960 [3] and have a
few peculiar qualities. First, they are sparse in time—most of their
samples are actually zero. Second, the non-zero samples only take
the values −1 and +1. Specifically, OVN is produced by defin-
ing a pulse density, splitting time into equal-length windows, and
distributing a single impulse into each window, with both its ex-
act position within the window and its sign (±) randomized. OVN
is clearly not i.i.d. (independent and identically distributed), since
the value of each sample within a window is related to the values
of all other samples in the window. Despite this, OVN remark-
ably has a flat magnitude spectrum and an autocorrelation which
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is nearly zero everywhere except at zero-lag, making it very similar
to Gaussian white noise (an i.i.d. process which is neither sparse
in time nor limited to particular values). With a sufficiently high
pulse density, Velvet Noise can even sound just as “smooth” as
Gaussian noise [2].

One fascinating property of Velvet Noise sequences is that
they are very efficient to convolve by, since they are very sparse
(mostly 0s) and the non-zero values (±1) don’t require an actual
multiplication during convolution [4, 5]. These properties have led
Velvet Noise to be used in reverb modeling [1, 5, 6, 7, 8, 9], the
design of decorrelation filters [10, 11], speech synthesis [12, 13],
and abstract sound synthesis [14, 15].

Related to OVN, several other sparse ternary noise sequences
have been proposed, including Additive Random Noise (ARN),
Totally Random Noise (TRN), Extended Velvet Noise (EVN), Ran-
dom Integer Noise (RIN) [2]. ARN randomizes the spacing be-
tween pulses rather than distributing a single pulse per window.
TRN has a random chance of generating a pulse of a random sign
for every single sample. EVN takes OVN and restricts the sample
location to only a portion of each window, enforcing a second level
of sparsity. RIN is identical to ARN, although both the pulse off-
sets and sign are read from a precomputed table of integer random
numbers rather than independent random numbers [2].

In this paper, I propose generalizations to the family of Velvet
Noise sequences which are called “Crushed Velvet Noise” (CVN).
Specifically, I propose new variants of OVN, ARN, and TRN now
called COVN, CARN, and CTRN (the “C” denoting “Crushed”
for each). In Crushed Velvet Noise Sequences, the signs of each
pulse is not assigned based on a 50% probability, but rather this
probability is exposed as a free parameter that can be manipulated
along with the pulse density. This small change allows the creation
of a variety of spectra with different properties. COVN and CARN
both have low-shelf-like Power Spectral Densities (PSDs), with
their cuttoff frequency controlled by the pulse density and their
shelf attenuation controlled by the free parameter determining the
probability of a positive or negative sign for each pulse.

Adjusting this probability to extreme settings gives sequences
where either −1s or +1s do not appear1. Variants of CVN which
only have 0s and 1s are of particular use to a niche approach to
electronic music composition called “1-bit music,” where the only
allowable signal levels are 0 and 1. In the end of this paper, I ex-
plain how Velvet Noise and the proposed novel variants can be
used in 1-bit composition, specifically highlighting their poten-

1The case where there is a 100% chance of a +1 and no chance of a
−1 has already been investigated briefly in [13], where a unipolar variant
of OVN is called Unipolar Velvet Noise (UVN). The sparse noise sequence
explored by Schreiber [3] was also unipolar. With these in mind, we can
say that this paper fills in the gaps between the proposed unipolar variant
and the bipolar OVN sequence.
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tial for spectral shaping, volume control, and layering of signals.
These procedures are not possible in general in the 1-bit domain,
since even the simplest operations like addition of signals do not
exist in that domain, and so it is very hard to do anything LTI (lin-
ear and time-invariant). So, being able to control the spectrum and
volume of a particular type of 1-bit signal, Crushed Velvet Noise,
is extremely useful.

The prefix “crushed” refers both to bitcrushing (the classic lo-
fi audio effect) and crushed velvet (the soft fabric). Bitcrushing
involves reducing the number of possible signal levels of an au-
dio signals, for instance down to 28 = 256 levels for an 8-bit
bitcrusher. Velvet Noise’s ternary character is related to bitcrush-
ing, and the proposed “crushed” variants, at their extreme set-
tings, further reduce the set of possible sample values down to
two. Crushed velvet is a particular kind of velvet fabric whose cut
threads have been pressed in different directions in specific ways.
Once the reader has understood the construction of Crushed Velvet
Noise, a loose metaphorical connection is not hard to imagine.

In the rest of the paper I review the classic definitions of OVN,
ARN, and TRN (§2), define and study the novel COVN, CARN,
and CTRN sequences (§3), and explain an application to “1-bit
music” (§4). §5 concludes and proposes avenues for future work.

2. CLASSIC VELVET NOISE DEFINITIONS

In this section, we will briefly review the classic Velvet Noise se-
quences: Original Velvet Noise (OVN), Additive Random Noise
(ARN), and Totally Random Noise (TRN).

2.1. Original Velvet Noise (OVN)

Original Velvet Noise (OVN), proposed in [1] and termed OVN
in [2], is defined by

sovn(n) =

{
2 ‖r2(m)‖ − 1 , if n = kovn(m)

0 , otherwise
, (1)

where n = 0, 1, 2, . . . is the discrete-time sample index, ‖·‖ is a
function that rounds to the nearest integer, r2(m) is a sequence
of random numbers uniformly distributed between 0 and +1, and
kovn is a sequence of impulse locations defined by

kovn(m) = ‖mTd + r1(m)(Td − 1)‖ , (2)

where m = 0, 1, 2, . . . is a discrete pulse index, Td is window
width in samples, and r1(m) is another sequence of random num-
bers uniformly distributed between 0 and +1. Td is related to the
pulse density and sampling rate fs by

Nd = fs/Td . (3)

The sampling rate used throughout this paper is fs = 96 kHz.
The definition (1)–(2) of OVN is used widely [2, 9, 5, 10].

However, another variant exists [1, 7, 11] and actually precedes
(1)–(2) [1]. Its definition of kovn(m) is slightly different:

kovn,alt(m) = ‖mTd + r1(m)Td‖ = ‖(r1(m) +m)Td‖ . (4)

The second definition (4) has the potential to rarely have an im-
pulse in the last sample of one window collide with an impulse in
the first sample of the next window, if the pulse should occur on a
window boundary.

Figure 1: Crushed Original Velvet Noise (COVN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

Finally, we can mention that [11] reformulates (4) using a ceil-
ing function d·e rather than ‖·‖.

An example of an OVN sequence (Nd = 2000) is shown in
Fig. 1 (top).

2.2. Additive Random Noise (ARN)

Additive Random Noise (ARN) is defined by [2]

sarn(n) =

{
2 ‖r2(m)‖ − 1 , if n = ‖karn(m)‖
0 , otherwise

, (5)

where karn is a sequence of impulse locations defined by

karn(m) = karn(m− 1) + 1 . . .

+ (1−∆)(Td − 1) + 2∆(Td − 1)r1(m) .
(6)

The parameter ∆ ∈ [0, 1] controls a tradeoff between advancing
time by a fixed amount and a random amount.

An example of an ARN sequence (Nd = 2000) is shown in
Fig. 6 (top).

2.3. Totally Random Noise (TRN)

Totally Random Noise (TRN) is defined by [2]

strn(n) =

∥∥∥∥( Td

Td − 1

)(
r1(n)− 1

2

)∥∥∥∥ . (7)

TRN was originally investigated by Rubak and Johansen [16, 17].
An example of a TRN sequence (Nd = 2000) is shown in

Fig. 9 (top).
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(a) COVN, Nd = 1000. (b) COVN, Nd = 2000. (c) COVN, Nd = 4000. (d) COVN, Nd = 8000.

Figure 2: Power Spectral Density (PSD) of COVN at various pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

3. CRUSHED VELVET NOISE (CVN)

In this section, novel “Crushed” variants of OVN, ARN, and TRN
are introduced.

3.1. Crushed Original Velvet Noise (COVN)

Crushed Original Velvet Noise (COVN) is defined by

scovn(n) =

{
2 · c(r2(m), p)− 1 , if n = kcovn(m)

0 otherwise
, (8)

which is identical to the traditional OVN sequence except the stan-
dard rounding function ‖·‖ has been replaced by the function c(x, p),
defined as

c(x, p) =

{
1 , if x > p

0 , otherwise
. (9)

The pulse timings kovn(m) are given by

kcovn(m) = ‖(r1(m) +m)Td‖ , (10)

which is identical to the alternate definition from OVN (4). The
reason for basing COVN off of the alternate definition is that the
timing equation (2) introduces periodicities into COVN sequences
(when p 6= 0.5), negatively affecting their noisy character.

Five examples of COVN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
are shown in Fig. 1. Notice that p = 0.5 is identical to traditional
OVN, and that p = 1.0 is fully unipolar—it has only 0s and +1s,
and no −1s. In this figure, the window boundaries are shown with
vertical gray lines.

Power Spectral Density (PSD) estimates of COVN sequences
with various pulse densities Nd ∈ {1000, 2000, 4000, 8000} are
shown in Fig. 2. In each case, a family of many polarity prob-
abilities p between 0.5 and 1.0 are shown, where the solid blue
lines show the PSDs, with p = 0.5 on the top, and increasing to
p = 1.0 below2. The polarity probabilties which are plotted follow

2In this paper, we will always deal with probabilities between 0.5 and
1.0, biasing the distribution towards +1s. Of course, all of the conisdera-
tions of the paper would be identical (except for an opposite dc bias) if we
instead considered probabilities between 0.5 and 0.0.

Figure 3: Low shelf amplitude of COVN at various pulse densities
Nd ∈ {1000, 2000, 4000, 8000}.

the following pattern:

p =


1/2 τ = 0

1− (1/2)τ τ = 1, 2, . . . 16

1 τ = 17

. (11)

PSD estimates are produced using Welch’s method with a win-
dow size of NFFT = 218 = 262 144 samples, an overlap size of
NFFT/2, and Hamming windows, and are plotted on a 20 log10(·)
scale rather than a 10 log10(·) scale to facilitate comparison with
shelf filter magnitude responses. Noise sequences used to gener-
ate PSD estimates in this paper are 24 hours long, i.e., 24× 60×
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Figure 4: Relationship between probability of positive sign p and
“warped probability” q.

Figure 5: dc offset of COVN at various pulse densities Nd ∈
{1000, 2000, 4000, 8000}.

60 × fs = 8.2944× 109 samples. The purpose of this length,
which may seem excessive, is simply to get better PSD estimates
by having more frames to average using Welch’s method, i.e., a
better estimate of the shape of the PSD curves without using any
artificial smoothing.

It is clear from Fig. 2 that, unlike OVN with its flat spectrum,
COVN sequences have a low-shelf characteristic, where the low
shelf has some attenuation but never a boost. These PSDs have
a transition band slope of +12 dB/octave (+40 dB/decade), im-
plying that they are similar in some way to white noise through
a second-order shelf filter. There are various second-order shelf-
filters defined in the literature [18, 19, 20]. The family of noise
spectra produced by the COVN noise are similar to the second-
order low-shelf filters proposed by Holters and Zölzer in [19].
They propose low-shelf filters with transfer function HLS(s) de-

Figure 6: Crushed Additive Random Noise (CARN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

fined in pole-zero form on the s-plane by:

HLS,L(s) =

L∏
l=1

s+ L
√
gωce

j( 1
2
− 2l−1

2L )

s+ ωce
j( 1

2
− 2l−1

2L )
, (12)

where L ≥ 1 is an integer defining the order of the shelf filter, g
is the shelf level, and ωc is the cutoff frequency in radians (fc =
ωc/2π is the cutoff frequency in Hz). Here we are specifically
interested in the 2nd-order case (L = 2):

HLS,2(s) =

(
s+
√
gωce

j/4
)(

s+
√
gωce

−j/4
)

(s+ ωcej/4) (s+ ωce−j/4)
. (13)

Relating to this family of shelf filter, the cutoff frequency of our
PSDs is roughly fc = Nd/2. Shelf filter responses that approx-
imate the COVN sequences are shown on Fig. 2 by dashed red
lines.

The shelf attenuation, obviously zero for p = 0.5, increases as
p approaches 1.0. For the various pulse densities tested, the spe-
cific relationship between pulse density and shelf level, g in (13),
is shown in Fig. 3. Plotting against p would overly compress the
visual display of these traces near p = 1, so the horizontal axis is
instead a “warped probability scale” q, defined simply as

q = tanh−1(p) . (14)

The relationship between p and q is shown graphically in Fig. 4.
Finally, it is worth mentioning that disturbing the relative prob-

abilities of −1s and +1s using p introduces a small dc offset of
(2p − 1)Nd/fs to the signal. Notice that when p = 0.5, no dc
offset is introduced, and that the maximum offset that can be in-
troduced is ±Nd/fs. This is shown graphically in Fig. 5.
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(a) CARN, Nd = 1000. (b) CARN, Nd = 2000. (c) CARN, Nd = 4000. (d) CARN, Nd = 8000.

Figure 7: Power Spectral Density (PSD) of CARN at various pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

3.2. Crushed Additive Random Noise (CARN)

Crushed Additive Random Noise (CARN) is defined by

scarn(n) =

{
2 · c(r2(m), p)− 1 , if n = ‖kcarn(m)‖
0 , otherwise

, (15)

where kcarn is a sequence of impulse locations defined by

kcarn(m) = kcarn(m− 1) + 1 . . .

+ (1−∆)(Td − 1) + 2∆(Td − 1)r1(m) ,
(16)

which is identical to the traditional ARN (5)–(6), except that the
rounding function ‖·‖ has again been replaced by the new func-
tion (9). In this paper, we will only consider the case ∆ = 1, i.e.,
the case where time advances by purely random steps.

Five examples of CARN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
are shown in Fig. 6. Notice that p = 0.5 is identical to traditional
ARN, and that p = 1.0 is again fully unipolar.

PSD estimates of CARN sequences with pulse densities Nd ∈
{1000, 2000, 4000, 8000} are shown in Fig. 7. Again, a family
of many polarity probabilities p between 0.5 and 1.0 are shown,
where the solid blue lines show the PSDs, with p = 0.5 on the top,
and increasing to p = 1.0 below. The polarity probabilities which
are plotted follow the following pattern:

p =


1/2 τ = 0

1− (1/2)τ τ = 1, 2, . . . 6

1 τ = 7

. (17)

As with COVN, shelf filter responses that approximate the CARN
sequences are shown on Fig. 7 by dashed red lines.

As with COVN, the PSDs of CARN sequences look a bit like
the PSDs of low-shelf-filtered white noise. CARN sequences, how-
ever, have a more pronounced ripple around the cutoff frequency,
and much less pronounced shelf attenuation than COVN. Again,
the sheld attenuation, obviously zero for p = 0.5, increases as p
approaches 1.0. For CARN, the relationship between p and shelf
level is shown in Fig. 8. The dc offset considerations for COVN,
which were based purely on pulse density Nd, apply identically to
CARN.

Figure 8: Low shelf amplitude of CARN at various pulse densities
Nd ∈ {1000, 2000, 4000, 8000}.

3.3. Crushed Totally Random Noise (CTRN)

Crushed Totally Random Noise (CTRN) is defined by

strn(n) = c(r2(n), p) ·

∣∣∣∣∣
∥∥∥∥ Td

Td − 1

(
r1(n)− 1

2

)∥∥∥∥
∣∣∣∣∣ , (18)

where | · | represents the absolute value function, which is identical
to traditional TRN (7), except that the polarity is defined by the
new function (9) and another random noise sequence r2(n) rather
than the rounding function ‖·‖.

Five examples of CTRN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
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Figure 9: Crushed Totally Random Noise (CTRN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

are shown in Fig. 9. Notice that p = 0.5 is identical to traditional
TRN, and that p = 1.0 is fully unipolar—it has only 0s and +1s,
and no −1s.

PSD estimates of CTRN sequences with pulse densities Nd ∈
{1000, 2000, 4000, 8000} are shown in Fig. 10. The polarity prob-
abilities which are plotted are the same as for COVN. Unlike COVN
and CARN, the PSDs for CTRN seem not to depend on p hardly
at all—rather then are all entirely flat, just like traditional TRN.

The dc offset considerations for COVN and CARN apply iden-
tically to CTRN.

4. APPLICATIONS TO 1-BIT MUSIC

1-bit music is a style of electronic music production where only
waveforms composed of 0s and 1s are allowed. To put it mathe-
matically, anM -second-long 1-bit music composition with a sam-
pling rate of fs is defined by

x(n) ∈ {0, 1} , n = 0, 1, 2, . . . ,M · fs . (19)

1-bit music (also called PC “beeper music”) has its origins in retro
computing platforms like the Apple //e and the Sinclair ZX Spec-
trum, whose sound systems consisted of a single digital CPU pin
wired straight to a small speaker or output jack [21, 22, 23]. Con-
ceptually, 1-bit music has some relationship to the idea of com-
position using “sieves,” as developed by Iannis Xenakis [24, 25],
digital audio effects and synthesizers based on manipulating bi-
nary data [26, 27], and especially to Σ-∆ modulator encoding [28,
29, 30, 31, 32, 33].

Today 1-bit music is still widely created, for instance by mu-
sicians such as Richard Hollins (Tufty) [34], utz with his “irrlicht
project” [35], Mister Beep [36], and Blake Troise (Protodome).
Composer Tristan Perich did a lot for popularizing 1-bit music
with his albums “1-bit music” (2004) [37] and the very positively

Figure 10: Power Spectral Densities (PSD) of CTRN at various
pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

reviewed “1-bit Symphony” [38], both of which create stereo 1-bit
music from microcontrollers mounted inside of clear compact disc
jewel cases. 1-bit music has even made a recent appearance in pop-
ular culture, in the ZX Spectrum software NOHZDYVE featured
in the film “Bandersnatch” [39].

At first, it may seem that 1-bit music should have a very lim-
ited palette, perhaps consisting solely of square waves, pulse waves,
impulse trains, and 1-bit noise. But in fact there are a wide vari-
ety of timbres that can be made in the 1-bit domain. Composers
have managed to come up with a wide variety of techniques and
some synthesisers use oscillators that essentially produce 1-bit sig-
nals. For example we can mention the Television Interface Adap-
tor (TIA) chip from Ataric VCS [21], which produces sounds by
logical operations on binary signals, and the Korg MS-20 and ARP
Odyssey which use “ring modulators” which are actually XOR
chips operating on two square waves. The same technique of
“ring-modulating” pulse waves is also used in “metallic noise”
generators found in some analog drum machines [40, 41], for in-
stance the Korg KR-55. Some old video game systems produce 1-
bit noise, for example the Nintendo NES (Nintendo Entertainment
System) and Commodore 64, which produce 1-bit noise using Lin-
ear Feedback Shift Register (LFSR) circuits [21].

Nonetheless, composing in the 1-bit domain is still incredibly
difficult. Signal addition does not in general exist, which means
linear operations like mixing and attenuating signals, filtering, etc.
are difficult or impossible to achieve in general and must be ac-
complished through clever composition, construction of suitable
signals to fake them, or other clever means. Here I’ll explain how
sparse noise sequences, including the unipolar (p = 1.0) version
of the proposed family of Crushed Velvet Noise sequences, can
be particularly useful in the 1-bit music context, and can actually
solve a few of these issues.

4.1. (Noise) Problems in 1-bit Music

One of the biggest challenges in 1-bit music is combining multiple
signals. Traditionally, this was handled for tonal sounds by using
logical operations (e.g. XOR) to combine multiple streams of pulse
waves with very narrow pulses (down to a single impulse, i.e. to
an impulse train) [42]. Since the pulses would only rarely line up,
XOR acts essentially like addition, and you can get the sound of
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signals added together without technically being able to perform
addition on binary signals in general.

This technique could not be used so well with 1-bit noise,
which is not sparse. So, for noise, this problem would be usu-
ally handled on the compositional level, leveraging masking phe-
nomenon in human hearing. For instance, it is possible to over-
write very short 1-bit noise bursts onto another 1-bit musical sig-
nal without producing a perceived interruption, giving the illusion
of two simultaneous musical lines3. If the interruption is short
enough, the illusion can be very effective. However, this technique
is obviously limited to short noise bursts and is no help at all for
layering longer noisy sounds.

Another issue with noise in 1-bit music is that its spectrum is
not easy to control. Setting each sample to 0 or 1 randomly pro-
duces a flat spectrum. This has its uses, but is timbrally limiting.
Since LTI signal processing essentially does not exist in the 1-bit
domain, it is difficult to filter a white signal like this further, as
you would in traditional sound synthesis. However, it is possible
to produce a somewhat passable imitation of lowpass-filtered noise
by downsampling a 1-bit noise signal. None of these signals will
be sparse in time, making them hard to layer with other signals.
Furthermore, it’s not obvious how to produce an approximation of
noise with a highpass quality.

Finally, the lack of any waveform levels beyond 0 and 1 means
that there is not usually a good way to control the perceived am-
plitude of a 1-bit signal. It turns out that this is an issue with many
different 1-bit signals, not only noise. For pulse waves, it can be
possible to trick your ear into hearing pulse width modulation to-
wards a pulse train as a level shift, but this also introduces a timbre
shift and does not generalize well.

4.2. Solution Using Crushed Velvet Noise

These limitations of noise in 1-bit music—limitations on layer-
ing with noise, noise spectra, and noise amplitude—can all be ad-
dressed somewhat using various Crushed Velvet Noise sequences.

In general, the sparsity of CVN makes it relatively easy to
layer with other 1-bit signals using logical operations such as XOR
(⊕). This works by the same mechanism as for impulse trains—
since the impulses only happen very rarely, they aren’t likely to
line up with ones from another stream. The 1⊕1 = 0 case of XOR
rarely occurs, so it largely sounds like addition. This is true for all
three proposed varieties of CVN: COVN, CARN, and CTRN.

Unlike normal binary noise, two varieties of CVN—COVN
and CARN—have controllable spectra. By changing the pulse
density Nd, the cutoff frequency of the two types of shelf-filtered
noise can be produced. Here the cutoff is linked inextricably to the
density of the pulses, hence the signal energy, hence the perceived
volume of the signal, which means that the volume of the noise
will also increase with increasing pulse density.

That property could be used on its own as a simulacra of vol-
ume control. Or, if it was desired to adjust the CVN level indepen-
dent of the noise spectrum, CTRN signals could be used. CTRN
sequences remain largely white regardless of the pulse density. So,
they can be used to control the perceived volume of the signal in-
dependent of its spectrum, so long as you are happy with the noise
spectrum being white.

One limitation of these techniques is that Crushed Velvet Noise
sequences cease to sound “smooth” when their densities are too
low, presumably similar to the pulse density that is required for

3A phenomenon that is well-known in psychoacoustics, e.g. [43].

standard Velvet Noise. In, e.g., reverb modeling or decorrela-
tion filter design, this would normally be seen as a limitation of
Velvet Noise. However, in the context of 1-bit noise where ev-
erything sounds a bit raw and grainy, it could perhaps be consid-
ered a charming and characteristic quirk. One interesting effect
is “sweeping” the pulse density of a COVN sequence downwards.
Starting from a high pulse density, this will sound like a shelf fil-
ter sweep. However, as the pulse density gets low enough, the
“smoothness” dissapears and it sounds like the signal “disintegrat-
ing.”

An example of using COVN in the context of 1-bit composi-
tion can be heard in the author’s cover [44] of “Unholy Captives”
from the video game “Return of the Obra Din” by Lucas Pope [45].

5. CONCLUSION

In this paper, new generalizations of Velvet Noise sequences were
proposed. These “Crushed” Velvet Noise sequences, which open
up the probability of an impulse taking a positive or negative po-
larity as a free parameter, can be used to make colored noise spec-
tra, as opposed to the white spectra of traditional Velvet Noise.
Crushed Velvet Noise (specifically the unipolar case) is a suitable
sequence for use in 1-bit music, alongside classic binary noise se-
quences like Linear Feedback Shift Register (LFSR) noise. Espe-
cially Crushed Original Velvet Noise and Crushed Totally Random
Noise should be considered very useful in 1-bit music composi-
tion, since their sparsity characteristics make them very easy to
mix with other 1-bit signals using logical operations like XOR.

Crushed Velvet Noise leaves open a lot of scope for future
work. We’ve seen in this paper that certain CVN sequences (COVN
and CARN) have PSDs that resemble low-shelf-filtered white noise,
while others (CTRN) have flat spectra just like their traditional ver-
sions. Perhaps future mathematical analysis can reveal how Vel-
vet Noise manages to have a white spectrum without being i.i.d.
Future work could also consider trying to create other standard
colored noise spectra—e.g. lowpass, bandpass, notch, and high-
shelf—from sparse ternary noise. In this paper, only the ∆ = 1.0
case of CARN was considered. Future work could consider the
more general case of CARN to see if it has any interesting proper-
ties, as well as a “Crushed” variant of the related “Extended Velvet
Noise” (EVN) [2]. Although the PSD estimates shown in this pa-
per can be taken as very good estimates of the true, underlying
PSD of the studied noise sequences, on account of their very long
length (24 hours!), we don’t need sequences nearly that long to
hear the spectral character of different noise sequences. Your ear
can guide you; you should find that the spectral character of each
noise sequence reveals itself even with very short bursts of Velvet
Noise. However, it would be interesting for future work to test our
perception of short Velvet Noise bursts.

Finally, it seems clear that 1-bit synthesis, mixing, and audio
effects have a close relationship to signal processing of Σ-∆ bit
streams [28, 29, 30, 31, 32, 33]. Hopefully future work can gain
new insights from that literature.
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