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ABSTRACT

In this paper a study on the performance of the short time autocor-
relation function for the determination of correct pitch candidates
for non-stationary sounds is presented. Input segments of a mu-
sic or speech signal are analyzed by extracting the autocorrelation
function and a weighting function is used to weight candidates for
assessing their harmonic strength. Furthermore, a decision is de-
vised which alerts if there are possible non-related jumps on the
fundamental frequency track. A technique to modify the spectral
content of the signal is presented to compensate for these jumps,
and a heuristic to return a steady fundamental frequency track for
monophonic recordings is presented. The system is evaluated with
several databases and with other algorithms. Using the compensa-
tion algorithm increases the performance of the ACF and outper-
forms current detection algorithms.

1. INTRODUCTION

Intonation in human perception corresponds to the perceivable tone
that is registered by the human brain. This is perceived as pitch,
which is in turn related to the fundamental frequency f0 of a par-
ticular sound, that is, the main frequency component of the Fourier
series expansion of a signal. In order to extract such informa-
tion from a signal, several methods have been introduced which
help find the perceivable intonation, or pitch, of a particular sound
which is usually estimated by its fundamental frequency.

Among the methods used for determining f0, the autocorre-
lation function (ACF) has always been of particular interest since
it represents the periodicities encountered in a waveform. This is
specially suited for determining the fundamental frequency in au-
dio recordings. In this manner, prominent peaks of the ACF will
give information about the perceived pitch or tone of a sound, par-
ticularly when the latter is of a stationary nature.

There are two major study problems at the time of finding
pitch tracks in monophonic recordings: The first one is the prob-
lem of finding reliable pitch candidates. This can be approached,
for example, by analyzing the spectral peaks in the frequency do-
main, or by determining the autocorrelation lags of a signal seg-
ment in a particular way. Several solutions have been proposed in
the literature to mitigate ambiguities and perform a correct estima-
tion of the pitch; by analysis of the response to a filter bank, by the
use of linear predictive coding to extract pitch candidates [1], by
analyzing the spectra with the use of correlation-based functions
[2], by the use of spectral weighting functions [3], by applying
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correlation in the spectral domain [4], with the help of compound
weighting functions [5], or by the use of the normalized cross cor-
relation [6], among other methods.

The other issue is the tracking of the fundamental frequency
f0 when several disturbances in the pitch trajectory occur in order
to select the correct pitch candidate. Examples of this problem can
be when harmonics acquire a higher energy than the fundamental,
where subharmonics surpass a decision threshold, or when a par-
ticular note is retained after the current note is played or sung. In
these cases, candidate pitch lags are taken into consideration and
a heuristic rule is created to compensate for shifts and ambigui-
ties. The mitigation of these ambiguities have been approached
by different monophonic pitch detection algorithms, but it has also
been a matter of study for polyphonic recordings, such by tak-
ing different candidates of the autocorrelation-spectrum pairs [7],
by statistical analysis of the pitch candidates [8], or by finding
other domains where the ambiguity of the estimation can be dimin-
ished [9]. Another solution, for example, was considered by [10]
in treating the common frequency trajectories based on a graph-
solving problem in the spectrogram using continuous Hidden Markov
Models (HMMs). Several algorithms also smooth the magnitude
function of consecutive spectra to find the most prominent peak. In
this work it is shown that the variability of the pitch candidates can
be modeled in a simple way, whilst not having to reuse different
heuristics for the detection, and a method is presented which pro-
vides a way to account for possible ambiguities.

2. BACKGROUND

While cross-correlating two different signals, similarities which
exist between the signals at a moment in the present are found
based on the history of the signal. Mathematically, the autocorre-
lation of a stationary discrete signal x(n) is defined as

rxx(m) =

N−1∑
n=m

x(n)x(n−m), (1)

where x(n) is a windowed signal of lengthNw, andm is the index
of the delayed sample, called the lag. This effectively compares an
isolated signal segment with a time shifted version of itself. It
can be inferred from Eq. 1 that the global maximum for the func-
tion appears at m = 0. If there exist any maxima in rxx(m) for
m > 0, the signal is said to be periodic with T0 = m and will
contain local maxima at multiples of the lag m. Since the autocor-
relation of the signal at m = 0 equals the power in the signal, the
height of the local maxima in r′xx(m) for m > 0 represents the
relative harmonic power of the signal. Thus the ratio of the height

DAFX-1

http://hsu-hh.de/ant
mailto:deobaldia@hsu-hh.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

80 82 84 86 88 90 92
0.6

0.7

0.8

0.9

1

m→

r x
x
(m

)

Figure 1: Interpolation of the candidates. The three red points are
the anchors of the resulting interpolation shown with the dashed
line. The corrected lag is the green triangle

of rxx(m) at specific lags m to the power of the signal,

r′xx(m) ≡ rxx(m)

rxx(0)
, (2)

is considered to be the harmonic strength of the signal and indi-
cates possible periodicities at the lags m whose harmonic strength
approaches unity [11].

Since most of real-world signals are in the wide sense non-
stationary, Eq.1 can be then calculated over a window xb(n) of
length Nw centered at continuous places in time b spaced by Nh
hop samples. This can give estimates of the fundamental frequency
f0 = 1/T0 based on the harmonic strength at each frame b.

Another way to find lag candidates is with the use of the average
magnitude difference function (AMDF)[5, 12], where a running
sum is performed on the difference of the signal with itself, such
that

g(m) =

N−1∑
n=0

(x(n)− x(n+m)). (3)

This difference function can alternatively be used as a weighting
function to help improve the accuracy of the ACF as a pitch esti-
mator.

The local maxima of r′xx(m) of a particular segment provides
a number of candidates which help determine the fundamental fre-
quency in that segment along time. In this paper, several steps for
preprocessing at the time of calculating the short time autocorre-
lation signal are assessed and evaluated, so that the most relevant
steps for the calculation of the pitch candidates are taken into ac-
count. Furthermore, a method for weighting the harmonic strength
of each candidate is presented. Methods to determine voiced and
unvoiced parts in the signal are also presented, and a heuristic to
determine and follow pitch trajectories is introduced as well. A
spectral correction algorithm additionally improves the retrieval
of candidates when the harmonic strength of multiples of the fun-
damental may mask the correct detection. Evaluation results and a
comparison with several algorithms is presented and evaluated at
the end.

3. PITCH EXTRACTION

Several algorithms which work on the spectral domain smooth the
magnitude function of consecutive isolated spectra to find the most
prominent frequency peak belonging to a particular frame [13]. In

this work it is shown that the variability of the pitch candidates can
also be modeled in a straightforward manner.

As it was introduced in Sec.2, the autocorrelation function has
a global maximum at m = 0, where it represents the overall en-
ergy content of the particular isolated segment in which the func-
tion is calculated. Periodicities in xb(n) can then be found by
analyzing the places where the pitch lag m is at other local max-
ima, or rxx(mpeak) after m = 0. The relationship of these peaks
to the maximum peak of the ACF would give a good cue of the
fundamental period within a predefined interval [mmin,mmax].

3.1. Pre-processing

For finding the fundamental frequency candidates, an incoming
signal is hard - center clipped with a threshold of Γc = 1× 10−3

to reduce the influence of other harmonic ratios on the signal [14].
The signal is then high-pass filtered with a butterworth filter of de-
gree six at a cut off frequency of fc = 50 Hz to reduce influences
of low frequency noise.

At each windowed frame b of a signal x(n) taken at a hop size
Nh = 0.01s · fs, an isolated segment is extracted from x(n) and
multiplied with a hanning window

w(n) = sin2(
πn

Nw + 1
), (4)

giving a signal segment xb(n) for n = 0, ..., Nw + 1 where Nw
is the length of the window in samples. The autocorrelation of the
segment is then calculated using Eq. 1.

The frame is then weighted using Eq. 3 such that

r̂xx(m) =
r′xx(m)

g(m) + α
, (5)

where α = 1 is taken. The output is then normalized to the maxi-
mum of the resulting signal.

3.2. Pitch Candidate Vector

The local maxima are found in the resulting weighted and nor-
malized ACF r̂xx(m) with a peak picking technique to generate a
vector of pitch candidates

P = [mκ, ...,mK ], mmin < mκ < mmax, (6)

where mmin and mmax are the allowed minimum and maximum
lags respectively, and κ = {1, ...,K}, where K is the number
of detected pitch candidates above the threshold gr(m). After
the previous step, just the positions of r̃xx(m) which surpass the
threshold

qr(m) =
(ln(fs)− ln(m))

ln(fs)
(7)

are taken in consideration and sorted in descending order with re-
spect to the distance r̂xx(m) − qr(m). The resulting candidate
vector P̊ contains the current pitch estimation candidates for that
particular frame.

3.3. Spectral Modification

Sometimes and due to the nature of particular sounds, the char-
acteristics of the vocal tract, or the timbre characteristics of some
instruments, will give away a formant structure which can detri-
ment the detection performance of the most prominent lag [15].

DAFX-2



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

2 2.05 2.1 2.15
−1

−0.5

0

0.5

1

t in s

A
m
p
li
tu
d
e

x(n) w(n) w̃(n)

200 400 600 800 1,000
−1

−0.5

0

0.5

1

m→

A
m
p
li
tu
d
e

r′xx(m) P̊ P

Figure 2: A case for finding the correct candidate with spectral
modification. The top frame show the two windows used for cal-
culating the lag. The lower picture shows the ACF of w(n), and
the peaks of P̊ above a threshold.

To account for this, we introduce a candidate confirmation
algorithm which follows the tracked pitch in the ACF, and de-
termines its most plausible position. However some of the frag-
ments may be accompanied by other harmonics which should not
be taken in consideration, and the difference of the harmonic con-
tent between each frame should be taken into account.

To aid in this problem, the following technique makes use of
the fact that if the harmonics of a particular fundamental frequency
are equal in amplitude and since their harmonics are equally spaced
in frequency, the distance between the resulting peaks of the auto-
correlation from this modified waveform will match the fundamen-
tal period T0 = 1/f0.

The local maxima of rxx(m) above qr(m) are arranged in a
vector P̊, which contains the positions m of the pitch candidates
sorted in descending order relative to qr(m). If the ratio of the
harmonic strength of the first two lags m1, m2 in P̊,

min [r̂xx(m1), r̂xx(m2)]

max [r̂xx(m1), r̂xx(m2)]
≥ γ (8)

taking γ=0.7, it will indicate that there is a possible mismatch with
relation to the harmonic ratio of the frequency components of that
particular signal segment. If there are more candidates in the vicin-
ity of the harmonic strength for mκ, a search is conducted to find
a better estimate of the lag. A further window is thus applied on
the frame to determine the correct pitch position, so that a second
window in

x̃b(n) = x(n− Nw
4

)w̃(n), (9)

can be set, where w̃(n) is a hanning window of length Nw
4

accord-
ing to Eq.4 like in the upper plot of Fig.2. The spectrum of the
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Figure 3: Spectral modification of the second window x̃b(n). The
upper plot shows the resulting ACFs of x̃b(n) and the modified
x̊b(n). The lower plot shows the spectrum |X̊(f)| after modifica-
tion.

signal snippet x̃b(n) is calculated taking

Xb(k) = F{x̃b(n)}

=
1

NFFT

NFFT∑
n=1

x(n) exp
( −2πjkn
NFFT

) ∀k ∈ {1, ..., NFFT},

(10)

where NFFT is the size of the Fast Fourier Transform (FFT)
and corresponds to the next power of two ofNw, and where x̃b(n)
is zero padded accordingly. The spectrum is then normalized to
its highest energy seen in any particular bin k, and the normalized
power spectral density (PSD) of x̃b(n),

X̃b(k) =
|Xb(k)|2

max[|Xb(k)|] , (11)

is calculated. The peaks of the spectral envelope which are above
−20 dB are set to 0 dB and a noise floor is in turn established
at −20 dB. We can then determine the harmonic content that re-
mains in the signal from the frame before, by performing

X̊b(k) = 2X̃b(k)− X̃b−1(k) (12)

to reduce errors in transient regions. Furthermore, X̊b(k) is weighted
with a roll-off factor of 40 dB per octave starting at the first fre-
quency bin k which is above−20 dB after Eq. 11, as it is depicted
with a dashed line in Fig.3. The corresponding ACF of the delayed
frame x̃b(n) is then calculated by using

rx̊x̊(m) = F−1{X̊b(k)}, (13)

and the maximum peak m̊ in rx̊x̊(m) after rx̊x̊(0) is extracted. The
resulting position in P which corresponds to the estimated funda-
mental frequency is found by calculating the closest mκ in P with
relation to m̊. Fig.3 shows the PSD of the second window in Fig.
2 which is used to determine the candidate mκ for that frame b.
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Figure 4: Result of applying the fractional lag calculation using
the interpolation procedure for a vibrato around G4 of a violin
stem from Bach’s ‘Ach Gott und Herr’. The blue line represents
the ground truth, f0(n).

3.4. Tracking Algorithm

Another problem at the time of finding the correct fundamental
frequency is when the decay of a particular note is retained after
another note starts. This has been shown to produce jumps in the
fundamental frequency track, as the harmonic energy of two di-
fferent fundamentals can be contained in the same frame.

To account for this, a method to provide a continuous tracking
of f0 is used. If there is a difference of more than δm = 10 lags
between consecutive estimates a decision is performed: If there
exists a candidate in the current set Pb whose difference from Pb−1

is at least 5 lags from the previous one, their positions are switched.
This will prevent sporadic jumps in the track. Additionally, a guard
interval is set such that this decision happens just when Pb of the
ACF of 4 consecutive frames (b, ..., b− 3) has contained at least
one peak above the decision threshold.

3.5. Parabolic Interpolation

The ACF can be seen as a discrete and quantized signal where
each pitch lag m = 1, ...,M is an integer, so fractional tones can
not be determined. A solution to this is to approximate the natural
occurring tone with a parabolic interpolation taking as anchors the
lag samples at positions between the local maxima [16]. If we take
three points y1 = y(x1), y2 = y(x2), y3 = y(x3) of a parabolic
function of the form y = ax2 + bx+ c around its local maximum
y(xmax), and considering that x1 = 0, x2 = 1, x3 = 2 and
y1 = rxx(mκ − 1), y2 = rxx(mκ), y3 = rxx(mκ + 1), then

∆xmax =
1

2
+

1

2

(y1 − y2)(y2 − y3)(y3 − y1)

2y2 − y1 − y3
, (14)

will give the relative position of the maximum of the parabola with
respect to y1 = rxx(mκ − 1), so that the lag is now estimated to
be at mκ + ∆xmax. Although the approximation of the shape of
the ACF to a parabola will introduce a bias to the estimation of the
frequency, it represents a better approximation of the pitch. Fig. 1
shows the lag positions and the peak resulting from this approxi-
mation. Fig.4 shows a result.

3.6. Voiced Activity Detection

For the determination of voiced and unvoiced regions, a simple
post processing procedure has been used to clean the track from

frames which are falsely labeled as voiced. This has been also a
major field of study for pitch detection algorithms, specially with
the use of speech signals. A segment is defined as voiced if, based
on the source-filter model of speech production, the signal to excite
the vocal tract filter is of a periodic nature.

Thus the pitch candidates which lie below the threshold de-
scribed in Eq. 7 are not taken in consideration. Secondly, candi-
dates whose frame’s root mean square (RMS) energy is below a
threshold ΓE = 0.705× 10−3 are also not considered and taken
as unvoiced. Lone pitches in frames which are separated more than
20 lags from the previous one are also considered as unvoiced.
Moreover, pitch candidates are only considered if the frequency
positions in the ACF are separated at least 15 lags. Lone candi-
dates which spawn over three consecutive lags, are also discarded.
This results in a continuous pitch track.

In summary, to find voiced and unvoiced regions, a frame b is
voiced if

(a) RMS{xb(n)} ≥ ΓE , (15)

and

(b) rxx(m) > qr(m), (16)

and if

(c) |mb−1 −mb| ≤ 15 (17)

which is the maximum lag so that the exchange between the
candidates does not surpass this threshold.

Fig. 6 shows the results before and after removal of false pos-
itives for a saxophone and a bassoon recording from the Bach 10
dataset.

Finally, the algorithm can be summarized for each particular
window at a frame b as follows:

1. Extract a signal segment x̂b = x(n) · w(n), where w(n) is
a hanning window of length Nw.

2. Calculate the autocorrelation function r′xx(m) according to
Sec.3.1.

3. Calculate the AMDF as in Eq. 3

4. At each lag m, calculate the weighted function r̂xx(m) as
in Eq. 5

5. Normalize the weighted ACF r̂xx(m) with respect to its
maximum

6. Get a pitch candidate vector from the autocorrelation peaks
and sort it according to Sec.3.2

7. Confirm pitch candidates according to the algorithm de-
scribed in Sec.3.3, so that a new peak vector

P̊ = {mκ, . . . ,mK}, (18)

is obtained, where m1 corresponds to the estimated pitch
lag, so that the estimated f0 of frame b is f̂0 = fs

m1
.

8. Run the tracking algorithm of Sec.3.4 for detecting discon-
tinuities.

9. Determine voiced and unvoiced frames.
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Figure 5: Pitch track for a violin recording of Bach’s ’Ach Gott und Herr’. The bottom plot shows a result after selecting the first candidate
of the ACF without the spectral modification decision. The middle one shows the same result but with a smaller window Nw = 1024. The
uppermost plot shows the result with spectral modification with the same parameters as the bottom plot.
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Figure 7: GPA for different SNR levels using the presented algo-
rithm. The result shows an improvement on the pitch accuracy in
voiced regions.

4. RESULTS AND EVALUATION

For the evaluation of the performance of the algorithm, two data-
bases are used: The PTDB-TUG database, consisting of 10 fe-
male and 10 male speakers, each pronouncing 236 utterances from
the TIMIT set, and the Bach 10 Chorales dataset which consists

of stems for 10 different Bach songs which are recorded for vio-
lin, clarinet, saxophone and bassoon. The database also contains
a midi set, but the proposed algorithm is not tested on midi data.
The previously presented algorithm is thus evaluated on the mono-
phonic stems of the Bach 10 dataset. For both databases, the orig-
inal ground truth data is used as evaluation criterium. Results are
evaluated with the YIN algorithm and the RAPT and PEFAC im-
plementations found in the voicebox[17].

The overall accuracy is given by the F0 Frame Error (FFE),
which calculates the accuracy given a particular constrain among
all the data and all the frames in the signal. For the evaluation, an
error of 20%, 8% and 10Hz within the ground truth is chosen for
all cases. Moreover, the results are also compared taking the Gross
Pitch Error (GPE), which is the proportion of voiced frames in
both the ground truth (GT) and the result, and the Fine Pitch Error
(FPE) where the standard deviation of the distribution of relative
error values is taken into account [18, 19]. Results are shown for
the Bach 10 database in Table 1 and for the PTDB-UG in Table 2.

The algorithm achieves around 97% frame accuracy over the
Bach10 dataset and around 90% frame accuracy for the speech
examples of the PTDB, relative to 20% of the ground truth values
provided for both datasets. For the Bach 10 evaluation a window
of Nw = 1536 is used which gives a ground pitch error of 3, 4%
and a F0 frame error of about 8, 4% within 10 Hz for the whole of
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Figure 6: Voiced/Unvoiced detection is performed by applying a simple rule which combines the energy in the frame, the harmonic ratio,
and the continuity of the fundamental track.

violin clarinet sax basoon average
Algorithm GPE FPE FFE GPE FPE FFE GPE FPE FFE GPE FPE FFE GPE FPE FFE

Mod. 0.0314 1.7011 0.1107 0.0298 1.1313 0.0662 0.0209 1.1574 0.0478 0.0526 0.7795 0.0955 0.0337 1.1923 0.0801
8% 0.0185 0.5683 0.0199 0.0190 0.6052 0.0180 0.0150 0.6012 0.0155 0.0513 0.5618 0.0559 0.0260 0.5841 0.0273
20% 0.0156 0.8284 0.0179 0.0165 0.8369 0.0166 0.0122 0.8992 0.0142 0.0477 0.9681 0.0546 0.0230 0.8831 0.0258

Nw = 1536 0.0315 1.7293 0.1098 0.0301 1.1598 0.0631 0.0256 1.2116 0.0526 0.0508 0.8810 0.1111 0.0345 1.2454 0.0842
8% 0.0170 0.6175 0.0188 0.0183 0.5958 0.0183 0.0180 0.6667 0.0199 0.0492 0.6277 0.0753 0.0256 0.6269 0.0331
20% 0.0131 0.9566 0.0164 0.0151 0.9179 0.0164 0.0119 1.1938 0.0163 0.0421 1.2224 0.0720 0.0205 1.0727 0.0303

RAPT 0.0405 1.8504 0.1277 0.0343 1.1431 0.0711 0.0352 1.2343 0.0612 0.0693 0.9417 0.1090 0.0449 1.2924 0.0922
8% 0.0236 0.6702 0.0210 0.0223 0.6129 0.0198 0.0253 0.7280 0.0225 0.0675 0.6858 0.0602 0.0347 0.6742 0.0309
20% 0.0177 1.1332 0.0157 0.0181 1.0013 0.0161 0.0174 1.3514 0.0154 0.0573 1.4394 0.0512 0.0276 1.2313 0.0246

YIN 0.0555 2.286 0.1118 0.0340 1.3710 0.0561 0.0529 0.9837 0.0696 0.1510 0.4114 0.1631 0.0734 1.2622 0.1001
8% 0.0503 0.5167 0.0449 0.0281 0.5109 0.0250 0.0505 0.4570 0.0449 0.1508 0.2572 0.1344 0.0699 0.4353 0.0623
20% 0.0498 0.6102 0.0444 0.0272 0.6164 0.0241 0.0493 0.6102 0.0438 0.1504 0.3490 0.1340 0.0692 0.5387 0.0616

PEFAC 0.8670 1.7155 0.8055 0.6378 0.9186 0.5784 0.1250 0.9773 0.1338 0.1205 0.7539 0.1306 0.4376 1.0913 0.4121
8% 0.8648 0.7488 0.7698 0.6360 0.4417 0.5658 0.1202 0.5601 0.1069 0.1185 0.5756 0.1058 0.4348 0.5816 0.3871
20% 0.8594 4.478 0.7651 0.6310 1.999 0.5613 0.1083 1.6454 0.0964 0.1074 1.5181 0.0959 0.4265 2.4101 0.3797

Table 1: Results based on absolute error for the Bach 10 database. Comparison is done with the AMDF weighted ACF, with the exchange
turned on.

the dataset. The error is higher on the bassoon stems, and improves
to about 8% when the spectral modification algorithm is used. The
only parameter which is being changed is the window length for
the calculation.

For the PTDB database in Table 2, the accuracy is also pre-
sented using two different windows, atNw1 = 2048 and atNw2 =
4096 with spectral modification. The algorithm performs well
over the other for the female speech samples, although for the
smaller window size the algorithm finds problems in detecting
low frequency fundamentals. For a higher window length, the al-
gorithm performs well with spectral modification achieving over
92% accuracy for the F0 frame error and around 89% ground pitch
accuracy within 10 Hz of the ground truth.

Results under additive white gaussian noise (AWGN) at di-
fferent signal to noise ratios (SNR) also show an advantage in
comparison with the above mentioned algorithms. Fig. 7 show the
Gross Pitch Accuracy (GPA) (where GPA = 1− GPE), for the pre-
sented algorithm evaluated under a subset of 20 utterances for the
10 male and 10 female speakers of the PTDB database. By us-
ing the presented pitch tracker, an accuracy of over 70% for all
the cases, showing an increased improvement in the overall pitch
accuracy for voiced regions.

In Fig.5 a result is shown on a violin track for two particular

window sizes (Nw1 = 1024 and at Nw2 = 2048). The lower plot
shows the detection performed with Nw2 without spectral mod-
ification and the uppermost plot with the decision algorithm. It
shows that although the lowest window performs well if the track-
ing algorithm is used, the accuracy increases using a longer win-
dow without diminishing the performance. This also shows the
good performance of the spectral modification algorithm at the
time of performing a correct detection without the need of further
parametrization of the algorithm.

5. CONCLUSION

It has been shown that the algorithm proposed in this paper can
be a reliable monophonic pitch detector because it pays attention
to several properties in sound signal based on simple heuristics.
Unwanted jumps in the pitch track which can occur due to the na-
tive timbre characteristics of musical instruments, or due to the
resonant frequencies of the vocal tract at the time of uttering par-
ticular vowel qualities, can be diminished by the use of a spectral
correction function when there exist ambiguities in the output of
the weighted autocorrelation signal. Furthermore, the f0 track is
smoothed by the use of a tracking function that resolves the possi-
ble disturbances when, for example, a transient between continu-
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female male
Method GPE FPE FFE GPE FPE FFE

Mod. Nw2 0.1120 2.2640 0.0750 0.1135 2.1105 0.0805
8% 0.1152 2.1508 0.0715 0.1169 2.0854 0.0798
20% 0.1149 2.1809 0.0715 0.1150 2.1561 0.0797

Mod. Nw1 0.2516 3.8864 0.0997 0.2865 3.8846 0.1251
8% 0.2486 3.7214 0.0960 0.2918 3.8500 0.1243
20% 0.2461 3.8046 0.0959 0.2817 4.0088 0.1241

Nw = 2048 0.1063 2.5431 0.0758 0.1329 2.5086 0.1589
8% 0.1069 2.4395 0.0749 0.1375 2.4752 0.1587
20% 0.1057 2.4875 0.0749 0.1346 2.5677 0.1587

YIN 0.3028 2.2002 0.0835 0.5663 1.4291 0.1308
8% 0.3058 2.0779 0.0814 0.5728 1.4050 0.1310
20% 0.3058 2.0781 0.0814 0.5728 1.4057 0.1310

RAPT 0.1523 3.0357 0.1144 0.1523 2.8079 0.0955
8% 0.1520 2.9129 0.1065 0.1536 2.7766 0.0899
20% 0.1503 2.9803 0.1062 0.1496 2.8834 0.0891

PEFAC 0.3931 3.6037 0.2237 0.3586 3.2301 0.1885
8% 0.3827 3.4276 0.2082 0.3609 3.2083 0.1789
20% 0.3819 3.4668 0.2080 0.3562 3.3335 0.1779

Table 2: Performance results of different algorithms for the PTDB-
TUG database.

ous notes is present. The fundamental frequency track can thus be
reliably extracted by the use of the proposed ACF based algorithm
without the need for tuning particular window sizes. Although
there exist further possibilities of improvement in detecting the
moment where transitions occur and for voiced segment determi-
nation, it is possible to find a decision threshold for the application
of the presented algorithm. The spectral modification algorithm
performs well at the moment of finding these transitions, and can
be reliable for improving detection of the fundamental in voiced
speech and musical signals.
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