
Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

AUDIO TRANSPORT: A GENERALIZED PORTAMENTO VIA OPTIMAL TRANSPORT

Trevor Henderson

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA USA
tfh@mit.edu

Justin Solomon

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA USA
jsolomon@mit.edu

ABSTRACT

This paper proposes a new method to interpolate between two au-
dio signals. As an interpolation parameter is changed, the pitches
in one signal slide to the pitches in the other, producing a porta-
mento, or musical glide. The assignment of pitches in one sound
to pitches in the other is accomplished by solving a 1-dimensional
optimal transport problem. In addition, we introduce several tech-
niques that preserve the audio fidelity over this highly nonlinear
transformation.

A portamento is a natural way for a musician to transition be-
tween notes, but traditionally it has only been possible for instru-
ments with a continuously variable pitch like the human voice or
the violin. Audio transport extends the portamento to any instru-
ment, even polyphonic ones. Moreover, the effect can be used to
transition between different instruments, groups of instruments, or
any other pair of audio signals. The audio transport effect oper-
ates in real-time; we provide an open-source implementation. In
experiments with sinusoidal inputs, the interpolating effect is in-
distinguishable from ideal sine sweeps. More generally, the effect
produces clear, musical results for a wide variety of inputs.

1. INTRODUCTION

A portamento, or musical glide, has been a significant expressive
device in music for at least the past 200 years [1, 2]. Short por-
tamenti can connect notes to make a passage sound more fluid,
while long portamenti can draw out a transition with anticipation
before finally arriving at the destination. The author in [1] claims
that “portamento draws on innate emotional responses to human
sound, as well as on our earliest memories of secure, loving com-
munication, in order to bring to performances a sense of comfort,
sincerity, and deep emotion.” Regardless of whether this text de-
scribes a universal experience, portamenti have a decidedly unique
sound and musical significance.

Due to the nature of the sound, the only instruments that can
produce portamenti are instruments that, like the human voice, can
vary their pitch continuously. Certain electronic systems described
in §1.1 are capable of producing the effect, but they are limited to
particular situations (e.g. monophonic glide, offline processing).
In this work, we present an audio effect titled, “audio transport,”
which interpolates between any two audio streams in a way that
sounds like a portamento, automatically and in real-time.

The audio transport effect relies on solving a 1-dimensional
optimal transport problem. The solution to this problem deter-
mines how the pitches in one signal will move to pitches in the
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other. We find that the effect works best on pairs of sounds that
do not have sharp attacks or strong tremolo and have comparable
brightness.

The paper is organized as follows. §2 gives a brief introduc-
tion to the optimal transport problem and its relevance to the rest
of the paper. §3 presents the audio transport effect, including a
number of techniques necessary to produce artifact-free audio. §4
details our implementation of the audio transport effect and pro-
vides perceptual results. Finally, §5 concludes with discussion of
potential applications and future work.

1.1. Previous Work

Portamenti have existed in electronic music since its inception.
One of the earliest electronic instruments, the theremin, is famed
for the sweeping sounds it can produce from its continuous pitch
control. Today, a pitch wheel can be found on almost all synthe-
sizers as a way to bend a note’s pitch.

In addition to manually-controlled portamenti, many synthe-
sizers have a “glide” parameter which automatically introduces
portamenti between sequential notes. Typically this effect is mono-
phonic, but some synthesizers support polyphonic glide using rule
based systems [3].

As for sample-based instruments, the pitch of a sample can
be changed by varying its playback speed. Alternatively, phase
vocoders allow for a sample’s pitch to be changed independently
of its speed [4, 5]. Both of these methods, like a pitch wheel, can
produce a polyphonic portamento but they necessarily move all
the pitches in the same direction at the same rate. As such, these
techniques can not be used to slide between chords with different
harmonies or instruments with different timbre.

Techniques involving phase vocoders [6], modulation vocoders
[7], and popular but unpublished commercial products like Melo-
dyne [8] allow for artists to vary pitches within a sample inde-
pendently, which could conceivably be used to create polyphonic
portamenti. This type of pitch manipulation, however, is not suited
for real-time use because without manual input, the pitches have
no destination.

While not related to portamenti, optimal transport has been
applied to audio problems before. The authors in [9] describe how
optimal transport can be used to perform spectral unmixing with
application to musical transcription. The authors in [10] apply
optimal transport to the problem of fundamental pitch estimation.
Both of these papers focus on analysis rather than synthesis.

1.2. Contributions

We present audio transport, an audio effect that produces a porta-
mento between arbitrary audio sources. The effect works by in-
terpolating between the spectra of the two input signals according
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to an optimal transport map. To our knowledge, this is the first
work to apply optimal transport to audio generation and also the
first that can achieve this type of portamento effect automatically
and in real-time. In addition to the novel application of optimal
transport, we present a technique based on time-frequency reas-
signment [11] that divides the audio spectrum prior to transport
and we extend the phase accumulation technique from [5] to pre-
vent phasing between windows.

2. OPTIMAL TRANSPORT OVERVIEW

The optimal transport problem asks how to move probability mass
from one configuration to another in a way that minimizes the
amount of work (mass times distance) performed on each infinites-
imal piece of mass. More formally [12], the problem seeks an
optimal plan π∗(x, y) that describes how much mass should be
transferred from position x to y satisfying:

π∗ = arg min
π

∫∫
R2

‖x− y‖p dπ(x, y), (1)

subject to nonnegativity as well as conservation of mass for source
and target distributions ρv and ρw:∫

R
π(x, y) dy = ρv(x) and

∫
R
π(x, y) dx = ρw(y). (2)

The p-th root of the optimal value provides an intuitive way to
measure the similarity between two distributions known as the p-
Wasserstein distance. In the rest of this paper, we will use p = 2.
The corresponding “least squares” Wasserstein distance satisfies
all metric axioms among other attractive properties [13, 12].

We use the optimal plan to perform displacement interpolation
between two distributions [14]. This interpolation animates the
mass assignment computed in Equation (1) by sliding each particle
of mass between its two assignments. In computer graphics, this
interpolation technique can be used to naturally transition between
histograms, images, or meshes [15, 13, 16, 17, 18].

Consider Figure 1, which demonstrates two different ways to
interpolate between distributions. On top, the distributions are in-
terpolated linearly. If we imagine the distributions as audio spec-
tra, then this transformation is simply fading one set of pitches
out and another set in. On the bottom, the same distributions are
transformed using displacement interpolation. The mass physi-
cally slides from one location to another. If these were audio spec-
tra, this sliding would sound like a portamento.

It should be noted that solving the optimal transport problem is
known to be computationally challenging for any dimension d >
1. Fortunately, solving the problem on the real line can be done in
linear time [18].

3. AUDIO TRANSPORT

The audio transport effect works by performing displacement in-
terpolation on input audio spectra, so that pitches in one signal
slide to pitches in the other as an interpolation parameter is changed.
To modify the spectra over time, the audio transport algorithm fol-
lows the phase-vocoder paradigm [4, 5, 6]. In detail, a sliding
short-time Fourier transform (STFT) is applied to both input audio
streams, producing complex spectra. These spectra are interpo-
lated according to the optimal transport map and fed through an
inverse STFT to form the output audio stream.

(a) A linear interpolation or “fade”

(b) Displacement interpolation via optimal transport or a “portamento”

Figure 1: The distribution on the left is transformed into the distri-
bution on the right with two different interpolation methods.

§3.1 describes an efficient way to interpolate between spectra
using optimal transport. Alone, this method produces two arti-
facts which, borrowing from phase-vocoder literature, are known
as vertical incoherence and horizontal incoherence [5]. Solutions
to these two phenomena are described in §3.2 and §3.3, respec-
tively.

3.1. Optimal Transport Between Spectra

Consider discrete spectra represented by complex vectors X , Y
and corresponding frequency vectors ωX , ωY . Analogously to the
continuous optimal transport plan given in Equation (1), we can
write the optimal transport plan between these discrete spectra as
the plan π∗ ∈ R|X|×|Y | minimizing:

π∗ = arg min
π≥0

∑
i,j

∣∣∣ωXi − ωYj ∣∣∣2 πij (3)

subject to the conservation of mass constraint∑
j

πij = |Xi| and
∑
i

πij = |Yj |. (4)

This problem assumes that
∑
i |Xi| =

∑
j |Yj |. To treat spec-

tra with different total magnitudes, the plan can be computed on
normalized spectra; then, scaling is interpolated linearly over the
interpolation.

Once an optimal plan is computed, the spectra can be interpo-
lated with parameter k ∈ [0, 1] by placing each mass π∗ij at the
displaced frequency:

(1− k)ωXi + kωYj (5)

If multiple masses are placed at the same frequency, they are added
together. The phase attributed to the mass is considered in §3.3.

In one dimension, the optimal transport plan is monotone or, in
other words, no mass crosses over any other mass [19]. This allows
for Equations (3) and (4) to be solved using the greedy strategy
presented in Algorithm 1.

The algorithm begins with the initial bins of the two spec-
tra. Since no mass can cross over any other, all of the mass in
the smaller bin must be assigned to the larger. With this assign-
ment done, one can imagine virtually removing the smaller bin and
shrinking the mass of the larger by the mass assignment. The algo-
rithm then continues inductively on the smaller problem. At every
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Algorithm 1 Computing The Optimal Transport Matrix, π∗

π∗i,j ← 0
ρX , ρY ← |X0|, |Y0| . ρ is the mass left in a bin

loop
if ρX < ρY then

π∗ij ← ρX . Assign as much mass as possible

i← i+ 1 . Refill the emptied bin
if i ≥ |X| then break
ρX ← |Xi|

ρY ← ρY − ρX . Decrease the capacity of the other

else
Symmetric to the case above

return π∗

iteration, all of the mass in one bin becomes completely assigned.
Therefore, the complexity of the algorithm is O(|X|+ |Y |). This
runtime is efficient relative to the super-linear runtime of the fast
Fourier transform.

3.2. Resolving Vertical Incoherence: Slicing the Spectrogram

One unfortunate effect of using an STFT is the necessary trade-
off between time and frequency resolution. As the time resolution
increases, the frequency domain becomes “smeared.”

The relation between a peak frequency and its smeared com-
ponents is known to be important for perceptual quality. Treat-
ing these independently leads to phasing artifacts within a window
known as vertical incoherence [5]. One method to solve this prob-
lem in phase vocoder literature is to “lock” regions surrounding a
peak frequency so that the relative phase between bins within these
regions remains unchanged [20, 5].

If Algorithm 1 were applied directly to audio spectra, it would
introduce vertical incoherence by translating smeared components
independently. So, applying the locking strategy, we will treat
smeared regions as single units with collective magnitude in the
transportation map.

It now remains to determine how exactly to choose the bound-
aries between smeared spectral regions. A common strategy is to
use a heuristic to find local peaks and then assign the boundaries
to be the midpoints of the peaks. Since displacement interpola-
tion makes extreme changes to the spectra, however, this some-
what naïve plan [5, 6] is not sufficiently robust to produce a clean
signal. We propose a more principled segmentation method based
on frequency reassignment.

Frequency reassignment uses information in a signal’s phase
to enhance its frequency resolution. Each spectral component with
frequency ωi is mapped to the reassigned frequency ω̂i that better
reflects the true energy distribution [11]. Sinusoids that have been
smeared across multiple bins become mapped to the same central
frequency, which produces the plateaus shown in Figure 2.

With this view, an intuitive way to define sinusoidal regions is
by the zero crossings of ω̂i − ωi. Falling crossings indicate the
center bin of a region while rising crossings indicate the bound-
aries. These can be computed at the cost of an additional STFT
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Figure 2: Dividing the spectrum of a sinusoidal A major chord
consisting of the notes A4, C]5, E5 and A5. The spectrum is dis-
played on top. On the bottom, the reassigned frequency ω̂ (solid
line) is plotted against the frequency ω (dashed line). The intersec-
tions of these lines indicate the boundaries between groups (verti-
cal lines) and their pitch centers (dots).

with the following formula [11]:

ω̂i − ωi = =
{
XT hi ·X∗i
|X2

i |

}
. (6)

XT h is the STFT computed using a time-weighted analysis win-
dow.

3.3. Resolving Horizontal Incoherence: Phase Accumulation

Finally, we reintroduce phase to the spectra. In doing so, we
will be concerned with the phase relations between consecutive
windows rather than the phase relations within a window. Inter-
window phase relations carry information about short-time events
like transients and hence ignoring these relations can create a blurry
sound in some cases as discussed in § 4.2.

When a particular spectral region is transposed, its phase ro-
tates at a different rate. Thus, applying the phases of consecutive
windows in the original signal to the corresponding windows of
the transposed signal causes interference known as horizontal in-
coherence [5].

In phase vocoders, this is resolved by integrating the reas-
signed frequency over the window difference. In other words, the
phase ϕti in bin i and window t can be estimated from the phase
ϕt−1
i in window t− 1 as follows:

ϕti = ϕt−1
i + ω̂t−1

i ·∆, (7)

where ∆ is the delay between the windows in seconds. This update
is applied to center bin of a region as described in §3.2. The other
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Figure 3: A (reassigned [11]) spectrogram of the audio transport
effect being used to interpolate between sinusoids at A4 and C]5.
The “stair-stepping” effect is due to the frequency resolution of ≈
5 Hz, but this can be reduced arbitrarily by padding each window
with additional zeros.

phases in each region are modified accordingly to maintain the
same relative phase with respect to the center bin.

Some small modifications must be made to apply Equation (7)
to the audio transport effect. First of all, it is possible that many
spectral regions overlap on a particular bin, which makes the terms
ω̂t−1
i and ϕt−1

i ambiguous. To resolve this we simply choose the
frequency and phase of the loudest overlapping region. Addition-
ally, since the audio transport effect consists of rapidly-moving
pitches, we can minimize phasing by averaging the current reas-
signed frequency and the previous reassigned frequency:

ϕti = ϕt−1
i +

ω̂ti + ω̂t−1
i

2
·∆. (8)

4. RESULTS

We implemented the audio transport effect described in §3 for real-
time audio interpolation. We tested our implementation on syn-
thetic sounds described in §4.1 as well as on a variety of complex
and natural sounds described in §4.2.

All of our results are performed on 44.1 kHz audio with a win-
dow size of 0.05 s or 2206 samples. We use a Hann analysis win-
dow with 50% overlap and no synthesis window. Additionally, the
windows are padded with zeros to increase the frequency resolu-
tion of the FFT to ≈ 5 Hz.

Our implementation is open source and available at https:
//github.com/sportdeath/audio_transport.

4.1. Interpolating Sinusoids

We used the audio transport effect to interpolate between single
sinusoids. Intuitively, this should sound exactly like a sine sweep
between the input pitches. We performed listening experiments
for interpolations at a variety of speeds and with inputs spanning
the entire perceptive range. The spectrogram of one such interpo-
lation is shown in Figure 3. Almost all of the interpolations were
indistinguishable from real sine sweeps. In extreme cases where
the interpolations were faster than 2000 Hz s−1 we perceived some
phase distortion, but these situations would be rare in normal use.

The audio does exhibit “stair-stepping” between frequencies
due to the frequency resolution of the FFT and the time resolution
of the windows as demonstrated in Figure 3. Due to the small
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Figure 4: Interpolating between a sine wave (k = 0) and a saw
wave (k = 1) leads to a drop in volume for values of k close to but
not equal to zero as shown in the audio signal on top. The spec-
trogram shows how the sine’s single peak splits into many peaks,
which interfere when they are close together.

time-frequency resolution of the steps, however, we were unable
to perceive them in the listening experiments.

4.2. Interpolating Natural Sounds

We tested the audio transport effect on a variety of sounds, some of
which are available at https://soundcloud.com/audio_
transport. The effect intuitively sounds like a portamento,
even when applied to unnatural cases like a piano note gliding into
a human voice. It is applicable to monophonic and polyphonic
sounds. We even had success using it to transition between entire
songs. The audio typically sounds artifact-free for many classes of
audio signals, with a few exceptions noted below.

The audio transport effect does not guarantee temporal con-
sistency between transport maps. So interpolating between sounds
with dynamic spectra, like a pair of wavering orchestral chords,
can produce a fluctuating pitch.

Another artifact that can occur is a sudden drop in volume
when the interpolation parameter is close to but not equal to either
zero or one as shown in Figure 4. This happens when one single
frequency is mapped to a large range of frequencies. As the sin-
gle frequency separates, its components interfere with each other,
reducing the volume. This artifact is most prevalent when interpo-
lating between sounds with vastly different spectral complexity as
is the case with pairs of bright and dark sounds.

It is also worth reminding the reader that this method is in-
tended for static sounds and will blur transients, as mentioned in
§3.3. This artifact can be subtle, but when we directly compared
the output of the audio transport effect with an interpolation fac-
tor of 0 to the corresponding input we consistently picked out the
original audio when it had sharp transients like hi-hats. We suspect
that this could be fixed using phase reinitialization techniques [5],
but this exploration is left to future work.
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5. CONCLUSION

In this paper, we introduced the audio transport effect which can
create a portamento-like transition between any two audio signals.
The effect produces a novel but intuitive sound and it is controlled
by a single interpolation parameter. As a result, it is accessible for
musicians to incorporate into both live performances and studio
recordings.

In our live experiments, we controlled the interpolation pa-
rameter using a MIDI pitch fader, but really it can come from any
source. For example, an instrument could be constructed where
the velocity of a note controls the interpolation parameter. As
much as we have described the effect as a portamento, the input
pitches do not need to have a different fundamental. The effect
also produces interesting interpolations between signals with the
same fundamental pitch but different timbre.

Our work on audio transport suggests several other use cases
beyond those explored in our experiments. For example, consider
a single audio source that is fed as one input of the audio transport
effect, and the output of the effect is fed back into the other input.
By keeping the interpolation parameter constant, the pitches in the
output should lag behind the input pitches similar to synthesizer
“glide.” This setup leads to several questions: What would happen
if other effects were added to the feedback chain? Is it interest-
ing to use multiple audio transport effects at the same time? The
latter may be supported by the notion of barycenters in optimal
transport [21].

The audio transport effect as described still produces artifacts
for certain classes of sounds. Future work to resolve these could
investigate ways to sharpen transients, make transport maps tem-
porally consistent, and reduce the effects of energy cancellation.
For a wide variety of inputs, however, our effect sounds smooth,
musical and inspiring.
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