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ABSTRACT

There are several algorithms and approaches to Room
Impulse Response (RIR) estimation. To the best of the author’s
knowledge, there is no documentation of accuracy, speed, or
even the feasibility of using signed distance functions (SDFs) in
combination with sphere tracing for this task. A proof of concept
with a focus on real-time performance is presented here, which
still lacks many features such as frequency-dependent absorption
and scattering coefficients, arbitrary source and receiver directives
etc. The results are then compared to real room impulse responses
and to a different simulation algorithm. Also, the rather special
merits of such an approach, such as 4D reverberation and simple
rounding of geometry, are briefly discussed and presented.

1. INTRODUCTION

Sphere tracing as defined by [1] has been used extensively in the
so-called "demo scene" for decades to render 3D video demos
via shaders in real time. Sphere tracing is a version of the ray
casting algorithm [2]. It relies on the geometry being defined as
signed distance functions (SDFs), and does not directly support
the import of standard 3D Polygonal geometry or meshes. One of
the advantages lies in the algorithm’s potentially improved speed
in comparison to fixed-step ray casting. SDFs are used to describe
implicit surfaces, typically via a function f : R3 → R(although
in principle, arbitrary dimensions are possible, f : Rn → R. See
Section 6). In order to define the desired geometry, this f should
be designed to return a negative value if the locus of the point is
inside the geometry, a positive value if the locus is outside and 0 if
on the surface. If f is defined carefully, the distance to the nearest
surface is returned by the function and therefore always known
during stepping along a view-ray. It follows from this that the step
size of a ray casting algorithm can be dynamically adjusted (see
Figure 1), resulting in fewer iterations along a ray, and therefore in
significant speed-ups. This dynamic adjustment of the step size to
unbound spheres around the current step is the core idea of sphere
tracing and the reason for its name [1].
Throughout this paper, several test-scenes are mentioned such as
"Scene 1, rigid". These scenes are taken from [3] which attempts
to compare different RIR algorithms with real recordings. For this
purpose, real rooms have been measured and CAD models are
provided of these scenes. Therefore this work used a small set
of simple scenes from [3] and repeatedly refers to them.

Copyright: © 2020 Patrik Lechner. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Figure 1: Visualization of the sphere tracing algorithm in 2D. A
ray is sent from the source (left) to the right until it hits a surface,
always moving the maximum distance as the SDF informs the
tracing algorithm about the distance to the nearest surface.

1.1. Previous Work

A lot of previous work exists both in the field of ray/sphere
tracing and RIR estimation. As shown in [4] and [3], there
are numerous approaches for estimating RIRs. Besides ray-
based methods such as the "Image Source Method", ray-tracing
and hybrid approaches, wave-based methods, such as finite
difference methods are becoming increasingly interesting due to
advancements in computational power and research. Still, wave-
based methods seem to be too slow for real-time applications.
With the Pascal Architecture, NVIDIA introduced real-time ray
tracing done on the GPU with NVIDIA VRWorks™ Audio [5].

Sphere Tracing

Sphere tracing itself was first described by [1]. Since then, many
authors have described improvements in speed e.g. [6] or the
addition of features such as [7] [8], [9] or the activity of the
"shadertoy"-community[10]. The defining of SDFs is an active
field of research and there are several projects that aim at easier
construction of SDFs and integration in 3D frameworks such as
[11] and [12] but also some commercial software products have
implemented raymarching and SDFs by default such as Houdini
or Notch.

1.2. Motivation

The reasons why sphere tracing in a compute shader for RIR
estimation has not been documented until now probably lie in the
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relatively new introduction of compute shaders as well as in the
difficulty of creating SDFs (in comparison to using existing 3D
/CAD models and importing them to polygon-based ray tracers).

1.2.1. Sphere Tracing

As described above, ray tracing is one common method of
approaching the problem of RIR estimation. Sphere tracing offers
a number of advantages over ray tracing in combination with
meshes or polygonal surfaces. It is procedural/parametric by
default, since all geometry is defined by implicit surface equations.
Sphere tracing approximates cone tracing and is thereby reducing
aliasing artifacts in the pixel domain[1]. In the audio domain,
beam tracing is considered to have advantages– however, it is
is very time consuming in a non-SDF setup[4]. Deformation
and rounding of geometry is possible in a very efficient way,
which might offer an opportunity to approximate low-frequency
response due to diffraction artifacts. Since geometry is not defined
via vertices and edges, there is no such thing as increasing the
complexity of a shape in this way as in traditional mesh-based
approaches. Rounding a geometrical shape is a mere subtraction
since it just shifts the rendering to another iso-surface which
gets increasingly smooth as shown in Figure 2. Depending on
the construction of the geometry, holes and cavities (such as
in a diffusor) can also be made to disappear (offering ideas for
heuristics for a low-frequency pass), as shown in Figure 3.

Figure 2: Rounding the box given in Equation 1 by subtraction of
0.7 meters. Visible iso-lines (gray) are generated by the distance
function. The subtraction shifts the surface to a different, rounder
iso-line.

1.2.2. Implementation

It is possible to implement the chosen algorithm on the CPU
and the GPU. A number of frameworks could be chosen for
GPU-accelerated computation such as OpenCL or NVIDIA
CUDA. For example, [13] gives an overview of GPU development
environments suitable for RIR estimation. The choice of a shader
has the advantage of being more operating system-independent
and hardware-independent as, for example, the use of CUDA ties
to NVIDIA GPUs. Compute shaders (in contrast to fragment
shaders) make it possible to write to arbitrary output locations,

(a) Diffusor shape (b) After subtraction: rounded
and closed.

Figure 3: The diffusor from "Scene 1" in [3] was reconstructed
exactly (a). A subtraction of 0.01 meters from the distance function
causes the holes to close (b). The diffusor has bounding box
dimensions of 3.992m×4.141m×0.240m.

which is necessary for generating the actual impulse response
from the measurement of timings. Since they have been available
since OpenGL 4.3 (August 2012) / OpenGL ES 3.1, they are
both mature enough to have received broad support in other
frameworks, and relatively new in respect to first publications
about sphere tracing. Another reason for the choice of compute
shaders is their simplicity. In comparison to CUDA and OpenCL,
shaders are easier to write and the use of the Graphics Library
Shading Language (GLSL) is widespread. Achieving the whole
computation in a single shader, from the definition of the
geometry, to the ray tracing, up until the actual impulse response
computation makes this attempt highly portable and expandable.

2. GENERATION OF SDFS

Only rather simplistic shapes were needed for this proof of
concept. Predominantly boxes were used and combined in various
ways to achieve reflection areas, shoebox scenes and the slightly
more complex diffusor shape of "Scene 1" in [3]. A simple 3D
box SDF f as a function of 3-dimensional coordinates px, py, pz
with a size of Rx ×Ry ×Rz can be described by:

f(px, py, pz) =
√

c0(px −Rx)2 + c0(py −Ry)2 + c0(pz −Rz)2

(1)
where the function c0(x) is just clipping at 0:

c0(x) = max(x, 0) (2)

which conveniently translates to GLSL in Listing 1.

f l o a t box ( vec3 pos , vec3 R) {
re turn l e n g t h ( max ( abs ( pos ) − R , 0 ) ) ;

}

Listing 1: GLSL code for creating a box SDF

As mentioned above, rounding can be achieved by subtracting a
distance value (in meters in this case since all distances in this
implementation are chosen to be in meters). As an example, this is
demonstrated in Figure 2, with the value 0.7meters resulting in fr:

fr(px, py, pz) = f(px, py, pz)− 0.7m (3)

[1] gives a list of mathematical definitions of many shapes,
[14] gives a good overview of procedural modeling using SDFs
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and a rich and advanced software library of shapes and operators
that are ready to use for the creation of more complex scenery can
be found in the mercury hg_sdf library[15].

3. SPHERE TRACING

For simplicity, deterministic equal-angle Ray Tracing is used
in contrast to Monte Carlo or Equal Area Ray Tracing (EART)
[16]. Unidirectional ray tracing has also been used for simplicity
reasons, although [17] has shown that bidirectional ray tracing
offers advantages. Since the classical sphere tracing algorithm
was adapted, it was found to be simplest to consider the "camera"
to be the receiver/microphone as it would receive light. It sends
out rays that might hit the sound source, which acts as a receiver
of rays. The sound source is chosen to be a sphere. Choosing the
correct volume for the receiver is critical, and using a constant size
can introduce systematic errors [18], [4]. A number of models are
available to compute the receiver volume, Vr . Typically factors
such as room volume, the number of rays and the distance from
the source are used for this computation. As in [19], [4], and [20],
the receiver was allowed to grow in volume. While [19] and [20]
use time as a factor to let the receiver grow, the reflection count
k is used in this attempt. Initially, when a ray is sent, k = 0 and
when it hits a surface, this counter is increased by one so the
source grows by this factor for this particular ray. So instead of
using time, the model provided in [4] is used and augmented with
the k term:

Vr = (k + 1)ωdSR

√
4

N
(4)

with
ω = log10Vroom (5)

where dSR is the source-receiver distance, N is the number of
initial rays and Vroom is the volume of the room.

The actual sphere tracing largely follows the original
formulation in [1] and is implemented similar to the pseudo code
in Listing 2.

f o r ( i =0 ; i ++; i <imax ) {
vec3 pos = ro + t * rd ;
Sdf r e s = map ( pos ) ;
t += r e s . x ;
i f ( r e s . x< e p s i l o n ) {

break
}

}

Listing 2: GLSL pseudo code for sphere tracing

In the above simplified code listing, the variable ro defines
the ray origin in space, rd defines the ray direction and epsilon
can be set to adjust the algorithm’s precision. The map()
function in this case not only returns the distance computed
via the SDF(res.x) but a struct that can contain material
properties (reflection coefficients, etc.). Here it was used to
distinguish between a sound source and a regular reflective body.
The space is sampled spherically and rd is generated from
the compute shader’s gl_GlobalInvocationID. In this
implementation, a resolution of 1024 × 1024 is used, resulting in
10242 initial rays and a maximum RIR length of 10242 samples.
From there, the space is sampled using the highly simplified
pseudo code in Listing 3.

Sdf r e s = c a s t R a y ( ro , rd )
f o r ( i n t k =0; k< n u m R e f l e c t i o n s ; k + + ; ) {

i f ( ComingFromRef lec t iveBdy ) {
rd = r e f l e c t ( rd , normal ) ;

}
r e s = c a s t R a y ( ro , rd ) ;
t = r e s . x ;
pos = ro + rd * t ;
i f ( r e s . body == soundSource ) {

t r a v e l D i s t a n c e += t ;
r e a d W r i t e ( t r a v e l D i s t a n c e , k ) ;

}
}

Listing 3: GLSL pseudo code for sampling the space and writing
to the RIR.

In Listing 3, castRay() refers to a function that
looks similar to the sphere tracing function in Listing 2, and
readWrite() refers to a function that takes the total distance a
ray has traveled from source to receiver, including all reflections
and the number of reflections. From the distance it computes
both the attenuation and the location to write to in the impulse
response buffer. It then reads the current value at this location and
adds the corresponding value, making use of a compute shader’s
capability to read and write its output and write to arbitrary output
locations. The necessity to write to arbitrary output locations is
the main reason for choosing a compute shader over a fragment
shader. It is, however, possible to define most of the functionality
in one file that is referenced via an include statement into
a compute shader to calculate the RIR and into a fragment
shader for visualization, see Figure 4. This is particularly handy
during the construction of geometry but also makes it possible
to easily calculate the RIR of existing sphere-traced scenes for
reverberation, e.g. in an audio/visual performance context or for
other 3D video content.

F (pxyz)

fragment shader compute shader

H(n)

Figure 4: A lot of the code, especially the map function F (pxyz)
which contains the SDF, can be shared between a fragment shader
used for visualization and a compute shader responsible for RIR
calculation.

4. IMPULSE RESPONSE GENERATION

The room is assumed to be a linear time-invariant (LTI) system.
Due to the proof-of-concept nature of this proposal, a highly
simplified model for RIR computation is used. Sphere tracing
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delivers the distances and number of reflections for M rays in this
implementation. Each ray follows a number of reflections K(m).
Each reflection pass adds up to a total travel distance of the ray
d(m). The sound source is assumed to send out the discrete unit
impulse function (Kronecker delta function) δ(n), see Equation
6. As non-integer delays are ignored in this implementation, the
shader will just write to the rounded integer delay location τs in
the impulse response H(n) that corresponds to the distance:

δ[n] =

{
1, n = 0

0, n ̸= 0
(6)

H(n) =

M∑
m=0

δ(n− τs(m)) · α(m) · (−1)K(m) (7)

The total attenuation per ray α(m) can be computed by using a
material-dependent coefficient of reflection αmat that is stored
in the Sdf struct. At each reflection pass k this results
in a possibly different reflection pass-dependent coefficient
αmat(k,m). α(m) can finally be computed by keeping a running
product within the loop of Listing 3:

α(m) =

K(m)∏
k=0

αmat(k,m) (8)

For simplicity’s sake, only one global coefficient αG is
implemented here, resulting in:

α(m) = α
K(m)
G (9)

Additionally, a proof of concept for frequency-dependent
loss for each reflection is introduced to the model. As a
computationally efficient heuristic, a binomial filter is used [21],
[22]. A simple one-zero filter G(z) is applied for each reflection:

G(z,K) = (1 + z−1)K ·
(
1

2

)K

(10)

The advantage of using such a simple filter is that a K-stage
cascade’s impulse response can be computed easily without
applying the filter repeatedly. By doing the inverse discrete-time
Fourier transform F−1 of the transfer function G(z) the N -length
impulse response is obtained:

g(n,K) = F−1{G(z)} =

(
1

2

)K
1

N

π∑
ω=0

(1 + e−jω)Kejωn

(11)
A binomial filter’s impulse response converges to a Gaussian bell
curve [21], which can be approximated as:

G(n,K) ≈ 1

σ ·
√
2π

· e−
1
2
(n−µ

σ
)2 (12)

with

σ =
√
K0.231 + 0.562 (13)

and

µ =
K

2
+

1

2
(14)

The right-hand side of Equation 12 is simply the normal
distribution, which is computationally efficient to calculate for
any K.

So instead of adding δ(n − τ(m)) into the RIR,
g(n − τ(m),K) is simply used instead. Similar to many
other implementations, a high-pass filter is applied to the resulting
RIR to compensate for low-frequency components resulting
mainly from the spatial extension of the sound receiver shape.

Other Frequency-Dependent Models

Besides the faster binomial filter approach, a function for IIR
filters was implemented in case a filter is needed whose Kth-order
serial cascade impulse response is not known. Also, if different
materials are set up in the scene and different filters need to
be applied, the binomial filter strategy is not applicable, so this
approach demonstrates a more realistic scenario. The filter(s)
needs to be set up as sample-by-sample functions and iterated
over an array. The result is inserted just as g(n) above.

Output

After the RIR is computed, it needs to be written to the
shader’s output texture. This way, an intermediate rectangular
representation of N × M pixels is produced. The RIR, h(n) is
written to the Texture T (x, y):

T (x, y) = H(x mod N +
y

M
) (15)

Depending on the use case (saving the RIR to a file, possible
auralization or convolution on the GPU), this data then needs to be
fetched from the GPU and the latter process needs to be reverted
to obtain a one-dimensional signal again.

5. RESULTS

This paper presents results and comparisons in 3 different
scenarios:

• A scene with two opposing medium-density fibreboard
(MDF) plates, causing multiple echoes: "Scene 3, multiple
reflections", taken from [3]

• A scene with one reflection from a diffusor in an otherwise
anechoic chamber: "Scene 1, diffusor", taken from [3]

• A shoebox scene, simulated with this work and [23] for
reference.

An example application is provided in the framework
TouchDesigner. The application as well as all generated
data and Jupyter Notebooks can be found on this project’s
github repository. 1

All of the following results have been computed using 10242

rays with each ray undergoing 10 reflections. The computations
were made on a strong consumer-grade machine (Intel i7 CPU,
NVIDIA Geforce 1080ti). The computation time for simple
scenes such as "Scene 1, rigid" in [3] was less than 1

60
seconds

including the computation of a simple visualization in real time.
The most complex scenes (geometrically and in regards to the
amount of reflections) that were tested, the shoebox scene and
"Scene 1, diffusor", were computed in less than 1

50
seconds. As

1github.com/hrtlacek/rayMarchReverb
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(a) Original recording, "Scene 3, multiple reflections" from [3].
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(b) Simulated using the proposed method.

Figure 5: Comparison of spectra of a real impulse response (a) and the proposed method (b).
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(a) Computed using [23].
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(b) Simulated using the proposed method.

Figure 6: Impulse response of shoebox room. Computed using the proposed method and [23].
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Figure 7: RIR computed using the proposed method and measured
by [3], "Scene 3", multiple reflections at opposed MDF plates.
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Figure 8: RIR computed using the proposed method and measured
by [3], "Scene 1", a single reflection with a diffuser.
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Figure 9: Impulse response of shoebox room. Computed using the
proposed method and [23].

expected, the method’s inherent parallelism gives fast execution
times and interpolation could be used to create audio-rate RIRs
for real time usage.

Since this implementation lacks features such as material-
specific reflection coefficients and passes for multiple octave
bands (computing low and high frequency behavior separately),
it is not possible to accurately compare previous work with
the proposed method by simply using the same materials. Still,
Figures 8 - 9 might give the reader an impression that the proposed
method has deficits but is able to produce results rather similar
to the reference RIRs considering the many simplifications.
Generally it can be shown that by adjusting reflection coefficients,
the method can be matched up to resemble existing work.
The results from "Scene 3, multiple reflections" can be observed
in Figure 7 in the time domain and a spectrogram is shown in
Fig. 5. Note that the comparison with [3] in Figure 7 ignores
the frequency response of the speaker and microphone that were
used in the original recording. As can be seen in the plot, the
original recording features a visible amount of difference to an
ideal impulse even with the direct signal. Fig. 5 seems to indicate
that the material dependent filtering seems too simple in the
proposed method, unable to capture a similar falloff of high and
low frequencies. The time domain plot in Figure 7 seems to show
that the echo times slightly differ from the reference, which might
be related to the growth of the receiver volume Vr . Figure 8 shows
another plot to show this implementation’s reaction to a more
complex scene including a diffusor. Figure 6 shows the spectra
of a simple shoebox room simulation in comparison to [23]. The
time domain plot of this comparison can be found in Figure 9. The
shoebox scene features a small room with dimensions 3× 4× 2.5
meters. Note that [23] used a sampling rate of 16kHz and has
been up-sampled to 44.1 kHz for comparison reasons.

Given the proof-of-concept nature of this proposal, there is a
lot of room for improvement in terms of accuracy. More audio
examples than are shown here can be inspected at the project’s
github repository.

6. CONCLUSIONS AND FUTURE WORK

This work was able to show that RIR estimation via SDFs in a
compute shader in a real-time-compatible manner is possible.
It remains to be tested how far this method can reach. While it
still is computationally costly to do these calculations in general,
the use of SDFs can offer some significant advantages such
as their procedural nature, their efficiency and simplicity. A
number of improvements both in speed and accuracy are possible
in the proposed technique, such as reduction of if-statements,
material-dependent attenuation and scattering, for example. Also,
a number of speed improvements and optimizations could be
implemented such as the removal of if statements in the SDF
function. Furthermore, a more detailed comparison and more
mature and rigorous mathematical analysis of the process seems
promising, as well as an analysis of the sphere tracing-specific
artifacts and their effects in the audio domain. As mentioned in
Section 1.2, sphere tracing seems to offer a surprising simplicity
and elegance, for example when it comes to smoothing geometry.
Simply the fact that it is a rather different approach than classical
ray casting of polygons seems to promise opportunities for further
research.

An SDF’s closeness to classical mathematical structures (in
contrast to sets of triangles, vertices, edges, etc.) might lead to
easier analysis or simpler comparison of different algorithms.
Their popularity in the graphics community leads to constant
development and the sheer amount of activity in the field seems to
promise greater ease of use in the future.

(a) Visualization.

0 10 20

−1

−0.5

0

0.5

Time [milliseconds]

(b) RIR simulated using the
proposed method.

Figure 10: Visualization (a) and RIR (b) of a 3-dimensional
projection of a 4-dimensional function, the Julia Set [24] .

Certain rather experimental ideas are easy to realize in
this technique as well. Due to the aforementioned connection
between geometry formulation in sphere tracing and mathematical
formulas, this algorithm is often used to render fractals. In this
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context, this would mean that it is rather easy to calculate the
RIR of a Menger sponge or a Julia Set (see Figure 10 for a
visualization and RIR). Moreover, many geometries/SDFs can
be formulated in a dimension-independent way, resulting in a
straightforward way to render 4-dimensional geometries, leading
to the idea of calculating the RIR of a 4-dimensional room. While
these thoughts do not offer any apparent practical application and
might "only" lead to aesthetically interesting results, it is possible
to find applications in the sonification of high dimensional data.
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