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ABSTRACT

In this paper we investigate into perceptual properties of Style-
WaveGAN, a drum synthesis method proposed in a previous pub-
lication. For both, the sound quality as well as the control preci-
sion StyleWaveGAN has been shown to deliver state of the art per-
formance for quantitative metrics (FAD and MSE of the control
parameters). The present paper aims to provide insight into the
perceptual relevance of these results. Accordingly, we performed
a subjective evaluation of the sound quality as well as a subjective
evaluation of the precision of the control using timbre descriptors
from the AudioCommons toolbox. We evaluate the sound quality
with mean opinion score and make measurements of psychophys-
ical response to the variations of the control. By means of the per-
ceptual tests, we demonstrate that StyleWaveGAN produces better
sound quality than state-of-the-art model DrumGAN and that the
mean control error is lower than the absolute threshold of percep-
tion at every point of measurement used in the experiment.

1. INTRODUCTION

In the 1980s the first drum machines and drum synthesizers us-
ing analogue and digital synthesis techniques appeared. While
these drum machines are still used nowadays for their unique sonic
fingerprint, they did not provide an extensive set of controls over
said synthesis. Recently, triggered by the successful application of
deep neural networks to other signal generation tasks, several data
driven drum sound synthesis models have been proposed. A drum
generator based on an U-Net architecture has been proposed in [1].
That generator learns a deterministic mapping from perceptual fea-
tures. Subsequently many drum synthesis models based on gener-
ative adversarial networks (GAN) [2] have been proposed. GAN
operating in the waveform domain have been studied in [3, 4],
while [5] has proposed a GAN operating in the frequency domain
generating real and imaginary part of the short time Fourier trans-
form (STFT) of the generated sound. Another method working
in the spectral domain using a variational auto encoder (VAE) has
been presented in [6]. The authors report some blurring in the
generated spectra. The Controllable Raw Audio Synthesis with
High-resolution (CRASH) proposed in [7] is a score based gen-
erative model that supports a large variety of applications (class
conditional synthesis, inpainting, interpolation) unfortunately suf-
fers from rather long inference times.
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A distinguishing feature of the drum sound generators are the
possible controls. Most of the methods presented above [6, 4, 5, 7]
support conditioning the generator on the drum class. Another
musically interesting feature is the control by means of perceptual
features. [1, 5] proposed to use timbral features from the Audio-
Commons project [8].

Our first contribution was in [9] where our goal was to create
an algorithm for drum sound synthesis suitable for professional
music production. The system should provide high sound quality,
real-time generation and musically relevant controls. As a first re-
sult we presented drum synthesis with StyleWaveGAN [9], a GAN
based synthesis model adapted from StyleGAN [10, 11] for the
task of drum synthesis with control using differentiable perceptual
features.

The present paper extends the results presented in [9] with the
following contributions. First, while [9] used a quantitative mea-
sure, the Frechet Audio Distance (FAD) [12], to evaluate the qual-
ity and diversity of the generated samples. The present investiga-
tion extends the results obtained in [9] by means of a subjective
evaluation of the sounds generated with StyleWaveGAN. Second,
with respect to the perceptual controls, we present a refined discus-
sion of the choice of descriptors that have been selected, provide
an extended discussion about the implementation of the differen-
tiable feature estimators, and provide a subjective study that allows
characterizing the perceptual relevance of the remaining errors in
the perceptual features of the generated sounds.

The remainder of the paper is organized as follows: Section
2 motivates the control strategies that were elected for
StyleWave-GAN and briefly summarizes the essential elements
of the model architecture. Section 3 describes the training data
set, training parameters and the subjective evaluations, Section 4
discusses the results of the perceptual tests, and Section 5
summarizes the results and gives an outlook on further research.

Table 1: Comparison of state of the art neural drum synthesizers

Reference Sample Rate | Duration

WaveGAN [3] 16kHz 1.1s
NeuroDrum [1] 16kHz 1s

DrumGAN [5] 16kHz 1.1s
Neural Drum Machine.[6] 22.05kHz 1s
Drysdale et al.[4] 44.1kHz 0.4s
CRASH [7] 44.1kHz 0.5s

Ours 44.1kHz 15s
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2. MODEL AND MOTIVATIONS

As introduction into the discussion, the present section will pro-
vide the necessary context introducing the StyleWaveGAN and its
control strategies presented in [9]. Because an important focus of
the present paper is the perceptual evaluation of the control the
following section puts more emphasis on the control strategies and
remains concise on the other details of the model and its training.

More precisely, the Section 2.1 provides a significantly ex-
tended motivation of the control strategy (including controllable
features and implementation) of the StyleWaveGAN. Section 2.2
extends the description of the differentiable timbre descriptors
with a discussion of the modifications required to implement dif-
ferentiable versions of the timbre descriptors. The following sec-
tions summarize the basic ideas of th StyleWaveGAN model intro-
duced in [9], and in Section 2.6 we explain the objective
evaluation of the control strategy produced in [9] and motivate the
perceptual evaluation of the control error that is proposed in the
present study.

2.1. Selection of synthesizer controls

Since StyleWaveGAN is intended for use in professional audio
production, we wanted its control scheme to remain intuitive. Ac-
cordingly we selected two levels of control.

The most fundamental control is the drum class. Selection
of the drum class is a classical control for drum synthesizers and
seems required for any professional use of the model for music
production. Accordingly this control is available in most of the
neural drum synthesizers [6, 4, 5, 7]. In our experiments, we are
using 5 labels (kick, snare, tom, closed hi-hat and open hi-hat).
We chose these labels as they represent the most common drum
and cymbal types in modern pop and rock genre.

Second there is a perceptual control of the sound generated for
each instrument. This kind of control is not provided by classical
drum synthesizers and is therefore a key distinguishing feature of
neural drum synthesizers.

A common choice in the literature [1, 5] for adding percep-
tual controls to drum synthesis are the timbral descriptors from the
AudioCommons project [8]. The high-level nature of these de-
scriptors makes them extremely powerful as they will cover a lot of
possibilities while limiting the number of varying parameters.
Such descriptors allow for intuitive control hence keeping a user
in a state of creative flow. The full set of timbral models available
in the AudioCommons toolbox are listed in Table 2. These de-
scriptors were specially crafted from the study of popular timbre
designations given to a collection of sounds from the Freesound
data set. The perceptual models were built by combining existing
low-level features found in the literature [13][14], which correlate
with the chosen timbral designation.

The StyleWaveGAN uses only 3 out of the 8 descriptors found in
Table 2. These descriptors were selected following an informal survey
among drummers and musicians. The survey consisted of the following
question "Among the following features (cf. Table 2), which one would
you like to have in a drum synthesizer ?". Brightness and warmth were
deemed important as they represent opposite ends of the frequency
spectrum as well as being common terms among the music production
jargon. Depth was of interest since it allowed for temporal manipulation
of the lower frequen-cies and especially their decay. While the other
AudioCommons features are also of interest, we focused on these three as
they rep-resent the preferred choices of potential future users.
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Table 2: Summary of AudioCommons models, the descriptors
marked in bold are those selected for controlling the synthesis.

Model Underlying processing methods
Booming Loudness + RMS
Brightness Spectral centroid
Depth Centroid + envelope
Hardness Onset + Bark + Centroid
Reverb Decay estimation
Roughness Peak detection
Sharpness Loudness
Warmth Envelope + centroid

2.2. Differentiable AudioCommons Timbre Models

A first, rather straightforward, approach for learning perceptual
controls was proposed in [1]. The model being a deterministic gen-
erator conditioned besides others on the perceptual controls these
controls are learned as part of the reconstruction error. Later, us-
ing a GAN, [5] proposed using learned estimators of the respective
descriptors to add the control error as an objective to the overall
loss. For StyleWaveGAN [9] we have proposed to re-implement
the three selected descriptors in Table 2 in order to make them fit
directly into the training process as differentiable functions. The
main motivation here is the fact that learning a differentiable proxy
by means of training a neural network cannot guarantee the cor-
rect evaluation of the features to the same degree than implement-
ing the features following the reference implementation. This is
especially important for signals that do not have the same signal
properties (e.g. the balance between resonances and noise) as the
target signals and will therefore require very strong generalization
of the estimator. Such signals will necessarily appear in the early
states of the training process, and wrong evaluation may lead to
undesirable local minima. Extending controls to values outside of
the range of values that were available for training the proxy will
pose problems as well.

In order to make the three timbral descriptors differentiable,
some adjustments and modifications had to be done. Most notably,
we approximated the time domain representation of the IIR filters
used in the AudioCommons toolbox by means of a spectral do-
main representation. This approximation facilitated the automatic
differentiation in Tensorflow. Even with these modifications, the
difference between the original and the reimplemented version re-
mained negligible (less than 1% of mean absolute difference on
ENST-Drums [15]). The differentiable descriptors provided in
[9] can be found at https://github.com/ALavault/tf_
timbral_models.

2.3. Generative Adversarial Networks and StyleGAN

Generative Adversarial Networks (GAN) are a family of models
consisting of two competing networks [2]. These networks are
called generator and discriminator respectively. The goal of the
discriminator is to distinguish whether a sample at its input is from
the training data set or not while the generator aims to generate
samples deemed real by the discriminator while having a random
latent vector as its input.

Instead of using the original GAN structure, we used an evo-
lution called StyleGAN [10, 11]. StyleGAN attempts to mitigate
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the entangled representation when using noise as latent vector and
input of the generator. The key idea here is to use a style encod-
ing, a vector which is obtained through a mapping network and is
then used to control (through an affine transform) every layer of a
synthesis network.

2.4. Proposed architecture

Since StyleGAN was originally used for image generation, modifi-
cations for direct waveform generation were required. This meant
flattening 2D convolutions and adapting the upsampling method,
as well as changing minor parts of the training of StyleGAN.

[9] uses the same number of filters, with respect to the depth as
StyleGAN2[11]. Just like StyleGANZ2, the synthesis network uses
input/output skips and the discriminator is a residual network.

‘ Latent z ‘ Info

Conv 1x9 + AdalN
Noise + AdalN

w=style x info K

Conv 1x9 + AdaIN
Noise + AdaIN

v

Drum sound

Figure 1: StyleWaveGAN

By using a temporal representation, we were following the
choice by others like [1, 4, 7]. Working with a temporal repre-
sentation was backed up by informal perceptual evaluations at the
start of the study of StyleWaveGAN. Participants described the
temporal representation as producing better audio quality than the
spectral counterpart.

2.5. Controlling the network

There are two places where the control information is fed into the
network: The first is located before the mapping network where
the latent vector z (c.f Figure 1) is concatenated with an embed-
ding of the instrument labels. This augmented latent vector is then
fed into the mapping network. The second is located after the map-
ping network where the output of the mapping network is concate-
nated with the labels and the target descriptor values. These labels
are encoded in form of a one-hot vector and the descriptor values,
when used, are encoded as floating point numbers.

To ensure the network uses the information provided by the
target descriptor values, we added the control error calculated from
the difference between target descriptors values and the descriptor
values computed on the the generated sounds to the loss used to
optimize the generator. Extending the discussion in [9], Section
4.2 will provide arguments for the choice of the L1 norm versus
the L2 norm.
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2.6. Evaluation of the control

We are reusing the mean absolute error metric introduced in [9]
in this study, to compare to the results of our perceptual experi-
ments. This metric uses the Mean Absolute Error (MAE) between
the target values and the output values on three regions based on
quantiles of the data set values:

* F1: MAE evaluated using only the target descriptor values
within the 20th and 50th quantiles

* F2: MAE evaluated using only the target descriptor values
within the 50th and 80th quantiles

* F3: MAE evaluated using only the target descriptor values
within the 20th and 80th quantiles

We will be using the F1, F2 and F3 values from [9] and com-
pare them to the results of subjective evaluation of the control in
the later sections.

Given the very low control errors measured in [9] the question
arises whether the remaining error is perceptually relevant. The
present paper proposes a perceptual evaluation of this question by
means of measuring absolute thresholds of perception of differ-
ences for selected reference descriptor values. The measurements
and conclusions for this characteristic are presented in the later
sections. This psychophysical measurement can also be useful in
an attempt to further simplify the synthesis control by providing a
discrete set of values instead of a continuum: there is no reason to
allow more control if its not perceivable.

3. EXPERIMENTAL SETUP

3.1. Data sets

In the present study we will deal with the following data sets.

ENST-OG: Subset of ENST Drums containing all closed miked
drums and hi-hat. For the present evaluation this data set
represents real drum sounds. It is used in our perceptual
evaluation of sound quality. This data set has all its el-
ements with 44.1kHz sample rate of varying length but
greater than 1 second.

ENST-AUG: Augmented version of ENST-OG, as described in
[9]'. It is used as training data set for StyleWaveGAN. This
data set has the same sample rate as ENST-OG and length
of the sounds are unchanged.

ENST-AUG-EX: Subset of ENST-AUG containing only extreme
examples of augmentation. It is used in the evaluation
of sound quality to evaluate the perceptual coherence of
the augmented training data (ENST-AUG) compared to the
original drum samples in (ENST-OG). Same sample rate
and duration since it is a subset of ENST-AUG.

SWG-SQ: Samples generated with StyleWaveGAN trained on
ENST-AUG without descriptors and with random latent for
all labels in ENST-AUG. This set is only used in the sound
quality evaluation. These sounds have a duration of 1.5s at
44.1kHz sample rate.

DG-SQ: Samples for kick, snare and cymbals labels provided by
Javier Nistal generated with a version of DrumGAN provid-
ing drum type conditioning according to [16]. These were

Note that the labels are preserved by the augmentation process.
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trained on the private data set used as well in [5]. This set is
used in the sound quality evaluation as the state-of-the-art
reference. The elements from this data set have a duration
of 1.1s and have a sample rate of 16kHz.

SWG-CQ: Snare samples generated with StyleWaveGAN trained
on ENST-AUG using descriptor controls. This data set is
used for the control quality evaluation. Only snare samples
are used to remain consistent with the objective evaluation
performed in [9]. The sounds from this data set have the
same sample rate and duration as SWG-SQ.

All StyleWaveGAN models used for generating the data sets
have been trained exactly as described in [9].

3.2. Reference-free baseline

Comparison to baseline models with the reference-free Frechet
Audio Distance [12] has already been done in [9]. The comparison
was between StyleWaveGAN, NeuroDrum [1] and WaveGAN [3].

3.3. Perceptual Evaluations
3.3.1. Subjective evaluation of sound quality

In our subjective evaluation framework, we are evaluating the
quality of generation among 4 sets of sounds : ENST-OG, ENST-
AUG-EX, SWG-SQ and DG-SQ. The comparison of these 4 sets
is motivated as follows: ENST-OG is the real world reference,
ENST-AUG-EX contains extreme examples used for training and
can therefore be seen as a lower bound for prefect training of
the model, the evaluation on DG-SQ establishes a state-of-the-art
baseline, which has been compared to other approaches in the lit-
erature.

First, we will justify our use of DrumGAN (DS-SQ) as the
state-of-the-art baseline. In [9] we already have shown that
StyleWaveGAN significantly improves the FAD objective mea-
sure compared to NeuroDrum and WaveGAN, so for the present
investigation we aimed to chose another method. We have con-
sidered three other state-of-the-art methods, which are DrumGAN
[5], Drysdale et al. [4] and CRASH [7]. [5] and [4] both use GANs
and are much closer in technology to StyleWaveGAN than [7],
which is based on a completely different approach and requires
significantly longer inference times. Accordingly we considered
comparison with either [5] and [4] most interesting. A problem
here are the varying means of conditioning used in the different
methods. While [4] only provides conditioning with drum type,
DrumGAN presented in [5] only has perceptual feature condition-
ing, a later version [16] uses drum type conditioning instead of
perceptual feature conditioning. Note that the generation capac-
ity of these models differ considerably. DrumGAN can generate
samples of 1.1 s at 16kHZ, while [4] and [7] generate samples of
0.4s and 0.5s at 44.1kHz respectively. We will see in the following
discussion that the test participants indicate that the decay time is
important to evaluate the realness of drum sounds, which gives an
advantage to DrumGAN with its longer samples even if the sample
rate is lower.

Note that due to lack of available source code and meta-
parameters none of these methods can be faithfully reproduced.
Therefore we have to rely on comparing with results produced by
the original authors using their respective training sets. We know
that Drysdale et al. focus on sample-based electronic music (EM).
Samples used in EM are inherently synthetic and are built to sound
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different from real drums. Since our subjective testing aims to
evaluate how close the synthesized sounds are to a real drum, hav-
ing synthetic samples in the training set will always be evaluated as
worse. Given the limitations discussed before we selected Drum-
GAN [16] as our baseline representing one of the models of the
state of the art for our perceptual test as it is produces the longest
samples and uses a similar training method to ours.

3.3.2. Subjective evaluation for control quality evaluation

We use one the psychophysical methods described in [17] to mea-
sure the absolute threshold. Our experiment uses the constant stim-
ulus method. This means two sounds are played one after the other,
one being the reference generated with descriptor value v obtained
from the data set and the other one being generated with a descrip-
tor value v + A. The test subjects are then asked if the stimuli
was perceived as identical or different. Following [17] we deter-
mine the absolute threshold as the value of the comparison stimu-
lus judged clearly different than the standard 50% of the times.

We use samples from the SWG-SQ data set for this task. The
descriptor values v are computed to match the 20th, 50th and 80th
quantiles of the descriptor of interest. The offset A is selected
from the set

D ={z|lx =0.25zwithz € Zand —8 <z <8}. (1)
Note that the AudioCommons descriptor values are normalized
and range from 0 to 100 so that the variation used in the test al-
ways covers +8% of the total range of the descriptor. We chose
this range of variation since the MAE results in [9] and reproduced
in Table 6 are always lower than 4, which makes the chosen range
of variation the double of a global upper bound of the MAE met-
rics.

The order in which the two samples are played is important
and both orderings are used in the test. Since samples are chosen
randomly, this ensures that all orderings are equally present. A
fade-out is applied to each of these samples to avoid any noisy
tails having an impact on the evaluation.

Since subjective equality measures are only valid for a single
stimulus intensity, having multiple target values will allow us to
extrapolate subjective equality points over a wider range of values.
We choose to use the measurement points corresponding to the
same points that were used for the MAE metric described in 2.6
and by doing so, we hope to be able to compare the subjective
equality points to the MAE and draw conclusions about whether
or not the mean error is perceived.

Table 3 summarizes the content of the data set SWG-CQ used
in this experiment.

Table 3: Summary of absolute threshold experiments

Descriptor | Ordering | Steps | Total
Brightness 2 65 130
Depth 2 65 130
Warmth 2 65 130

3.3.3. Listeners and test conditions

There are two sets of listeners for the two different experiments.
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Both of the listening tests took place remotely. For the percep-
tual quality evaluation, all test participants were presented with 24
samples to rate on a 5-point scale. The five levels of the scale are
"Bad", "Poor", "Fair", "Good" and "Excellent" and are represented
with values of 1,2,3,4 and 5 respectively. These samples were ran-
domly picked among the ENST-OG, ENST-AUG-EX, SWG-SQ
and DG-SQ data sets. The mean opinion score (MOS) is calcu-
lated as the average of the score given by the test participants. Part
of the samples generated from SGW-SQ are available in the sup-
plementary material. Nine participants took part in this test. Even
if the number of participant is low, most of them (5 out 9) are au-
dio professionals. As far as listening equipment goes, the different
participants either professional or not used their own listening de-
vices in the form of studio speakers or headphones.

We can now describe the experiment on control quality. In
this experiment, all test participants was presented with 32 sam-
ples taken at random among the generated pairs from SWG-CQ.
We gathered the answers of 31 subjects for this perceptual test.
In terms of listening devices for the test, participants were ask to
use their own listening devices which were either studio speakers,
headphones or earbuds. We asked the participants to find a calm
place where they could take the test in one sitting in order to not
only avoid noisy data in our experiment due to a bad listening en-
vironment but also to get the most consistent listening experience
possible.

For both perceptual tests, the details about listening equipment
and age groups are listed in Table 4.

Table 4: Listening devices and age groups for the perceptual tests

Experiment

Listening Sound Control

device Quality | Quality

Studio Speakers 2 2

Headphones 7 27

Earbuds 0 2

Age Group Experiment Sound Control
Quality | Quality

Age 0-17 0 0

Age 18-25 1 13

Age 26-40 4 9

Age 41-65 4 9

Age 66+ 0 0

4. EXPERIMENTAL RESULTS

4.1. Results of the subjective evaluation of sound quality

The total Mean Opinion Score (MOS), with their confidence inter-
val at 95%, is shown in Table 5 as well as more detailed per-class
results.

The score of the augmented samples is slightly lower than the
real samples. This indicates that the extreme cases of our augmen-
tation strategy are a bit too extreme. Less extreme augmentation
parameters with more intermediate values should be selected for
future work. The main problem that can be found against the aug-
mented samples comes from the pitch changes made by the aug-
mentation process. The pitch change affects negatively the attack
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Table 5: MOS on different data sets depending on the instrument
label (1 is lowest, 5 is highest)

Data set \MOS All Labels | Cymbals | Kick Snare

ENST-OG 42+03 | 41+11 | 414+06 | 44+03
ENST-AUG-EX | 3.84+0.5 | 3.3+1.3 | 40+£05 | 3.9+£05
SWG-SQ 35+£04 | 39£0.7 | 3.0£0.7 | 3.6+0.8
DG-SQ 23+05 | 23+13|28£06 | 1.6+0.8

of the sound, making them sounding less natural than the real data.
While the change is minor, it is sufficiently present to be perceived
and graded worse than a real sample. Note however that these ex-
treme parameter combinations remain rather rare in the full set of
augmented sounds.

Comparing StyleWaveGAN to DrumGAN we can conclude
that StyleWaveGAN trained on augmented data produces results
that are perceived either similarly close (kick) or significantly
closer (snare, cymbals) to real drums than DrumGAN trained on a
drum data set obtained from sources that are not further detailed in
[5]. We conclude that the StyleWaveGAN model trained on aug-
mented data achieves at least state of the art performance for drum
synthesis.

We now discuss the StyleWaveGAN results in details. Given
StyleWaveGAN was trained on the full data set of augmented sam-
ples, a perfect model should produce results in between the test
results of the real data and the extreme examples of the augmented
data. We note that StyleWaveGAN achieves this performance only
for the cymbals. Snare and kick synthesis remain less natural. A
discussion with the participants of the perceptual tests who were
audio professionals reveals the following problems: for the kick
drum sounds the SWG model does not produce the characteristics
long tail of the resonances and is also missing some energy in the
frequency band below 100Hz.

For snare drum synthesis the main problem appears to be the
fact that SWG creates hybrids of sounds generated with sticks,
mallets and brushes. Concatenating for example an attack of a
snare sound obtained with a stick with a decay of a snare sound
obtained with a brush creates fair sounding but unrealistic sam-
ples. These problems with kick and snare sounds indicate that the
current implementation of the discriminator is not sufficient and
further investigation will be required to improve the discriminator
loss such that it avoids these perceptual problems.

4.2. Impact of control loss on control precision

In Table 6, the lines labeled 3D descriptors show the results when
the descriptor of interest is set but the others are taken from a real
example from the training data set. Finally, the lines labeled (3D
descriptors, data set) show the results when all the descriptors val-
ues are taken from the training data set. Work regarding the differ-
ences between 1D descriptors (i.e one descriptor per model) and
3D descriptors has already been done in [9]. We will only focus
on 3D descriptors control here.

The L2 loss performs better than the L1 loss when using
brightness and depth with values from the data set. Results with
warmth are way worse when using the L2 loss in both cases. The
problem with the warmth descriptor and L2 norm can be explained
by an offset in the control. This can be seen on Figure 3 when com-
pared to Figure 2 which is showing the results with L1 loss. Red
lines show the limit values of the data set and the green vertical
lines show the position of the 20th, 50th and 80th quantiles.
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Table 6: Mean absolute error for several configurations with L1
loss, reproduced from [9](lower is better)

Features F1 F2 F3

Brightness (3D descriptors) 097 | 1.36 | 1.17
Depth (3D desc.) 133 | 1.50 | 1.41
Warmth (3D desc.) 1.29 | 3.31 | 2.33
Brightness (data set, 3D desc.) | 0.75 | 0.95 | 0.85
Depth (data set, 3D desc.) 099 | 1.03 | 1.0

Warmth (data set, 3D desc.) 142 | 1.37 | 1.39

Table 7: Mean absolute error for several configurations with L2
loss (lower is better)

Features F1 F2 F3

Brightness (3D descriptors) 1.16 | 1.73 | 1.45
Depth (3D desc.) 1.21 | 1.29 | 1.26
Warmth (3D desc.) 496 | 2.49 | 3.69
Brightness (data set, 3D desc.) | 0.66 | 0.85 | 0.76
Depth (data set, 3D desc.) 0.77 | 0.54 | 0.65
Warmth (data set, 3D desc.) 6.92 | 6.28 | 6.60

Please note that Figure 2 is not reproduced from [9] as it shows
results when the control values (3 descriptors here) are drawn from
the training data set, when the figures in [9] show the effect when
the target control values cover the full range of descriptor values
and the others are drawn from the training data set.

50
45
S 40
E
m
= 35
=
z
© 30
[
=
&
20
15 * : :
20 5 ] 35 40 45
Target warmth

Figure 2: Generated values for warmth when synthesizing snare
drum sounds with control values obtained from the Snare drum
sounds in ENST-AUG using StyleWaveGAN trained with LI loss
for the control error and 3D descriptors.

The offset observed in this experiment when evaluating the
model trained with 3D perceptual controls using L2 loss remains
unclear. Further studies need to be performed to see whether this
is due to a local minimum and may be solved by means retraining
with different weight initialization, or whether this shows a sys-
tematic problem with the loss weighting that should be solved by
means of increasing the weight of the warmth descriptor error in
the loss function. Unfortunately training these models takes more
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Figure 3: Generated values for warmth when synthesizing snare
drum sounds with control values obtained from the Snare drum
sounds in ENST-AUG using StyleWaveGAN trained with L2 loss
for the control error and 3D descriptors.

than a week and systematic evaluation of many different training
runs remains challenging.

This confirms our first choice from [9] where we used the L1
loss only.

4.3. Results of subjective evaluation of control error percep-
tion

To interpret our results from the subjective evaluation of control
error, we need to study different thresholds on the estimated prob-
ability distribution of the data. The simplest to interpret is the 50%
threshold, also known as absolute threshold : this means the test
subjects are randomly choosing if the difference is perceptible or
not. We use the absolute threshold on the experiments comprising
of only the positive variations (i.e the second sample has a higher
descriptor value than the first), the negative variations and the com-
bined (where we take the absolute value of the variation to make
our statistics). The results are shown in Table 8 and 9. Figures 4,5
and 6 show the fitted sigmoid alongside the estimated cumulative
distribution function (CDF) from three different cases. Figures for
all different cases will be available in the supplementary material.
The estimated cumulative density function is computed by gather-
ing values in bins spaced by 1 unit and then the cumulated sum on
these bins. Dashed black lines on Figures 4,5 and 6 represent the
25%, 50% and 75% thresholds estimated with the fitted function.

We calculate an estimated CDF for the probability of hearing
a difference in the positive, negative and combined experiment.
We then fit a sigmoid function to the data. In other words, we
choose the sigmoid function as our psychophysical function. In
other words, we try to fit the function 1) such that :

1
1+ exp(—bx +d)

where b and d are real parameters, estimated with a least-
square estimator.

Our main goal with this experiment was to measure if the error
between the control and the output in our network is perceptible or
not. Our MAE metric measures the error on a segment. We chose
the measurement points for the psychophysical experiment to be
the endpoints of the segments of our MAE metric to be able to
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Table 8: Summary of absolute threshold experiments for each 3
points of measurement.

Descriptor Q20 | Q50 | Q80
Brightness (com- | 5.00 | 5.00 | 6.00
bined)

Brightness (posi- | 5.00 | 5.00 | 6.00
tive)

Brightness (nega- | 5.00 | 5.00 | 6.00
tive)

Depth (combined) | 5.00 | 5.00 | 5.00
Depth (positive) 5.00 | 4.00 | 5.00
Depth (negative) 4.00 | 5.00 | 4.00
‘Warmth (com- | 6.00 | 6.00 | 6.00
bined)

Warmth (positive) 6.00 | 6.00 | 7.00
Warmth (negative) | 8.00 | 6.00 | 4.00

Table 9: Summary of absolute threshold experiments for each 3
points of measurement with fitted sigmoid

Descriptor Q20 | Q50 | Q80
Brightness (com- | 5.39 | 5.19 | 5.75
bined)

Brightness (posi- | 543 | 5.11 | 5.83
tive)

Brightness (nega- | 5.35 | 5.27 | 5.75
tive)

Depth (combined) 5.11 | 495 | 4.79
Depth (positive) 5.39 | 423 | 491
Depth (negative) 4.63 | 5.19 | 5.19
Warmth (com- | 6.27 | 5.67 | 5.35
bined)

Warmth (positive) | 6.15 | 5.75 | 6.27
Warmth (negative) | 7.68 | 5.83 | 4.75

make some kind of conclusion. For further illustration, we added
blue error bars on Figure 2 at the different points of measurements.
The error bars show the points of subjective equality, for positive
and negative variations. This figure shows the generated samples
output values are well within the limits of the points of subjective
equality on the segments of interest.

We claim that the error is imperceptible on the segments used
for the MAE metric (F1, F2, F3) if and only if the MAE on these
segment is lower than the minimum of absolute threshold measure-
ments at the segment endpoints. This condition can be simplified
to the MAE being lower than 4 since the points of subjective equal-
ity are always higher than 4 in our experiment. This condition is
found true on every single segment, wether using the CDF or the
fitted sigmoid.

From such a strong result, we can make some conclusions.
First, the error should not be noticeable in almost all cases. We
also found that the control is not necessarily perceived as symmet-
ric : the same variation but with a different sign could lead to points
of subjective equality. Finally, the good results from our percep-
tual experiment show that a discrete control could work: a step of
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Figure 4: Psychometric results for brightness for the 80th quantile
and combined deltas
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Figure 5: Psychometric results for depth for the 20th quantile and
positive deltas only

1 unit should not be noticeable in almost all cases and would al-
low for less fine-grained control, hence making easier to use in a
professional audio production context.

5. CONCLUSION

In this paper, we presented a study on the subjective evaluation
of the sound quality of the proposed StyleWaveGAN as well as a
subjective evaluation of the precision of the control using timbre
descriptors from the AudioCommons toolbox.

The perceptual evaluation of the sound quality has confirmed
that SWG equates the generation quality of one of the state of the
art drum synthesis methods known from the literature and out-
performs it significantly for snare drum and cymbals. While the
number of participants is low individual discussion with partic-
ipants has clearly revealed the limitations of the model and the
training data set and perspectives for improvements have been de-
veloped. A new perceptual study will be performed once the im-
provements will have been implemented. The perceptual evalua-
tion of the quality of the control with our differentiable features
on the snare drum has demonstrated that the mean control error at
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Figure 6: Psychometric results for warmth for the 50th quantile
and negative deltas only

all the measurement points is consistently lower than the absolute
threshold of perception, which leads us to conjecture that control
error is perceptually negligible. Note that the perceptual evalua-
tion of the control quality has not been covered in the literature.
Our internal investigation with the other drum instruments results
in control errors of the same scale which leads us to assume the
same conclusion holds for all types of drum instruments. In terms
of future work we will continue to work on the sound quality es-
pecially for the kick drum for that the perceptual evaluation gave
the worst results of all labels that have been tested. We will also
work on additional controls, notably regarding velocity.
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