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ABSTRACT

Employing nonlinear functions in audio DSP algorithms requires
attention as they generally introduce aliasing. Among others, an-
tiderivative antialiasing proved to be an effective method for
static nonlinearities and gave rise to a number of variants,
including our AA-IIR method. In this paper we introduce an
improvement to AA-IIR that makes it suitable for use in stateful
systems. Indeed, employing standard antiderivative antialiasing
techniques in such systems alters their frequency response and
may cause stability issues. Our method consists in cascading a
digital filter after the AA-IIR block in order to fully compensate
for unwanted delay and frequency-dependent effects. We study
the conditions for such a digital filter to be stable itself and
evaluate the method by applying it to the diode clipper circuit.

1. INTRODUCTION

When designing digital signal processing algorithms for audio ap-
plications, one of the major challenges consists in dealing effec-
tively with nonlinearities. Indeed, on one hand they have to be
computed efficiently if the system is designed for real-time usage,
while on the other they generally introduce new harmonics and
thus they can create aliasing components.

The traditional way to reduce aliasing is oversampling [1],
which essentially consists in artificially increasing the sampling
rate at which the algorithm operates. This method is easy to imple-
ment and effective, yet it normally requires upsampling and down-
sampling filters and its computational cost increases linearly with
the oversampling factor, hence it can prove to be expensive. More
recently a new method called antiderivative antialiasing (AA) has
been proposed by Parker et al. [2]. It virtually works in the fol-
lowing way: first the discrete-time input signal is converted into
a continuous-time equivalent by linear interpolation, then the non-
linearity is applied and its output is filtered through a continuous-
time lowpass filter, and finally the resulting signal is sampled
back to the discrete-time domain. This procedure reduces
aliasing because the nonlinearity and the lowpass filter are
applied in the continuous-time domain, hence components above
the Nyquist limit are attenuated before sampling back.

The original method employs lowpass filters with FIR kernels,
such as rectangular and triangular kernel. An extension to higher-
order FIR filters has been proposed in [3]. In [4] we developed
an analogous method which uses arbritrary lowpass kernels that
can be represented by rational functions in the frequency domain.
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As these filters are infinite impulse response (IIR), we named this
method AA-IIR and we referred to the original one in [2] as AA-
FIR in order to distinguish them. This extension allows for a great
amount of flexibility as one can obtain the desired trade-off be-
tween aliasing reduction and computational cost by simply choos-
ing the most convenient lowpass filter.

Both AA-FIR and AA-IIR are designed for static, single-input
single-output (SISO) nonlinearities, and they cannot be generally
used for nonlinearities embedded in a dynamical system without
further modifications. Indeed, while static nonlinearities introduce
no delay and no frequency-dependent effects, the opposite is true
of current AA methods, hence they would modify the overall fre-
quency response of the system and potentially lead to stability is-
sues. A solution in very specific cases, where the undesired delay
effects of AA can be “merged” with corresponding parts of the
stateful system in order to eliminate them, was already suggested
in [2] and further explored in [5]. As of today, the only general
approach to this problem has been proposed in [6, 7]. Therein,
Holters modifies the structure of the system and adjusts its coef-
ficients in order to compensate for the extra delay introduced by
AA-FIR. The method has been adapted to wave digital filters in
[8]. Although this method works, it can cause significant distor-
tion of the frequency response of the system [6, 7, 9].

In this paper we introduce a different technique for AA in
stateful systems. We simply propose to treat any SISO nonlin-
earity in the system with the regular AA-IIR method and add a
digital filter in series to compensate for the delay and frequency-
dependent effects introduced. By definition, this filter has to be
the inverse of the linearization of the system obtained by applying
AA to the nonlinearity: therefore, in order for the compensating
filter to be stable, the linearization has to be minimum phase. No-
tice that this property is not at all guaranteed: for example, it does
not hold for classical AA-FIR rectangular and triangular kernels,
while it holds for AA-IIR with a single real pole, as we will show
later. Moreover, higher order AA-IIR kernels do not always have
a minimum phase linearization: we give some examples in the pa-
per, without claiming completeness. The main advantages of this
approach are that the changes to the original system are fully local
to the nonlinearities and the overall frequency response remains
unaffected. On the other hand its effectiveness largely depends on
the original system in ways that are yet to be investigated.

The paper is organized as follows. In Section 2 we describe
our method, which will be called AA-IIR method with compensa-
tion, while in Section 3 we discuss the stability of the compensat-
ing filter. Sections 4 and 5 analyze other relevant theoretical as-
pects, namely the influence of linear interpolation on the stability
of the compensating filter and the side effects of numerical inte-
gration. In Section 6 we consider practical aspects of the proposed
method and verify its features in an example application using two
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different discretization methods. Finally Section 7 draws conclu-
sions and suggests possible directions for future research, while
Appendix A improves the formulation of the AA-IIR method from
[4] for multiple poles.

2. THE GENERAL IDEA

We start by recalling the AA-FIR method from [2]. Suppose we
have a static nonlinear discrete system of the form y = f(z). We
will assume from now on that f(0) = 0, without loss of generality:
if this is not the case, one can work with the nonlinear function
f*(z) = f(z) — f(0) and then add the offset term at the end.
Finally, we will measure time in samples, so that the sampling
frequency f; is unitary.

If one feeds the system with an input x,, the output may be
affected by aliasing because of the nonlinear function f. In [2]
Parker et al. construct the AA-FIR method in the following way:
first they derive a continuous signal Z(t) from x,, by linear inter-
polation, then they apply a continuous-time causal lowpass filter,
and finally they sample the continuous-time output signal back to
the discrete-time domain. In formulas,

i‘(t):xn—1+(t_n+1)(xn_$n—1) (1)

ift € [n — 1, n] and, if h(¢) is the impulse response of the chosen
filter,
“+ oo
- / FE@)h(n — ) dt. @

By choosing the rectangular kernel one gets

yn,/ F(nos + (= 0+ )0 — 20o1) dt
3)
/ f Tn—1 +t xn—l)) dt7
ie.,
F(zn) — F(zn-1) T Tna
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where F' is an antiderivative of f.

As already observed in [2], the system (3) has non-flat am-
plitude response and non-null group delay in linear (small signal)
terms, unlike the original system. One quick way to see this is
observing that (3) is equivalent to y, = ®(xn, Xn—1), Where

D(u,v) :/0 flo+t(u—w))dt.

As a consequence, the linearization of (3) around the equilibrium
point (0, 0) reads
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so the linearization is

Tn + Tn-1

i =107 O

Applying such method to a nonlinearity embedded in a dy-
namical system would, therefore, affect its overall (small signal)
frequency response and potentially undermine its stability. One
could think of adding a digital filter after the modified nonlinearity
to restore its delay-free static nature, yet the inverse filter of (4)
would only be marginally stable. Also, if the triangular kernel was
used instead, we would have

In + 4‘7371—1 + Tn—2
6

gn = f/(O)

and it is easily seen that one of the zeros is outside the unit circle,
hence its inverse would be unstable.

In the following, we will show that this approach is actually
viable if we use our AA-IIR method [4]. We will first recall its
construction and then explore conditions to obtain a linearization
with stable inverse, i.e., a minimum phase linearization. The AA-
IIR method together with the inverse filter will be called AA-IIR
method with compensation.

3. APPLYING THE AA-IIR METHOD

The AA-IIR method exploits the same idea as Parker’s method, but
uses IIR continuous-time filters, more precisely filters whose trans-
fer function is a rational function in the Laplace domain. Applying
partial fraction decomposition, such a transfer function reads

p Mg Ak;l
A0+ZZ (5 —an)!

k=11=1
q M B B &)
Kl kl
23 )
22 \G-ar " hy
where a1, . . ., o, are real poles of multiplicities mq, ..., my

respectively, and S1, 8, ..., By, B, are complex poles of multi-
plicities p1, . . ., puq respectively. We will assume that this filter is
stable, i.e., a1, ..., ap, R(B1),...,R(By) <O.

It is clear that one can treat summands of (5) separately and
then sum the results. A representation of AA-IIR method with
compensation is given in Figure 1, where H,, (s) and Hg, (s) are
the summands in (5) relative to poles «; and to couples of poles
Bi, BZ respectively, and Hcomp(z) is the transfer function of the
(digital) compensation filter.

Explicit equations for the cases of simple real pole, multiple
real pole, couple of simple complex conjugate poles and couple of
multiple complex conjugate poles are given in [4]. We will recall
them here and address the invertibility issue.

3.1. Simple real pole

Suppose that H(s) =
method reads
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Figure 1: Block diagram of AA-IIR method with compensation.

where the symbol f denotes the mean value of an integrable func-

- [ at0as= 1 [ oo

Similarly, one can find the equivalent formulation:

1
Yn =€ Yn_1+ A/ F@no1 +t(@n —an-1))e* 70 dt (6)
0

In the following, we will use the latter as it is more general (it
encompasses also the case x, = x,—1) and easier to differentiate.
We can linearize the system as seen in Section 2. The result is:

T = T+ (0) 25 (¢ =a- Dot (a1 1)
(7

Notice that this result coincides with the one obtained in [4], Ap-
pendix B, for the case A = —a, f'(0) = 1.

Such linearized filter has a single zero

_ (a=1e*+1

¢= e —a—1
and a direct inspection shows that —1 < ¢ < 0 when o < 0.
Therefore the system (6) has a minimum phase linearization for ev-
ery a < 0. This is a remarkable result because the AA-IIR method
with a simple real pole shows antialiasing performance compara-
ble to the AA-FIR method with rectangular kernel, provided that
the pole is chosen appropriately.

3.2. Multiple real pole

Suppose now that H(s) = ﬁ, with 7 > 0. From Appendix

A we know that the AA-IIR method in this case is described by
Egs. (16)-(17). The linearization of the latter equation takes the
form:

k
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Defining v, = (v ol .. o), b0 = (6 0 .. 6,
b= 60 60 . b)Y and
( o 0 .0
( () 0 o0
M = (0) G G - 0

OO0 0

the system (8) can be concisely expressed as
Un = e Muvn_1+ boxn + b1Tn_1.
In the z domain, this translates into
V(z)= (T —e "Mz ") by + bz )X (2).

In order to determine when the system described by Egs. (16)-(17)
has a minimum phase linearization, one should understand if the
zeros of the last element of (I — e Az™")"(bo + biz7!) lie
inside the unit circle. Now we will show that this cannot be done
analytically even for » = 1, i.e., for a double pole.

Indeed, for » = 1 we have:

W =509,

B = o) @

bé” ~ £(0) (a— 2)6(:3—1- o+ 2’
b?) _ f’(O) (a2 — Za; 2)e* — 2’
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After some computations, one finds that
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It is clear that the equation l~70 + l~11 2714 52272 = 0 can be solved
analytically and has 2 real solutions (1, (2. However, there is no
way of determining analytically when |(1], |¢2| < 1.

By numerically solving the inequalities one finds that both
roots lie inside the unit circle if and only if o < —3.21. As the
Nyquist frequency corresponds to o = —1.57, this limita-
tion is too restrictive for practical applications.

Furthermore, for triple and quadruple poles we found that a
necessary condition for the system (16)-(17) to have a minimum
phase linearization is @ < —5.65 and a < —7.72, respectively.
We expect that if the order increases the upper bound decreases
even more, making the filter unsuitable for AA-IIR with compen-
sation.

T ~

5 ~

3.3. Simple complex conjugate poles

Now suppose that H (s) has only a couple of simple complex con-

jugate poles, i.e., H(s) = sia + %, where B, € C and

R(B) < 0. Then the AA-IIR method reads

zn—§
Uy = 6’8U,TL71 +2Bf™ T - d¢

o f(©)e
Yn = R(un)

or, equivalently,

un = e’un—1 + 2B fol f(@n_1+t(zn — l’n71))66<17t) dt
Yn = %(un)

The linearized system is:

vp = ePun,_1+ 2f'(0)% <(65 —B—-1z,
ﬂ@—nﬁ+nmA> ©)
Yn = g?(Un)

Therefore, in the z-domain we have:

fiu() = 27 0 (=G D

Hm@):%uﬁaa

+ Eflin(?))-

As one can expect, Hiin(2) is a second-order transfer function with
real coefficients, so one can explicitly compute its zeros. However,
it is not possible to determine analytically when these zeros lie
inside the unit circle, so we performed a numerical evaluation.

In the case of complex conjugate poles, the region where one
has to choose /3 also depends on B. Therefore, in order to get an
idea we studied the case when H (s) has unitary DC gain and has
no zeros. The latter condition corresponds to %*(B) = 0. In this
case, the transfer function becomes

—2R(BP)

He) = 86—

10)

and we get
_ o iP
23(B)’
where $(z) and S(z) denote the real and the imaginary part of a
complex number z, respectively.
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We chose 3 so that —10 < R(8) < 0, —20 < ¥(8) < 20,
on an uniform grid with a 0.01 step on both axes, and for each
value we found numerically the zeros of Hin(z). We discovered
that the linearized system (9) is not minimum-phase when [ be-
longs to some semi-ellipses with center on the y-axis and with
the x-semiaxes slightly longer than the y-semiaxes. The biggest
semi-ellipse is centered in the origin, while others appear in pairs,
symmetrically w.r.t the z-axis. In the following table we give the
measured values:

Center r-semiaxis  y-semiaxis
(0,0) 3.21 3.14
(0,£9.205) 0.22 0.215
(0,£15.58) 0.13 0.12

The z-semiaxis of the first ellipse is 3.21, the parameter we
found in Subsection 3.2: this is not a surprise since Eq. (10) tends
to H(s) = (367;2 when the imaginary part of 5 goes to 0. When
we move away from the origin, the dimensions of the semi-ellipses
decrease, so we can expect smaller and smaller semi-ellipses to
appear if we extend the range of the simulation.

However, please recall that fs = 1, so in order to obtain good
aliasing reduction we should choose |3| around 7. This region
is entirely inside the bigger semi-ellipse, so we can conclude that
(10 is not a good candidate kernel for the AA-IIR method with
compensation.

3.4. Multiple complex conjugate poles

Finally, we briefly observe that similar considerations apply to the
case of a couple of multiple complex conjugate poles:

B N B
(s =B+~ (s = Byr+t’
with 7 > 0. In this case, the feasible region will depend again on
both B and £.

Let us consider the case r = 1. If we impose that H(s) has
unitary gain at DC and, as before, R(B) = 0, the transfer function

becomes:
_ 1Bt s R(E)

R(B) (s = B)2(s = B)*
When the imaginary part of 5 goes to 0, the latter tends to H(s) =

H(s) =

H(s)

&, that is a filter with no zeros and a triple real pole. From
the discussion in Subsection 3.2, it follows that the feasible re-
gion for [ in this case will intersect the real axis in the half-line
r < —b5.65. As a consequence, we expect a no-go area around
the origin analogous to the one found in the last subsection, but
even bigger: in this case, we would similarly not use this filter for
AA-IIR with compensation. We expect that similar issues appear
when r > 1.

3.5. The general case

So far, we discussed the cases in which the continuous-time filter
only has no zeros and only one real pole or one couple of complex
conjugate poles of arbitrary multiplicity. However, in general a
filter for AA-IIR has p real poles, ¢ complex pole couples, and
up to p + 2q zeros (see Eq. (5)). Therefore, investigating stability
conditions in the general case means studying a space that has at
least p real and ¢ complex dimensions.
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Figure 2: An alternative reconstruction process.

However, in the previous subsections we considered that this
is already difficult when p + ¢ = 1, and it is almost always impos-
sible to do it analytically. Therefore, we do not treat the general
case in more detail in this work, but rather suggest case-by-case
evaluation.

4. THE ROLE OF THE RECONSTRUCTION PROCESS

Our AA-IIR method was constructed by replacing the rectangular
kernel in the AA-FIR method with a lowpass filter with rational
transfer function. However, up to now the linear interpolation re-
construction process that virtually converts the input discrete-time
signal into a continuous-time one has not undergone any particular
investigation. It is perhaps obvious that choosing an interpola-
tion kernel that better approximates the ideal reconstruction filter
would yield better anti-aliasing performance, yet here we show
that such choice also has consequences on whether the entire pro-
cess is minimum phase in linear terms, and hence whether it is
possible to apply compensation and under which circumstances.

Suppose that x,, is a discrete-time signal and we convert it to
continuous-time by (see Figure 2)

() =

Tt

which corresponds to using a rectangular function of width and
height 1 as the interpolation kernel.

We can apply a causal lowpass filter with transfer function
h(t) to Z(t) and then sample the result, obtaining

mod (¢,1)

<
mod (t,1) > (b

N[ N[

yn:/+mﬂﬂﬂﬁm—ﬂdt

—o0

in analogy to (2).
Suppose first that H(s) = -2 with o < 0, ie., h(t) =

S—«

Ae**u(t), as in Subsection 3.1. A similar procedure to that em-
ployed in [4] leads to

ez _1f(:cn)+Ae —e

Yn = eaynfl + A f(xn71)~

[e%

It is straightforward to see that its linearization has a simple zero

¢ = —e?, so its inverse is always stable as when using linear
interpolation.
_ A . .
Now set H(s) = (=R As in Appendix A, one can express

2 ' SVienna
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the antialiasing method as:

u? = eul), + 2 fl@a) + ST f (@)

wd = ey ) + HHERE ()
+Wﬂl’nq)

Yn = A'LL,(ll)

One can linearize this system, find the zeros of its transfer function
in analogy to what we did in Subsection 3.2 and study for which
values of « they lie inside the unit circle. Surprisingly enough, we
discovered that the linearization is minimum phase if and only if
a < —1.69. In absolute terms, this limit is slightly lower than
a = —% which corresponds to the Nyquist frequency. Hence, in
principle, using this reconstruction one could employ the double
pole filter for AA-IIR with compensation, while we had to rule out
this possibility when using linear interpolation. This suggests that
further research could be conducted to find out which reconstruc-
tion kernels are better suited to AA-IIR with compensation.

5. NUMERICAL INTEGRATION

The AA-IIR method requires the evaluation of some integrals, such
as the one in (6). Depending on the nature of the function f, it
may not be possible or otherwise convenient to compute the inte-
gral analytically, in which case it is possible to employ numerical
integration. For example, if one approximates integrals with the
trapezoidal rule, the algorithm (6) for the simple real pole becomes

Yn =eayn71 + é (ea‘f(mnil) + f(m")

N 2
N . , (12)
+ Zof(mnl + N(xn - xn,1)> eo‘(lfﬁ)),
and its linearization (7) becomes
N
~ _ a~ ! é 1 i a(l—l)
Un =€ y"_1+f(0)N<2+§Ne N xy
Afer i\ a(i-4) (9
/ all—%

This approximation has some minor effects on the compensating
filter that are worth mentioning. Firstly, the regions where one has
to choose poles in order to obtain a minimum-phase linearization
will be slightly different from those found in Section 3. Moreover,
in general some inaccuracies in DC gain will be introduced, but
they will be automatically counterbalanced by the corresponding
compensation filter. Similar considerations also hold for multiple
real poles and complex poles.

6. PRACTICAL CONSIDERATIONS

The AA-IIR method with compensation aims at reducing aliasing
produced by static nonlinearities in a dynamical system without af-
fecting its overall frequency response. This result can be achieved
by employing AA-IIR on nonlinearities and then adding a digital
filter in series to compensate the unwanted frequency effects of
AA-IIR. These two features of the method, namely the preserva-
tion of frequency response and the locality of modifications, which
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in turn also imply consistency in time-varying behavior and sta-
bility in small-signal terms, represent its main advantages over
Holters’ method [6, 7].

The compensation filter typically has no effect on the lowest
frequencies and boosts frequencies near the Nyquist limit. Since it
is applied at the end of the process, this extra gain indiscriminately
affects all components, whether they are “linear terms”, thus re-
establishing the original frequency response, nonlinear elements,
which are incorrectly magnified at highest frequencies, or alias-
ing components, which should hopefully end up being attenuated
at low/mid frequencies but most likely boosted at higher frequen-
cies. Therefore, even if not strictly necessary, it is still advisable to
employ mild oversampling over the whole system with the current
formulation of the method, as with Holters’ method.

The stability of the compensation filter is directly affected by
both the reconstruction and continuous-time filter kernels. When
using linear interpolation for reconstruction, which is customary
to this day for AA methods, only first-order IIR kernels can be
serenely chosen for the continuous-time filter. We have however
shown in Section 4 how employing other reconstruction kernels
can expand the stability range associated with continuous-time fil-
ter kernels with steeper rolloff. With a view to conducting further
research in this sense, we expect that investigating specific classes
of reconstruction filters could yield practically appreciable results.
Namely, given the formulations of both AA-FIR and AA-IIR, we
suggest studying those kernels k(¢) which possess the following
characteristics:

1. k(0) = 1 and k(n) = 0 withn € Z,n # 0, so that the
continuous-time signal is equal to the original discrete-time
signal at the corresponding discrete-time indices;

2. [T k(t)dt = 1and 3372 k(i + At) = 1,VAt €
[0,1), so that unitary DC gain is guaranteed overall and
with any fixed At offset;

3. lead to a causal algorithm, and possibly to both AA and
filtering parts being each causal.

In the rest of this Section we evaluate the AA-IIR method with
compensation by applying it to the diode clipper circuit, as it was
both often studied in previous works [6, 7, 8] and also since its
nonlinearity is close to the output, which allows us to clearly ex-
amine the effects of the method.

6.1. Example: the diode clipper

The diode clipper is a circuit that prevents the output from exceed-
ing a predefined voltage level. Figure 3 shows a dynamical version
of the circuit that includes a first-order lowpass filter. The circuit
can be fully described by [10]

(%)

where x and y are the input and the output voltage, respectively, Is
is the saturation current and Vr is the thermal voltage.

We will construct a digital model of (14) following [11]. First,
we discretize the derivative on the left hand side with a general
linear one-step method:

T—y I
RO 72551nh

dy _
de —

(14)

(Dy)n = Boyn + Biyn—1 — A1(Dy)n—1

Vlenna

OBy

45

oY

Figure 3: Schematics of the diode clipper circuit.

||

Then, we approximate sinh(x) —1). We obtain:

~ Ssign(z)(e

Boyn + Biyn—1 — A1(Dy)n—1 =

Tn — Yn Is . lyn
“Ro ~ otenlyn) (et —1).

This equation can be analytically solved with the help of the Wright
Omega function and put in a suitable form for AA-IIR with com-
pensation:

{fn =z, — RC(Biyn—1 — A1(Dy)n-1)

yn = f(n) ’
where
_ o+ LRsign(z) ., . |z| + IsR
1@ =g re Vi@ i T B RO)

1 IR
log (VT(l ¥ BORC)>)‘
(15)
We chose R = 1k, C = 33 nF, I, = 1 fA, Vr = 25 mV,
and fs = 44100 Hz, and we discretized the derivative using the
Euler backwards method, i.e.,

BO :f57 _fSa

We then modified this algorithm by applying the proposed
method using a single pole filter H(s) = , with oo = — 7.
It is clear that the integral in (6) cannot be computed analytically
with f as in (15); therefore, we used the numerical algorithm (12)
with N = 5.

Firstly, we verified that our method does not affect the small-
signal frequency response of the overall system by feeding both
algorithms with an impulse of amplitude 10~° and then compar-
ing the magnitude spectra of the outputs, thus obtaining practically
identical results. Then, we supplied both algorithms with an input
sine wave of amplitude 10 and frequency 986.96 Hz to assess the
properties of our method. The magnitude spectra of the outputs are
shown in Figure 4. As expected, we see that with our method the
fundamental has identical amplitude, the harmonics are boosted at
increasing frequency, while aliasing components are attenuated at
low-mid frequencies and boosted in the highest part of the spec-
trum.

When using the bilinear transform instead, i.e.,

72f57

the small-signal frequency response is still preserved, but aliasing
noise actually increases in the output, as shown in Figure 5. We

By = A1 =0.

Bo=2f,, Bi= A =1.
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conclude that the performance of the method is not always guar-
anteed and has to be assessed on a case-by-case basis. Further
research could be devoted to finding general criteria for the good
functioning of the method.

GNU Octave implementations of all four algorithms are avail-
able on the companion web page for this paper'.
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Figure 4: Magnitude spectra of the output of (a) the original and
(b) the modified diode clipper simulation algorithms, discretized
with Euler backwards, when fed with an input sine wave of am-
plitude 10 and frequency 986.96 Hz, and running at a sample rate
fs = 44100 Hz.

7. CONCLUSIONS

This paper introduces an improvement to our previous AA-IIR
method that is particularly useful for static nonlinearities embed-
ded in dynamical systems: it consists in cascading a digital filter in
series with the modified nonlinearities to compensate for unwanted
delay and frequency-dependent effects introduced by the AA-IIR
method, which in turn also leads to consistency in time-varying
behavior and stability in small-signal terms.

The stability of such compensation filter is dependent on the
chosen AA-IIR reconstruction and continuous-time filtering ker-
nels. When using linear interpolation for reconstruction, filters

Ihttps://www.dangelo.audio/dafx20in22-aaiir.
html
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Figure 5: Magnitude spectra of the output of (a) the original and
(b) the modified diode clipper simulation algorithms, discretized
with the bilinear transform, when fed with an input sine wave of
amplitude 10 and frequency 986.96 Hz, and running at a sample
rate fs = 44100 Hz.

with a single real negative pole will always lead to stable com-
pensation filters, while more attention should be paid if one wants
to use higher-order kernels. Other choices for the reconstruction
phase will lead to different stability criteria, hence further research
in this direction would be desirable.

When tested on a virtual analog example, the method in its
most obvious fomulation shows very unequal performances when
different discretizations are employed. In one instance it reshapes
aliasing noise by attenuating it at low/mid frequencies at the ex-
pense of boosting nonlinear and aliasing components in the high-
est part of the digital spectrum, while in another it turns out to
be counterproductive as aliasing noise is increased over the whole
spectrum. Hence we suggest case-by-case evaluation and possi-
bly coupling it with mild oversampling when it is effective, even
though not strictly required. On the other hand we wish that fu-
ture investigations will shed some light on which systems it is best
suited for and possibly propose extensions to expand this class as
much as possible.
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A. APPENDIX: A NEW FORMULATION OF AA-IIR FOR
MULTIPLE POLES

In this appendix, we derive a formulation of the AA-IIR method
for multiple poles different from that proposed in [4], that is clearer
and more suitable for our purposes.

A.1. Real case

Suppose that H(s) = A r,withAd € R,a < Oandr >

=)
0. Then the associated impulse response is h(t) = A%eo‘tu(t),

Vlenna

OBy

where u(t) is the Heaviside function. From Egs. (1) and (2):

n

Yn = (Z(t))h(n —t) dt

A n

=il FE®))(n—t) e qt.

If the states u®) are defined as
n
u = [ s
0

yn = Sull. (16)

From the previous equation:

o t)k€a<n7t) dt,

then

ull) = /n_lf(:i(t))(n—t)k an=1=1) g4
0

AR

Recalling that a* = Zf:o (ll“) (a — 1)" and applying the substitu-
tion t — t + n — 1 to the last integral, we obtain

ea k ( >/ F@ED) (n — 1 — 1)leo =170 g4

1

—t)Fe*( ) gy,

+ | fl@n1 4tz — n1))(1 — )Y ag,
0
ie.,
/ Fnos + t@n — 2n1))(1 — )Fe 00 dr.

a7
We conclude that the system is described by Eq. (16) and Eq. (17)
for kK = 0,...,r. Notice that the definition of the sequence u®
does not depend on r, so these states can be used for all summands
in Eq. (5) relative to the same pole.

A.2. Complex case

Suppose now that H (s) = = ,H + 1 grﬂ , where B, 3 €

C, R(8) < 0and r > 0. Then h( ) = 2T[ R(Be’*)u(t) and the
computation goes similarly to the real case. More precisely, if we

set
u® = / F@E®) (n

fork=0,...,r, then

— kP qt

Yn = %%(Bu;”) (18)

and the u*)’s are updated according to:

—|—/ f(@n—1 +t(xn — xn-1))(1 — t)keﬁ(l—t) dt.
O 19)
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