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ABSTRACT

In addition to tone, pitch and rhythm, dynamics is one of the ex-
pressive dimensions of the performance of a music piece that has
received limited attention. While the usage of dynamics may vary
from artist to artist, and also from performance to performance, a
systematic methodology to automatically identify the dynamics of
a performance in terms of musically meaningful terms like forte,
piano may offer valuable feedback in the context of music edu-
cation and in particular in singing. To this end, we have manually
annotated the dynamic markings of commercial recordings of pop-
ular rock and pop songs from the Smule Vocal Balanced (SVB)
dataset which will be used as reference data. Then as a first step
for our research goal, we propose a method to derive and compare
singing voice loudness curves in polyphonic mixtures. Towards
measuring the similarity and variation of dynamics, we compare
the dynamics curves of the SVB renditions with the one derived
from the original songs. We perform the same comparison using
professionally produced renditions from a karaoke website. We re-
late high values of Spearman correlation coefficient found in some
select student renditions and the professional renditions with accu-
rate dynamics.

1. INTRODUCTION

Dynamics are used to convey expressiveness of a musical perfor-
mance. In musical terms, the term dynamics often refers to the
intended or perceived "sound strength", while in technical terms,
the musical dynamics are usually mapped to loudness of the result-
ing audio [1]. The classification of dynamic markings for perfor-
mances into categories like - pp (very soft), p (soft), mp (moder-
ately soft), mf (moderately loud), f (loud), ff (very loud) remains
widely accepted [2], and several studies have been conducted ana-
lyzing the relationship between the dynamic markings in the score
to the observed values of loudness in audio [3, 4], particularly for
the case of Western Classical piano performances [4-6]. However,
not many studies have been conducted analyzing the role of dy-
namics in vocal performances [7].

The task of automatic transcription [8] of dynamics from au-
dio is useful in scenarios where the availability of scores is limited
or the primary source of learning is via oral means, for example
in traditions like pop and jazz. In such oral traditions, learning en-
tails not only following the original performance in terms of rhyth-
mic [9] and pitch accuracy [10], but also implicitly reproducing the
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expressive techniques employed by the original artist. With auto-
matically transcribed dynamic markings, it is possible for a vocal
practitioner or learner to understand the interpretation of a given
piece of music as intended by the artist, and reproduce them in the
same way. This can be particularly useful in vocal music learning
and assessment applications [11], or singing along with karaoke
tracks. In addition, a system that yields the dynamic range of
a song based on audio analysis may help the students to choose
songs within a certain dynamic range, corresponding to their own.
However, the lack of annotations and data make the evaluation of
this task particularly challenging.

The variation of musical dynamics is usually instrument de-
pendent [2], and several approaches exist to model musical dy-
namics [12], approaching it as a classification problem i.e. catego-
rizing the label (p, m, f etc) based on the observed loudness lev-
els, or prediction problem, where loudness levels corresponding
to the dynamics markings are predicted, using machine learning
approaches like decision trees, Support Vector Machine (SVM),
etc [3]. Jeong et al. [13] predict the note level intensity for the
case of piano using non-negative matrix factorization (NMF) based
techniques taking the aligned score and performance audio as in-
put. Marinelli et al. [14] use convolutional neural network (CNN)
with modulation power spectra as an input feature for dynamics
classification into categories pp and ff. However, existing work on
computational modelling of vocal dynamics is rather limited with
almost no annotation availability to the best of our knowledge.

In our previous work [7], we devised a methodology to extract
musical dynamics from audio via loudness features either from
a mix or monophonic vocal audio recordings. To validate our ap-
proach, we conducted a case study where we asked a music teacher
to provide feedback on the musical dynamics employed by the
artist ‘Norah Jones’ in her rendition of the song ‘Don’t know why’,
in reference to a karaoke version. We found in our analysis that the
musical dynamics markings by the teacher were closely correlated
with the loudness feature extracted from the audio. However, the
methodology was conducted for a small number of renditions, ex-
tracted from professionally produced karaoke songs, and the case
study was carried out for one song.

In the current work, we extend a similar analysis for a large
number of songs, part of publicly available Smule Vocal Balanced
dataset [15]focusing on measuring and comparing the dynamics
in vocal rock and pop performances using audio recordings. We
first annotate the score in the form of musical notes correspond-
ing to the singing voice for five popular songs. We then col-
laborate with a music teacher to annotate the dynamic markings
in these songs. Only five songs have been chosen for analysis
due to either source separation artifacts, overall song length mis-
match of karaoke/professional renditions with original songs, or
challenges with creating a score that is aligned with the original
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renditions. We compare the loudness contours computed on the
original recordings with the associated renditions from the SVB
dataset [15] using sone scale [16], which is based on psychoacous-
tic model inspired by the human ear, for comparing the mapping of
dynamics markings indicated by the teacher to the loudness values
obtained from the audio signals. Further, we propose metrics for
comparing dynamics based on Spearman correlation of loudness
curves (1) for entire performances and (2) around the annotated
dynamic markings. The rest of the paper is structured as follows.
In section 2, we introduce the dataset we use in our analysis, with
Section 3 describing the methodology used in the process. Section
4 contains the details of the conducted experiments along with the
challenges and limitations of the proposed methodology. Finally,
we conclude with a discussion section and possible directions of
future work.

2. DATASETS

Because the goal of our research is to compare singing voice dy-
namics between original songs, professionally produced renditions,
and student renditions, we derive a dataset from three data sources:

(i) Five commercial pop rock songs listed in Table 1, for which
we obtained the original audio from YouTube.

(ii) For the five songs we obtain professionally produced rendi-
tions and the associated audio stems from a karaoke website'. The
choice of karaoke tracks of the same songs in our dataset helps
us validate if the reproduction of a song by a professional singer
involves reproducing the dynamics of the original artist.

(iii) From the Smule Vocal Balanced (SVB) dataset [15] we
select the audio renditions corresponding to the five songs. The
SVB dataset comprises student recordings of 24874 solo singing
performances from 5429 singers singing a collection of 14 songs.
The recordings comprise different levels of singing training and
recording quality. In addition, some of the performances may be
duets and some are incomplete.

Score creation for the original audio tracks. In order to
carry out evaluation, we need scores with precise dynamics as in-
tended or perceived in the original recordings. Hence, we col-
laborated with a music teacher to identify the dynamics markings
at the note level, and eventually at the phrase level. We create a
score for select reference recordings in musicXML format from
the SVB dataset and via collaboration with a music teacher, we
annotate the score with dynamics markings into 8 categories ppp,
pp. p, mp, mf, f, ff and fff. The annotation process is defined as fol-
lows. The teacher listens to the complete source separated version
of the reference recording, and thereafter annotates the song sec-
tions with corresponding dynamics markings at the note level. The
note level annotations of each rendition is created by the author by
listening to the source separated reference recordings. MusicXML
is chosen as an intermediate tool for score transcription in order to
extract information like note pitch, note start time, note end time,
measure number, beat number etc from the score, such that timing
information can be mapped between the score and audio. The end
result of this step is a score that can be parsed automatically using
tools like music21 [17] for extracting the dynamics from the score.
Each annotation for our task took close to 6 hours. The annotations
were also validated by the author in the process.

Uhttps://www.karaoke-version.com/
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3. METHODOLOGY
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Figure 1: Methodology for extracting and comparing Dynamics

The methodology for extracting loudness is presented in Fig-
ure 1. There are 3 parts to the process 1) Audio Synchronization
2) Data pre-processing and feature computation 3) Metric Compu-
tation

3.1. Audio Synchronization

Since the score is annotated on the original recording, we assume
that the score is coarsely aligned with the audio signal of this
recording. However, renditions may not be perfectly aligned with
the original recordings. We assume that any of the renditions are
performed with a backing track. In some cases we have to account
for an initial offset, before the backing track starts. To align the
renditions with reference recordings we compute cross correlation
of the pitch contour of the two audio signals using melodia [18]
implementation of essentia [19] using a hop size of 0.003 ms. The
offset in frames is then mapped to the corresponding frame posi-
tion in the extracted loudness curve.

3.2. Data pre-processing and feature computation
3.2.1. Source Separation

The recent progress in the field of audio source separation, espe-
cially for contemporary rock and pop genre of music facilitated us
to use it as an intermediate step. We validated the efficacy of this
step in our previous work [7] with the MusDB dataset [20], where
the correlation coefficient between the loudness curves of source
separated vocals with the loudness curve of the vocal stem was
very high, in most cases, being greater than 0.9.

3.2.2. Loudness Extraction from Audio

With isolated vocal tracks from the mix or monophonic recordings
from renditions of professional/amateur singers, the next step is to
extract loudness curves from each of the sources to compare them.
We use the sone scale for this purpose. Sone scale is inspired by
psychoacoustic concept of equal loudness curves, with the mea-
surement being linear i.e doubling of perceived loudness doubles
the sone value [16]. The phon scale is closely associated with the
dB scale, where 1 phon is equivalent to 1 deciBel at 1000 Hz (1
kHz). The sone scale is based on the observation that a 10 phon
increase in sound level is perceived as doubling of loudness. A
phon value of 40 translates to 1 sone, and the relationship between
phons and sones can be modelled with the equation:
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if P >=40.

P < 40. @

(11/40)2.6427
The sone scale computation along with the consecutive smooth-
ing operation is carried out in the same way as proposed by Kosta
et al [3] in their analysis. Each of the curves are normalized by
dividing by the max value to compare the relative values, and not
the absolute ones.

9(L—40)/10
5= { ,

3.3. Metric Computation

Vocal dynamics may fluctuate throughout the song. However, only
certain parts of the song may include dynamic changes and may be
deemed more important in judging the expressiveness of dynam-
ics. To account for that we compute comparisons between ren-
ditions and original recordings at the song level (global) and at
change points we annotated (local).

3.3.1. Global Loudness Comparison

To compare the loudness curves of the rendition and the original
song, we did not want to make any assumptions about the underly-
ing data distribution [21], and hence decided to compute the non-
parametric Spearman Correlation Coefficient (p) of the smoothed
curves of the aligned renditions.

6> d;?
n(n? —1)

Ts =p 2

where

* d; = R(X;) - R(Y;) is the difference between the two ranks
of each observation, where X; and Y; represent raw scores

¢ n is the number of observations

3.3.2. Local Loudness Comparison at the Change Points

Change points refer to the points in time where the dynamic
changes occur, for example from mf to f and so on. The local
changes are measured by computing the Spearman correlation, p
of the smoothened loudness curves at the change point window,
where a change point window is estimated from the score using
music21 [17] and thereafter mapped to the corresponding posi-
tion in the audio. In order to do so, we first compute the beats
using madmom’s [22] DBNBeattracker, and then manually check
for the initial beat until the score is well aligned with the reference
recording. To make sure alignment is in order, we use synthesized
audio from the score using fluidsynth [23] library and play the syn-
thesized version with the reference recording, making sure all the
change points are mapped correctly. We use a total of 4 beats as
part of the change point window (2 beats before the change point,
and 2 beats after the change point) in order to carry out evaluation
at the change point window.

4. EXPERIMENTS

4.1. Experimental Setup

For the commercial popular recordings, we solely have access to
the mixed tracks for the subsets (i) and (iii) of our dataset, while
for subset (ii) the karaoke versions, we have access to all the stems.
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Song Name Artist Filtered Student Count
All of me John Legend 416
Chandelier Sia 4
Love Yourself Justin Beiber 149
Say you won’t let go James Arthur 362
When I was your man  Bruno Mars 7

Table 1: Student Data Statistics

To that extent, for the subsets (i) and (iii) we extract the vocal
stem using the Spleeter implementation of the U-Net singing voice
source separation [24]. Thereafter, the loudness curve is extracted
from the separated vocal track or vocal stem using sone scale. The
methodology for extracting loudness in terms of the sone scale is
described above, and we use similar set of parameters to Kosta et
al. [4]. We use a block size of 512 samples or 11 ms with a Han-
ning window, and a hop size of 256 samples or 5.5 ms. We use the
ma_sone function in Elias Pampalk’s Music Analysis toolbox [25]
in Matlab. Further, we apply smoothing operation using “loess"
with smooth function in matlab (based on locally weighted non-
parametric regression fitting using a 2nd order polynomial). We
experimentally determine the time span for the loess method to
5%. The loudness curves are normalized by dividing by the max
value to carry out a relative comparison between renditions of dif-
ferent amplitude levels. We also experimented with using dynamic
range for normalization, however, the minimum sone value when
comparing the entire rendition is always 0, and source separation
artifacts sometimes interfere with minimum value selection using
peak-picking leading to a smaller dynamic range. For evaluating
the correlation solely around the change points, we take a change
point window around each change point indicated by the score. We
take a time interval of 2 beats before and 2 beats after the change
point.

4.1.1. Sone scale loudness curve comparison with other scales

We also experimented with Loudness Unit Full Scale (LUFS)
loudness extraction using the Essentia implementation of
EBURI128 [26], comparing the smoothed loudness curves of
karaoke/professional renditions with original renditions. We found
the results to be quite similar with a variation of around 6 to 7%
for all the songs. We use the momentary loudness with 400 ms
block-size, 5.5 ms hop-size and 5% time-span of the “loess” func-
tion. The variability of the results was primarily due to tuning
of time-span parameter of the “loess” function. Further, we also
compared the sone scale values to RMS values of the signal in our
initial experiments, and found the RMS output to be quite noisy.
We continued our experimentation with the sone scale consider-
ing the robustness of the resulting values with parameter tuning in
reference to other scales.

4.2. Pre-processing Student Recordings

The Smule dataset consists of 24874 monophonic recordings of
14 commercial songs, of which we select five songs as mentioned
above. Many of the renditions are sung in duets. In order to carry
out a dynamics comparison for the entire song, we manually fil-
ter out duet recordings from complete renditions in our analysis.
We make use of percentage voice in the audio track for doing so,
thresholding by different numbers based on the input song, us-
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Table 2: Observed mean, median and standard deviation for aligned student recordings and p for Karaoke Recordings

Student Recordings Karaoke Recordings
Global Local(Change Points) Global Change Points
Song Mean Median SD | Mean Median SD p Mean Median SD
All of me 0.72 0.71 0.06 | 0.59 0.96 0.61 0.88 0.62 0.99 0.64
Chandelier 0.77 0.76 0.05 | 047 0.90 0.77 0.92 1.0 1.0 0.0
Love yourself 0.71 0.72 0.06 | 0.71 0.99 0.58 0.89 0.99 0.99 0.001
Say you wont let go 0.71 0.70 0.07 | 0.35 0.67 0.73 0.90 0.67 0.86 0.52
When I was your man | 0.85 0.87 0.06 | 0.73 0.94 0.43 0.88 0.67 0.87 0.46

Table 3: Difference mean, median of Student Recordings and Karaoke Recordings
Global Local(Change Points)

Song Mean Difference  Median Difference | Mean Difference =~ Median Difference
All of me 0.16 0.17 0.03 0.03
Chandelier 0.15 0.16 0.53 0.10

Love yourself 0.18 0.17 0.28 0.0

Say you wont let go 0.19 0.20 0.32 0.19

When I was your man 0.03 0.02 -0.06 -0.07

ing split function present in the librosa library [27] for this pre-
processing step. Moreover, not all renditions are sampled at the
same rate, hence, we carry our resampling operation over the en-
tire filtered set, keeping the sampling rate at 44100 Hz. Further, we
filter out all recordings shorter than the length of the corresponding
reference tracks. We also filter out all recordings where the global
Spearman Correlation Coefficient of the loudness curves is less
than 0.6. This threshold was chosen by first holding out 10% of the
recordings for each song, and then manually listening to 5 songs
for each song from the held out data. We found that songs with val-
ues smaller than p of 0.6 either had background noise that could
not be filtered using vocal activity detection, or were not complete
renditions. Table 1 presents the song count of student renditions
after pre-processing and filtering the remaining 90% data with the
threshold. As evident from the table, there aren’t many recordings
available for the songs *’Chandelier’ and *When I was your man’,
suggesting preference of certain songs over others. This further
leads to class imbalance, however, since we carry out evaluation at
the song level, the class imbalance does not impact the evaluation.

4.3. Results

We compute and average Spearman correlation values globally and
locally for all student renditions compared to the original songs. In
addition, we report similar metrics when comparing the karaoke
/professional renditions with the original songs.

Table 2 presents the mean, median, and standard deviation
(SD) for the entire set of student renditions and at change points. It
is to be noted that for student renditions, global mean, median and
SD’s refer to the mean of Spearman Correlation or p values for the
entire set of student renditions for any given piece of music, while
for karaoke/professional renditions, we report the p for the entire
song as a global metric, and mean, median and SD’s of the change
points as a local metric. Following are some primary conclusions
from our investigation:

* The median values at change points are generally higher as
compared to mean values
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* Professional/karaoke renditions have higher values as com-
pared to student/SVB renditions

* The scale used for loudness measurement i.e. EBUR or
sone does not impact the results much with correct param-
eter tuning.

The median values being higher than mean values could stem from
the fact that correlation values are sensitive to silence originating
from aligned smoothed curves, leading to higher values at change
points where dynamics variation coincides with aligned renditions.
On the other hand, a mismatch at any of the change point pushes
down the mean values at change points. For example, Figure 2
presents the sone values, along with smoothed loudness curves and
detected change points for the song ’Say you won’t let go’. The p
value at change points 7 and 8 in this example turn out to be neg-
ative pushing down the mean values for the entire rendition. The
median for all professional renditions is greater than 0.8 validating
our hypothesis that professional singers are able to reproduce the
dynamics in most cases.

Table 3 presents the difference of mean and median values
of student renditions from karaoke renditions at change points as
well as globally. Most values in the difference table are positive,
suggesting validation of the hypothesis that professional/karaoke
singers follow the dynamics of the original/reference rendition bet-
ter than the students on average. For the case of the song “When
I was your man’, the mean and median difference is negative. We
analysed the recordings by listening to them for the song, and
found them to be following the notes as well as the dynamics rela-
tively well.

There is only one change point for the case of the song ‘Love
yourself’, and a high mean and median value across student ren-
ditions indicates that most students follow that particular change
point.

4.4. Challenges and Limitations

Despite the encouraging results that we find in our investigations,
the proposed system works only for specific conditions at the mo-
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Figure 2: Comparison between source separated vocals of the rendition and the professional vocal stem

ment. The analyzed recordings should be monophonic, without
any noise or backing track interference, and approximately the
same length as the original/reference recording. Moreover, we
filter out all renditions where the singers sing only the partial or
one part of the duet track. In this investigation, we have also fil-
tered out renditions with Spearman Correlation values less than
0.60. This threshold was found by perceptually testing student
renditions with lower values, which either had a backing track or
noise interference or were renditions where the students stopped
singing/repeated certain sections amongst other challenges.

The loudness curves are also dependent on the robustness of
the source separation algorithm applied prior to loudness extrac-
tion. We discarded some original recordings and the associated
renditions in the SVB dataset because the source separation output
had interference from the instrumental portions as well, that were
affecting the dynamics of the source separated version of the track.

Apart from score creation, we need to make sure that the score
is completely aligned with the reference track to fetch the change
point window correctly. However, for some tracks, the BPM value
is not static and changes over the course of the song that makes it
challenging to use this approach for analysis. In the current songs
chosen for analysis, the time signature is 4/4, and the BPM value
remains constant through out the performance.

5. DISCUSSION

Work on dynamics extraction and measurement is a challenging
task for several reasons. The first being lack of sufficiently an-
notated data for singing voice. While we take some preliminary
steps to address this gap by creating some scores with dynamics
markings, it is challenging to scale this approach to include any
given piece of music. Moreover, while creating annotations for
this work, many a times, the music teacher would discretize a given
dynamics category to further levels, for example p+ or p-, which
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we could not address due to the limitations of tools like Musescore
and music21.

Another important factor that plays a role in dynamics anal-
ysis is the compression factor applied to professionally produced
music. While the artists may have a range of dynamics that they
employ in a performance, many a times, the producers chose to
limit or compress the vocal range within a specific limit. However,
we simplify the problem statement with an assumption that mas-
tering is done in such a way that musical dynamics are retained
in any given performance and can be easily perceived and distin-
guished by a music teacher.

In the current investigation, we have simplified the problem
statement with an assumption that students imitate the perfor-
mance of the teacher, including the dynamics of the original per-
formance without addition of a subjective interpretation. The an-
notations are created by a teacher with expertise in the Rock and
Pop genre of music, and since the annotations are created by the
same teacher for all the songs, the analysis is consistent and co-
herent for the entire dataset. There is also a possibility that the
annotations may vary from one expert to another, however, we do
not take teacher variation into consideration for our analysis. Fur-
ther, the students always perform with an accompaniment track,
which are similar across renditions of the same piece leading to a
similar musical context.

The mapping between absolute value of loudness measured
from audio signals to specific musical dynamics category will also
depend on the genre of music being evaluated. For Rock and Pop
genre of music, the expected dynamic range is generally much nar-
rower than genres like orchestra or opera.

Although the results are promising, the analysis is dependent
on the parameters related to smoothing and sones computing, for
which we determine values experimentally. Moreover, the usage of
dynamics in a performance is very much artist and song dependent,
that adds to the difficulty of a piece of music. For example, the
music teacher annotated ‘Love yourself’ to be a song with easy
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dynamics structure in terms of difficulty, and ‘All of me’ to be
a song with much more dynamics variation. Hence, we would
need to explore and use a combination of metrics to cater to song
variations.

6. CONCLUSION AND FUTURE WORK

We propose a system for dynamics analysis, particularly testing
it for the case of vocal music education. Our system proposes
comparing original recordings and renditions using Spearman
correlation of loudness curves globally and locally, at change
points. The evaluation we perform on a dataset we derive from the
SVB dataset shows that professional produced recordings have
higher correlation than amateur renditions. In addition, the local
comparison is more sensitive to outliers and it is more discrimina-
tive. For the current investigation, we have limited the analysis to
one annotator, keeping the analysis consistent and coherent with
one teacher with expertise in Rock and Pop genre of music. The
annotations were also reviewed by the author of the paper. Several
directions can be explored going forward, the primary one being
addition of more evaluation metrics testing it for varying levels
of difficulty of a music piece, and also carrying out subjective
evaluation with the help of the same teacher, testing whether
the objective metrics are in line with the subjective evaluation.
We also intend to extend the analysis with addition of closely
correlated features, especially the relationship of loudness with
timbre. Further, we intend to apply machine learning approaches
to predict the dynamics of a music piece, taking advantage of the
annotations that are created as part of this work.
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