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ABSTRACT

In this paper we introduce a novel approach utilizing real-time
concatenative synthesis to produce a Feature-Based Delay Line
(FBDL). Expanding upon the concept of a traditional delay, its
most basic function is familiar – a dry signal is copied to an audio
buffer whose read position is time shifted producing a delayed or
"wet" signal that is then remixed with the dry. In our implemen-
tation, however, the traditionally unaltered wet signal is modified
such that the audio delay buffer is segmented and concatenated ac-
cording to specific audio features. Specifically, the input audio is
analyzed and segmented as it is written to the delay buffer, where
delayed segments are matched to a target feature set, such that the
most similar segments are selected to constitute the wet signal of
the delay. Targeting methods, either manual or automated, can be
used to explore the feature space of the delay line buffer based on
dry signal feature information and relevant targeting parameters,
such as delay time. This paper will outline our process, detail-
ing important requirements such as targeting and considerations
for feature extraction and concatenation synthesis, as well as dis-
cussing use cases, performance evaluation, and commentary on the
potential of advances to digital delay lines.

1. INTRODUCTION

1.1. Concatenative Synthesis

Concatenation synthesis, thought of as directed granular synthe-
sis [1] and referred to as its natural successor, is a type of syn-
thesis where small segments of audio are selected according to
their descriptors and concatenated together to create a unique au-
dio stream. The origins of the idea are espoused in Iannis Xe-
nakis’ Formalized Music in which he describes a stochastic ap-
proach of concatenating small segments of audio together to cre-
ate new sounds [2]. Due to processing limitations of the time, the
analysis was a time consuming endeavor that had to take place
pre-synthesis and was thus a major limiting factor for the syn-
thesis technique. Concatenation synthesis gained prominence in
vocal synthesis in the 1990s through work presented by various
researchers including Hunt and Black in 1996 [3] and J Olive in
1997 [4]. The technique was quickly seen to be effective for resyn-
thesizing sounds from a corpus of source audio comprised of vocal
sonic components such as phonemes, sibilants, or fricatives. Con-
catenation synthesis remains as one of the predominant means of
performing vocal synthesis today.
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The early 2000s, referred to as the early years of concatenation
synthesis [5], presented an increase in processing power spawning
a surge of new interest in the technique exhibiting several different
applications with an exploration towards musical ends. Ari Lazier
and Perry Cook developed Mosevius [6], a tool for creating “audio
mosaics." This application was available as a standalone tool or as
a library, where it allowed users to perform concatenative synthe-
sis on a corpus of audio using MIDI or real-time feature extraction
on a control signal to inform segment selection. Similarly, Diemo
Schwarz’ CataRT [7] was a collection of patches for Max/MSP
built to perform concatenative synthesis. This system also used
manual control or real-time feature extraction of input audio to
inform segment selection from a corpus of audio. These two ap-
plications were nearly identical in their approach to concatenative
synthesis and established a standard paradigm for the process.

More recently, advancements in processing and research have
led to the development of more tools utilizing concatenation syn-
thesis in various ways. In 2011, Beller [8] created a physical
gestural controller to control segment selection in a concatenative
speech synthesis system for performance at IRCAM, which was
later built upon by Zbyszyński et al. [9] in 2019, bringing the idea
to musical ends along with the introduction of machine learning
algorithms. In 2012, S. An et al. created a framework in which
plausible accompanying audio is generated for physics based cloth
animations by producing a simple target sample based upon sim-
ulation information which informs concatenation on a database of
higher fidelity cloth samples [10]. In 2016, the audio plug-in Mo-
saic [11] brought concatenative synthesis towards the audio effects
world by layering sounds from an audio corpus on top of incom-
ing audio by means of real-time feature extraction of the input sig-
nal guided by user-specified thresholds for particular features. In
2017, MIT produced an application called RhythmCAT [12] that
used concatenation synthesis to power a drum programmer and
beat maker for electronic music. The application had a focus on
refined interface and streamlined functionality, taking advantage of
methods like dimension reduction and onset detection to quantize
the output and smooth out the user experience. In 2019, C Moore
and W Brent explored concatenation synthesis with a new level
of interactivity using virtual reality technology to allow users to
explore the feature space in three dimensions while forming clus-
tering structures and allowing the user to explore the space with
rays and other physical means [13].

While each of these applications explored concatenation syn-
thesis in unique ways, they all rely on a corpus of audio that is
pre-analyzed, and they appeal to the design paradigm established
in the 2000s by apps such as Mosevius and CataRT. The reason for
this is clear, as it is computationally efficient to pre-analyze an au-
dio corpus and then use the resulting meta-data analysis to perform
real-time synthesis. However, with current advances in processing
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and research in the field, we can expand this paradigm and tap into
unexplored territory via generating audio corpora and performing
end-to-end concatenation synthesis all in real-time. This may al-
low the technique to proliferate in the audio effects world, where
relatively little work has been done but more potential exists for
the technique in audio production and sound design.

1.2. The Delay Line

The phenomenon of audio delay fundamentally influences our au-
ditory experience in the physical world. Acoustical sound waves
propagate throughout a space and reflect off surfaces causing the
superposition of time-offset waves at the position of a listener’s ear
or a microphone. Depending on the delay time, this phenomenon
yields changes to the perceived audio ranging from an audible echo
to intricate alterations in audio timbre resulting from spectral fil-
tering. Notably, the perception of the quality of a space, such as a
concert hall, is an amalgamation of all delays resulting from sonic
reflections propagating throughout that space [14].

Given this correlation, it comes as no surprise that delay, har-
nessed through "delay lines," constitutes a crucial aspect of signal
processing, whether analog or digital. Delay lines form the foun-
dation for numerous common operations such as filtering, reverb
emulation, and physical modeling, as well as various other audio
effects like flanging and chorus [15].

With such a fundamental role in audio processing, advances
in delay line technology have the potential to permeate multiple
areas of signal processing and audio effects. As a result, the delay
line represents a significant object of inquiry for modern process-
ing power and algorithms, including real-time music information
retrieval and concatenative synthesis.

2. FEATURE-BASED DELAY LINE

This brings us to our proposed model of a Feature-Based Delay
Line (FBDL), a novel application of a traditional delay line that
utilizes concatenation synthesis where the corpus of audio exists
as an ever-changing delay line buffer, analyzed, segmented, and
concatenated all in real-time (Figure 1). To accomplish this, seg-
mentation and feature extraction take place as the audio is copied
to the delay buffer, where the resulting analysis remains paired
with its associated audio as it travels through the buffer. Segments

are then selected according to a process we call targeting and con-
catenated to create the wet signal, which is then mixed with the
dry signal. To control concatention of the delay line, the user can
set several important parameters, including segment size, feature
set, feature weights, targeting method, and targeting parameters.
In particular, the critical method of targeting produces a system of
selection criteria that expands on the concatenation synthesis norm
of simple matching, adding tunable depth to the system and creat-
ing the delay-like behavior. The aggregate result is an audio effect
that expands on the traditional delay line, exhibiting creative po-
tential for audio production and sound design, as well as potential
as a component for signal processing.

As discussed above, the fundamental structure of the FBDL
is a delay line, where the content of the delay line buffer consti-
tutes the audio corpus for concatenation synthesis. Our approach
is rooted in the functionality of a traditional digital delay line [15],
but it expands on the capabilities of the traditional paradigm to
create new possibilities. A traditional digital delay line utilizes a
circular buffer, where given an audio buffer X of sample size N, the
next input sample will write to an indexed buffer position n, such
that X(n) = input sample. As audio samples are written, the index
n will then be incremented, wrapping around when it reaches the
end of the buffer. In a digital delay line, given a delay time t in
samples, the delayed signal will read every sample from index n - t
(this index will also wrap to stay in the bounds of the buffer), such
that the output = X(n - t). Our FBDL is similar to the traditional
paradigm, where incoming audio is written to a circular buffer of
length N. However, in our case the delay time, now denoted c,
is dynamically determined as a result of concatenative synthesis,
where the delay buffer position n - c is a function of audio features
defined via the targeting process (Figure 2).

Figure 2: Feature-Based Delay Line, where delay time c is deter-
mined by audio feature analysis (targeting).

Figure 1: Data and signal flow of the Feature-Based Delay Line Architecture.
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3. TARGETING

Targeting is our process of traversing a defined feature space and
selecting audio segments according to their qualitative position in
the space. The method of targeting plays the primary role in deter-
mining the delay position within our delay buffer, serving as the
bridge between the concatenative synthesis technique and the de-
lay line buffer. All audio that exists inside the delay buffer has been
segmented in time and analyzed such that each segment of audio
has an associated feature set of descriptors positioning it within a
multidimensional feature space. Segments organize in the space
such that qualitatively similar audio will be positioned close to-
gether and selected accordingly.

For audio selection, a target position in the feature space and a
radius about the position are specified. At any given point in time,
audio will be selected with a position in feature space contained
within the target radius. We define the targeting method as follows:

Tc = Targeting(Tref , R) (1)

where Tc is the delay time in buffer position output from targeting
(equivalent to c in the previous Figure 2), Tref is the reference
delay time used to determine the target position in feature space,
and R is the target radius about the target position.

Inside the targeting function, given Tref and R, the analysis
of each segment of audio in the delay line is compared to the anal-
ysis of the audio segment containing X(n - Tref ), the "reference
segment," where n is the current write position in the delay buffer.

Formally, all audio segments in the buffer can be stated as:

Si = X(n− Ti), · · · , X(n− Ti + l) (2)

where Si is the segmented audio starting at delay time Ti, with
length l (Figure 3).

Figure 3: Delay line segmented for targeting.

Each audio segment, Si, is associated with a feature set vector
FSi:

FSi = (F1, F2, · · · , Fm) (3)

where Fm is a feature of the audio in segment Si. The collection
of all feature set vectors in the delay line forms our feature space.

The association between each Si and FSi is unique except in
special cases. For example, given a feature set vector containing
only RMS, two segments may share the same value. However,
such an occurrence would be scarce and become progressively im-
probable as the dimensionality of the feature space increases. The
only other case where this scenario may occur is with repetitive in-
put signals, in which two segments contain identical audio. Even
here, the scenario remains highly unlikely because it necessitates
precise alignment with respect to segmentation and FFT framing.

The reference segment of audio, Sref , is defined as the seg-
ment which contains the sample X(n− Tref ):

Sref = Sk | X(n− Tref ) ∈ Sk (4)

where Tref is the target delay time, and Sk is the audio segment
containing the sample X(n− Tref ) (Figure 4).

Figure 4: Reference Segment Sref determined by reference delay
time Tref.

Then, the Euclidean distance between the reference feature
vector FSref and all other vectors in our feature space is com-
puted. If the distance between a given feature space vector FSi

and the reference vector is less than the specified target radius,
then the vector is stored in the set of viable segments V .

V = {Sk∀k | d(FSk, FSref ) ≤ R} (5)

A selection candidate Ssel is then randomly selected from V , and
its reference time, Tsel, is output from the targeting function, ulti-
mately setting the delay time Tc equal to Tsel (Figure 5).

Figure 5: Segment Ssel selected from the set of viable segments.
Ssel must be sufficiently similar to reference segment Sref . Asso-
ciated time delay Tsel is set as c for the delay tap X(n− c).

The FBDL can be made to act like a traditional digital delay.
For the targeting function detailed above, it is trivial to show how
this is achieved. If we let R = 0 and assume the case that all FSi

are unique, then the only viable segment for which the euclidean
distance between FSi and FSref is less than or equal to R is the
segment Si = Sref . Thus, the only viable segment is the reference
segment, Sref (Figure 6).

Figure 6: Reference Segment Sref is the only viable segment as
Target Radius R = 0. Sref therefore will be selected.

However, there is a small discrepancy here: because Tref

might fall anywhere inside Sref , there is some potential error from
the exact reference delay time given depending on when the tar-
geting method is queried. While this is not typically noticeable
depending on the segment size used, it can be remedied with slight
shifting of the selected segment. In this case, the selected segment
will be shifted to align with the reference delay time if it is the
reference segment containing Tref (Figure 7).
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Figure 7: Reference Segment Sref is the only viable segment as
Target Radius R = 0. With shifting enabled Ssel = Sref is now
shifted to align with Tref .

Now the output from the targeting method will always be
Tref . Therefore, in this scenario, the FBDL and the traditional
digital delay line are identical, as X(n− Tc) = X(n− Tref ).

As the value of R increases, more audio segments become
viable candidates for selection, and thus more sonic variety is in-
troduced into the delayed signal.

4. TARGETING EXPANSIONS - PARAMETERS AND
METHODS

The targeting function can be modified or parametrically expanded
to impact the behavior of the delay. This can be accomplished
via adding parameters to a given targeting method or the target-
ing method itself can be modified to process input parameters in
various ways. Our targeting function’s expanded signature can be
generalized as:

Tc = Targeting(Tref , R, · · · ) (6)

For our implementation we include the addition of feature
weights and target smoothing, defining our final targeting function
as follows:

Tc = Targeting(Tref , R, FW,S) (7)

where FW is a vector of feature weights, and S is a smoothing
factor.

4.1. Feature Customization and Weighting

The feature set can be customized to alter the selection process and
sound quality of the delay effect. Customization can result from
a combination of features being added or removed from a given
feature vector, or specific features in the vector may be replaced
with others that are more desirable. The introduction of a feature
weight vector allows the user to control the relative strength of
each feature in the vector during the selection process, thereby ac-
centuating specific audio characteristics in determining the viabil-
ity of a segment. Computationally, this is a simple enhancement to
the targeting function that can allow greater real-time control over
the selection process. To accomplish this, compute the Hadamard
Product [16], where given a feature vector and vector of feature
weights both of the same length n:

FVwgt = FV ◦ FW = (FiWi, · · · , FnWn) (8)

where FVwgt is the weighted feature vector, FV is the original
feature vector, and FW is the vector of feature weights. The entry-
wise product is computed for all vectors in the feature space before
computing Euclidean distances and determining segment viability.

4.2. Smoothing

The smoothing parameter S changes the way the target position
traverses the feature space by setting the feature set of the reference
segment equal to the average of the feature sets of the prior N
segments trailing the reference segment in the delay line. Thus,
by applying a smoothing factor, the feature set of the reference
segment is defined as:

FSsmth =
1

N

N−1∑
i=0

FSref−i. (9)

This effectively makes the size of the reference segment larger,
as it incorporates the features of more audio into its average. As
a result, the target may remain more centralized about the feature
space and mitigate effects of outliers.

4.3. Targeting Methods

Targeting methods define distinct paradigms for traversing and or-
ganizing the feature space. Targeting methods are composed of
unique targeting functions with varying parameter sets existing as
arguments that fundamentally impact targeting behavior. Each tar-
geting method may have a collection of parameters that apply to it
that may or may not also apply to other targeting methods.

The primary targeting method utilized is a best fit approach,
based on the audio input into the delay line, as well as a collection
of other potential parameters such as target delay time, audio fea-
ture sets, feature weights, and smoothing, as detailed above. This
method is parametrically automated, and as shown lends itself to
unique potential for the FBDL.

Alternatively to our automated approach, manual targeting
was also implemented. For this method the user manually deter-
mines the target position in feature space via use of a graphical user
interface or other direct interactive methods. Our implementation
focuses on the former, allowing a user to traverse and explore the
feature space more freely and develop a deeper understanding of
the feature space bounds. For example, it can be effectively used
when writing to the delay line is paused, “freezing” the state of
the delay line into a temporarily static corpus. With a static corpus
and feature space, the listener can take time to consider how audio
segments are associated with various qualities in the space. This
can greatly inform the user on setting and refining parameters that
impact the targeting process and segment selection.

Functionally, the behavior of the FBDL is critically deter-
mined by the targeting parameters and method. As shown above,
with restrictive settings it will act exactly like a traditional delay
line. However with modifications, the FBDL can produce a broad
array of sonic behavior ranging from light variation to entirely new
textures that are generated and layered into the original audio. In
this way, our FBDL encompasses the full scope that a traditional
delay line affords while introducing a broad set of new possibili-
ties.

5. FEATURE EXTRACTION AND CONCATENATION
CONSIDERATIONS

5.1. Feature Extraction

The characteristics of the feature space impact the capabilities of
the FBDL architecture. Every feature is a descriptor that is used
to organize the segments of audio in the delay line. Different
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features afford different ways to organize the segments of audio,
and this organization affects segment selection during the target-
ing method. Importantly, each feature is a characteristic that can be
compared to the target position in order to determine a segment’s
viability. For example, the presence of a “loudness” feature or a
"noiseness" feature in the feature set allows for volume or noise to
affect a segment’s viability respectively.

5.1.1. Feature Impact

A given feature is only as useful as the amount of variation present
among the population of segments in the delay line. In other
words, “noisiness” provides no useful differentiation in a popula-
tion of segments that all have the same amount of noise. The same
is true for pitch, loudness, or any other descriptor. With this no-
tion, variations in acoustic properties among different sound types
may necessitate the selection of distinct features for optimal sig-
nal processing. For example, with percussive sound sources, mea-
surements of energy and noise and change in spectra are likely
to be more useful than specific pitch related features such as fun-
damental frequency, as opposed to tonal sources which are likely
to benefit from the opposite. Part of exploring the feature space
is discovering which set of features provide the most utility for a
given sound source.

5.1.2. Feature Set

Access to a broad feature set is important in order to maximize the
customization possibilities during audio segment selection. To this
end many features are available, including some that measure sim-
ilar characteristics through different means. The full feature set is
as follows: MFCC, Spectral Centroid, Spectral Bandwidth, Spec-
tral Rolloff, Spectral Flatness, Spectral Flux, Spectral Contrast,
Short Time Energy, Short Time Variance, RMS, and Fundamental
Frequency Estimation. Feature sets can be streamlined by select-
ing a more manageable set that maximizes contrast and minimizes
redundancy.

5.1.3. Dimension Reduction and Clustering

Dimension Reduction and Clustering algorithms are used in the
implementation’s GUI as means of simplifying the complex n-
dimensional feature space into a more comprehensive, understand-
able, 2-dimensional representation. Dimension reduction is com-
puted using Principal Component Analysis (PCA) [17] and clus-
tering is computed using DBScan [18]. While versions of these
algorithms have often been used in concatenative synthesis appli-
cations and other audio database visualizations to reduce dimen-
sionality and present clustering structures, there are unique consid-
erations involved with this architecture due to the ever-changing
dynamic database (delay line buffer), compared to past applica-
tions with static databases. Namely, this includes stabilization of
the analysis in the presence of rapid change, especially for dimen-
sion reduction, where small changes may cause the reduction to
flip orientation or change basis dramatically. Real-time PCA is
still an open problem in the data science community [19].

5.2. Concatenation

Operations required for concatenation synthesis can also materi-
ally impact the sonic quality of the delay line. Most importantly,
the treatment and combination of delay line segments requires the

greatest consideration, where particular focus may be given to seg-
ment definition, windowing, number of segments, layering of seg-
ments, and segment effects processing.

5.2.1. Segment Definition

Segment definition plays a crucial role in the concatenation synthe-
sis of the delay line audio. Segment delineation can be determined
automatically via onset detection, or from designation of regular
units of time such as length in samples or beats per minute. The
segment size has a substantial effect on the sound quality of the
concatenation. Segment size must be set at a minimum such that it
can constitute a frame for spectral analysis. For our implementa-
tion, the default size is 2048 samples with 50% overlap. Segment
size may be tuned for different use cases, where short segments
(grains) sound more textural when stitched together, maintaining
timbre but not temporal events, and longer segments (syllables)
sound more like musical events strung together in sequence.

5.2.2. Windowing and Overlap

Windowing is applied to each segment in order to smooth the tran-
sition between disparate audio segments. For our implementa-
tion, a Tukey windowing function [20] is used, which has a si-
nusoidal onset and offset, and a flat band in the center. Control of
the center bandwidth affects the quality of the concatenated audio
stream, where a larger bandwidth yields greater individual pres-
ence of each segment and a smaller bandwidth results in less indi-
vidual presence as onset / offset periods of segments meld together.
Segments read from the delay line may be overlapped during the
onset and offset periods of their windowing function in order to
more seamlessly stitch them together. This is particularly impor-
tant with small segment sizes in order to mitigate the introduction
of unwanted spectral artifacts. For the special case of configur-
ing the delay line to perform as a traditional delay line, the center
bandwidth may be set to the size of the entire window with zero
overlap.

5.2.3. Number of Segments

The number of segments determines how many segments are being
read from the delay line at any given time. Each additional seg-
ment is another tap into the delay line. This parameter greatly in-
creases the textural capabilities of the concatenation process. Ad-
ditionally, multiple segments may layer to produce chorus-like ef-
fects, as similar audio segments are combined together with slight
pitch and time offsets. When combining large numbers of seg-
ments, they are typically offset from each other for the following
reasons. Firstly, this naturally offsets the onset and offset periods
of the segment windows. Secondly, this generally allows for more
variation in the segments selected, and if multiple copies of the
same segment are selected, their constructive amplification is mit-
igated. Finally, this is computationally advantageous, as it spreads
out the targeting queries between more calls to the audio processor.

5.2.4. Adding Effects

A multitude of effects can also be applied to the concatenated seg-
ments read from the delay line. These include speed and pitch
shifting, reverse playback, panning, waveshaping, and more. Ef-
fects can be applied universally across all segments or uniquely to
each segment read from the delay line. Variation in how the effects
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are applied allows for more diversity of texture. For example, this
is important for pitch and panning, as it allows for chorus-like pan
and pitch width effects, where pan and pitch offsets are applied to
segments spread evenly around a center value.

5.2.5. Parameter Mapping

All the effects and parameters can be mapped to the read segments
in different ways. They can be manually designated by the user
or parametrically automated to produce interesting results. One
of the unique affordances of the FBDL architecture is the access
to an array of analysis of all the contained audio, which can be
used to achieve powerful real time automatic control of parame-
ters. Specifically, effects can be mapped to any of the feature axes
of the current target position or the feature set of each individual
segment read with custom graphs. This allows for numerous possi-
bilities, including automatic equalization of segment volume, pitch
normalization of segments, silencing noisy sounds, etc., as well as
many custom behaviors for other specific goals. Generally, the
characteristics of the sound can uniquely determine audio effects
processing for each segment, allowing for endless customization
of the playback of audio from the delay line.

6. USE CASES

The Feature-Based Delay Line architecture promotes many differ-
ent use cases which were explored in our implementation. As an
expansion of the traditional delay line, it fulfills the same function-
ality. However, with increased control over the delay behavior and
extra affordances of the architecture, it expands the boundaries of
traditional use cases into new territory for sound design. Further-
more, although currently a high level tool, we believe that future
iterations of the FBDL approach may have potential use cases as a
lower level signal processing component.

6.1. General Purpose Delay

Typical delay use cases can be enhanced in many ways. Subtle
new affordances can be introduced with conservative FBDL set-
tings, such as small target radius, no segment layering, and mini-
mal segment effects processing. For example, targeting parameters
can subtly enhance traditional use cases by affecting segment se-
lection, such as expanded target radius introducing variation into
the delayed signal. Additionally, unwanted portions can be filtered
from the input signal using parameter mapping, via mapping char-
acteristics of unwanted audio such as noisiness to volume. Alter-
natively, desirable sections of the input signal can be accentuated
by linking characteristics of such segments to parameters such as
pan, pitch, feedback amount, or target radius, increasing the possi-
bilities of the effect.

6.2. Textural Audio

The introduction of concatenation synthesis into the FBDL pro-
motes a unique use case for textural audio and layering. By in-
creasing the intensity of the FBDL settings, including expanded
targeting radius, increased number of concurrently read segments,
and more liberal segment effects processing, the delayed signal
can be pushed more towards the textural “audio mosaic” realm.
With this, the well established traits of prior concatenative synthe-
sis applications are exhibited, while still maintaining the link to the

rhythm and quality of the input audio. The texture created either
can stand alone, or be layered on top of the dry signal. The unique
strength of the dynamic corpus of the FBDL is exhibited here, as
the texture melds with the the original source audio in real time,
adding additional layers of timbre.

6.3. Resonance and Comb Filtering

The FBDL presents an interesting use case in comb filtering and
resonant delay modeling, due to the expression of the architecture
with very short delay times. A selective comb filter effect can be
created using a small but non-zero target radius, where the filter-
ing will be predominantly active, as the reference segment will be
selected at sub-25ms delay time, but sometimes inactive, when a
non-reference segment is selected further back in the delay line.
Similarly, with high feedback amounts, novel resonant effects can
be achieved. The frequency at which the signal is delayed intro-
duces resonant spectral content, which compounds as it repeatedly
feeds back into the delay line. Targeting parameters provide a se-
lective and natural way to periodically break out these feedback
cycles, allowing for interesting but manageable resonant delay ef-
fects. These approaches can be adjusted via targeting parameters
and interacts with concatenation parameters and parameter map-
pings in interesting ways. This also serves as a high-level example
of how the FBDL might be used to enhance existing signal pro-
cessing operations that make use of delay lines.

7. EVALUATION

Evaluation in concatenative synthesis systems has often histori-
cally been lacking [12, 21], due to the creative and / or subjective
goals of the creator, often in the role of composer. Nonetheless,
we maintain that the evaluation of the Feature-Based Delay Line
is crucial for the advancement of the delay line as a signal process-
ing component and as an audio effects processor. To this end, a
prototype of our FBDL architecture was realized as a JUCE C++
plugin. Specifically our prototype should encompass the possibil-
ities of the traditional delay line, while also introducing new di-
mensions in the space, expanding the potential range of behaviors.
Utilizing this implementation, we conducted experiments to eval-
uate performance both as a traditional delay line and with new ca-
pabilities, such as targeting radius and parameter mapping. These
experiments were conducted in isolated circumstances to allow for
targeted assessment.

7.1. Delay Line Variation Experiment

As previously stated, the Feature-Based Delay Line is designed
to incorporate traditional digital delay functionalities while also
introducing new possibilities. The present study aims to evalu-
ate the FBDL’s performance as a basic delay line and to analyze
the changes in output as the target radius is introduced. The ex-
periment pursues two main objectives. The first objective is to
compare the delayed signal from the FBDL with that of a standard
digital delay line using neutral settings and consecutive increases
in target radius. The second objective is to assess the impact of the
introduction of the target radius on the output signal and its feature
analysis data.

To achieve these objectives, measurements were taken by
computing the differences in the waveform and feature analysis
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between the control signal and the FBDL signal with different tar-
get radii. The focus was on two specific results: (1) whether the
output signal from the FBDL architecture is identical to that of
the control delay under neutral settings, and (2) how much the in-
troduction of target radius affects the output signal and its feature
analysis data.

Figure 8 presents the results of the experiment. It shows that
with a target radius of zero and default parameters, there is no
meaningful difference between the delay signal from the FBDL
and the control signal. However, as the target radius increases,
the differences between the waveform and feature analysis of the
two signals also increase. These differences are strongly corre-
lated with the target radius. The plot indicates a contour due to
a spike in variation introduced as the target radius encompasses
clusters of segments. This is followed by a slight plateau until
the target radius expands sufficiently to include different clusters,
eventually resulting in complete randomness at a target radius of
1.0. The shape of this contour may vary depending on the distri-
bution of points throughout the feature space, but it will always be
positively correlated with the target radius (with some expression
of randomness due to nondeterministic segment selection).

These findings demonstrate the FBDL’s ability to encompass
the behaviors of a typical delay line and evaluate one of the new
axes (targeting, specifically target radius) introduced into the pos-
sibility space of the architecture, under circumstances that isolate
that particular axis.

Figure 8: Waveform & Feature Differences vs. Target Radius.

7.2. De-Essing Experimental

There are numerous ways to take advantage of the FBDL’s utiliza-
tion of parameter mapping to access analysis of the delay buffer.
For our second experiment, de-essing presented itself as an inter-
esting ability of the architecture and an apt candidate for evalu-
ation. De-essing is a well-defined, isolated practice with a clear
connection to feature analysis. For example, sibilance in a vo-
cal sample corresponds to increased measures of noise. Specifi-
cally, this experiment tests the de-essing capabilities of parameter
mapping by using a mapping of spectral flatness to volume and
compares the results to a commercial de-essing plugin (set to max
strength).

The de-essed signals from both the FBDL and the commer-
cial de-esser are compared to each other and to the control signal
through waveform and feature analysis differences. The FBDL’s
signal is recorded with a delay time equal to the minimum anal-
ysis frame size, then time shifted to be in sync with the other
waveforms for comparison. The amount of noise in the signals
is computed by summing the multiplication of each sample by its
spectral flatness value. The remaining noise ratio is the amount of
noise in the de-essed signal divided by the amount of noise in the
control signal. The removed noise ratio is the amount of noise in
the difference between the de-essed signal and the control divided
by the amount of noise in the control signal.

As shown in Figure 9, the de-essing created by the parameter
binding is effective at filtering out noise from the control signal, re-
moving 45.62%, compared to 23.53% removed by the commercial
de-esser. Note that the sum of the remaining and removed noise
sums roughly to the amount of noise in the unaffected waveform.
The de-essed waveforms are plotted in Figures 10 and 11, with
removed signal highlighted in red.

These results show FBDL’s success as a de-esser within this
scope of evaluation, as well as serving nicely to display the effi-
cacy of parameter mapping as a general technique, which could be
applied in other ways towards unique ends.

Figure 9: Removed & Remaining Noise

Figure 10: FBDL De-Essing Effect

Figure 11: Commercial De-Essing Effect
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8. CONCLUSION

The union of concatenation synthesis and dynamic delay buffer
into an intelligently guided Feature-Based Delay Line (FBDL) of-
fers unique possibilities both as an expansion of the traditional de-
lay line and as an application of concatenation synthesis. With
this architecture, we aim to inspire further exploration of mu-
sic information retrieval and concatenative synthesis in the area
of audio effects processing, and innovate upon the prior appli-
cations of concatenative synthesis by introducing a real-time dy-
namic database and expandable targeting method to traverse the
feature space based on delay time. Furthermore, expansion on
the delay line as a fundamental component may result in progress
throughout related areas of signal processing.

Future work on the FBDL architecture will address unique
considerations of this approach, such as segment alignment and
feature analysis with an arbitrary delay time, along with real-time
dimension reduction and clustering integration into the targeting
and parameter mapping parts of the architecture as additions or
substitutions in the feature set. Additionally, continued develop-
ment in FFT optimization, especially through GPU accelerated
implementations [22] and / or dedicated FFT processing hardware
[23] will limit the amount of error in the architecture and expand its
potential. Finally, we look to conduct a detailed performance eval-
uation and seek qualitative user feedback from sound designers to
identify areas of improvement in our design and implementation.

We are eager to share our approach with the broader audio and
music community. A video demonstration, as well as builds of
the plugin, experimental notebooks, and performance evaluation
notes are attainable via the project repository located at https:
//github.com/NiccoloAbate/DelayCat.
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