
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

A DIFFERENTIABLE DIGITAL MOOG FILTER FOR MACHINE LEARNING
APPLICATIONS

Etienne Gerat , Purbaditya Bhattacharya and Udo Zölzer

Department of Signal Processing and Communication
Helmut Schmidt University

Hamburg, Germany
e.gerat@hsu-hh.de | bhattacp@hsu-hh.de

ABSTRACT

In this project, a digital ladder filter has been investigated and ex-
panded. This structure is a simplified digital analog model of the
well known analog Moog ladder filter. The goal of this paper is
to derive the differentiation expressions of this filter with respect
to its control parameters in order to integrate it in machine learn-
ing systems. The derivation of the backpropagation method is de-
scribed in this work, it can be generalized to a Moog filter or a
similar filter having any number of stages. Subsequently, the ex-
ample of an adaptive Moog filter is provided. Finally, a machine
learning application example is shown where the filter is integrated
in a deep learning framework.

1. INTRODUCTION

The Moog ladder filter is a well known analog filter present in nu-
merous synthesizers. It has been introduced in 1965 by Robert
Moog [1]. Since then, it has been considered as a central piece of
some subtractive synthesizers that gives a very recognizable char-
acter to the sound and offers intuitive control parameters. Nowa-
days, many of the iconic analog synthesizers are digitally modeled
to be included in digital hardware or software synthesizers. Sev-
eral digital models of the Moog filter are already studied using
different approaches [2, 3].

In recent years, machine learning (ML) has been actively ap-
plied to the field of audio signal processing. And it has been stated
that classic ML and deep learning (DL) structures are not always
well adapted to solve audio related problems. Integrating audio
systems directly in a DL architecture has been proven to be suc-
cessful and to achieve good results with smaller architectures [4].
Differentiable function blocks are required to allow backpropaga-
tion and thus the integration into DL systems. This paper shows
the differentiation process of the chosen Moog filter structure with
respect to (w.r.t.) its control parameters, as it can be applied to
other Infinite Impulse Response (IIR) filters and digital signal pro-
cessing algorithms [5, 6]. As a proof of concept for the back-
propagation capabilities, an adaptive version of the filter has been
programmed.

This paper is part of a research project, where a subtractive
synthesizer that includes a Moog filter would be differentiated to
apply timbre matching using ML. This has already been studied
using non gradient-based methods [7, 8] and genetic algorithm [9].

Copyright: © 2023 Etienne Gerat et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

And more recently using Variational Auto-Encoders and Normal-
izing Flows[10]. Hence, the current work initially investigates the
capability of learning the control parameters of a simple Moog fil-
ter with the help of ML algorithms.

2. DIGITAL MOOG FILTER

In this paper, a digital Moog filter structure presented by Stilson
and Smith [11, 3] is used which aims to simulate the analog Moog
ladder filter proposed by Robert Moog in 1965 [1]. In the next
sections the Moog filter refers to the Stilson and Smith structure.

2.1. Parameters

The filter has two control parameters, the cutoff frequency fc and
the resonance factor K. The cutoff frequency is present at different
places in the filter structure. Stilson and Smith [3] have developed
a useful compromise first-order filter that has mostly independent
control of the resonance value with the cutoff frequency. The filter
coefficients h0, h1 and h2 are parameterized to set the filter behav-
ior close to the expected cutoff frequency. They are defined as

h0 =
ωc

1.3
h1 =

0.3ωc

1.3
h2 = 1− ωc, (1)

where ωc is the angular cutoff frequency related to fc and the
sampling frequency fs by

ωc =
2πfc
Lfs

fc =
ωcLfs
2π

. (2)

Here, L denotes the oversampling factor and is set to 2. The
oversampling helps to achieve stability for high values of ωc and K.

The resonance parameter K is located in the feedback loop,
as visible in Fig. 1. It controls the prominence of the resonance
overshoot. It ranges from 0 to 1. Values above 1 lead to self-
oscillation and instability.

2.2. Structure

The filter is composed of four cascaded first-order low-pass filters
with a feedback loop over the whole cascade. A non-linearity ex-
pressed as an hyperbolic tangent is present in the loop to provide a
ceiling of the feedback signal. A unit delay is present in the feed-
back loop to ensure the feasibility of the filter as shown in Fig. 1.
Figure 2 illustrates the detail of a stage of the Moog ladder filter.

DAFx.1

https://www.hsu-hh.de/ant/en/
mailto:e.gerat@hsu-hh.de
mailto:bhattacp@hsu-hh.de
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

x(n)

K

y0(n)

tanh

yM(n)

z-1

y1(n) ym(n)
LP1 LP1 LP1

Filter

stage m

fc fcfc

xin(n)

Figure 1: Block diagram of a Mth order Moog filter structure.

ym(n)ym-1(n)

z-1
h0

h1 h2

Figure 2: Block diagram of the mth filter stage.

The following difference equations describe the signals visible
in Fig. 1:

xin(n) = x(n)−Ky4(n− 1), (3)

y0(n) = tanh (xin(n)) , (4)

ym(n) = h0ym−1(n) + h1ym−1(n− 1) + h2ym(n− 1), (5)

where x(n) denotes the input signal and ym(n)|m=1···4 the out-
puts of the filter stages from 1 to 4.

3. BACKPROPAGATION

The backpropagation of the error calculated by a loss function
through the system allows the adaption of the control parameters
to match a target sound. For this purpose, the partial derivatives of
the filter output w.r.t. its control parameters must be calculated.

3.1. Partial Derivatives

In this section, the expressions of the partial derivatives w.r.t. the
control parameters ωc and K are derived . It is decided for simplic-
ity to calculate the partial derivative against the angular frequency
ωc defined in Eq. (2).

At first, the derivatives of the filter coefficients h0, h1 and h2

w.r.t. ωc need to be calculated as follows:

∂h0

∂ωc
=

1

1.3
,

∂h1

∂ωc
=

0.3

1.3
,

∂h2

∂ωc
= −1. (6)

Based on Eq. (5), the partial derivative of an output of a filter
stage w.r.t. ωc

∂ym(n)

∂ωc
=
∂h0

∂ωc
ym−1(n) +

∂h1

∂ωc
ym−1(n− 1)+

∂h2

∂ωc
ym(n− 1) + h0

∂ym−1(n)

∂ωc
+

h1
∂ym−1(n− 1)

∂ωc
+ h2

∂ym(n− 1)

∂ωc
,

(7)

where m denotes the index of the filter stages from 1 to 4 and the
expression ∂ym(n)

∂ωc

∣∣
m=0

is given by

∂y0(n)

∂ωc
=

[
1− tanh(xin(n))

2] ∂xin(n)

∂ωc
, (8)

where
∂xin(n)

∂ωc
= −K

∂y4(n− 1)

∂ωc
. (9)

For the initialization, as n = 1, the partial derivatives are ini-
tialized as follows:

∂ym(n)

∂ωc

∣∣∣∣
n=1

=
∂h0

∂ωc
ym−1(1) + h0

∂ym−1(n)

∂ωc

∣∣∣∣
n=1

=
1

3

m−1∑
k=0

hk
0ym−1−k(1). (10)

In the next step, the partial derivatives w.r.t. K are calculated
and given by

∂ym(n)

∂K
=h0

∂ym−1(n)

∂K
+ h1

∂ym−1(n− 1)

∂K
+

h2
∂ym(n− 1)

∂K
,

(11)

where m denotes the index of the filter stages from 1 to 4 and the
expression ∂ym(n)

∂K

∣∣∣
m=0

is given by

∂y0(n)

∂K
=

∂

∂K
[tanh (xin(n))]

=
[
1− y0(n)

2] [−y4(n)−K
∂y4(n− 1)

∂K

]
, (12)

where

∂xin(n)

∂K
=

∂

∂K
[x(n)−Ky4(n− 1)]

= −K
∂y4(n− 1)

∂K
− y4(n− 1). (13)

As n = 1, the partial derivatives of the individual filter stages
m ranging from 1 to 4 are initialized as follow:

∂ym(n)

∂K

∣∣∣∣
n=1

= h0
∂ym−1(n)

∂K

∣∣∣∣
n=1

, (14)

and the expression ∂ym(n)
∂K

∣∣∣
m=0,n=1

is given by

∂y0(n)

∂K

∣∣∣∣
n=1

= −yM (1)
[
1− y0(1)

2] (15)

for a filter of order M .
It is noteworthy to mention that the expressions of partital

derivatives are required to manually construct the backward propa-
gation of the gradients in an environment where automatic deriva-
tives of the forward functions are not calculated, for e.g. Mat-
ConvNet [12]. ML environments like Keras[13] and PyTorch [14]
provide automatic differentiation of modules constructed by the
functions available in their respective packages. However, those
environments also offer the possibility to create or alter the back-
ward propagation function, if the automatic backpropagation do
not show a stable convergent behavior.

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

x(n) y(n)
Moog

update

Moog
y(n)

Loss
^

[ωc,K]init E(n)

[ωc,K]ref

Figure 3: Simple schematic of a Moog filter adaptation process.

3.2. Adaptive Moog Filter

In this section, the goal is to verify the functionality of the back-
propagation method with the help of an adaptive Moog filter and
determine if any gradient tweaking or conditioning is necessary
for a simple parameter learning problem . The control parameters
of the Moog filter are adapted via backpropagation and a simple
parameter update algorithm based on the derivations shown in the
previous section is performed.

To adapt a Moog filter, a set of ground truth control param-
eters [ωc,K]ref are defined initially as shown in Fig. 3. Using a
random mixture of various basic signals as the input signal x(n)
and the ground truth parameters, the output of Moog filter y(n)
is generated and used as the ground truth signal. It is noteworthy
to mention that the control signal is oversampled by a factor of
L = 2 and the corresponding parameters are adjusted. The Moog
filter parameters are then initialized with [ωc,K]init and the esti-
mated output signal ŷ(n) is compared to the ground truth. The
corresponding loss function is given by

E =
1

2

N∑
n=1

(|ŷ(n)| − |y(n)|)2, (16)

where E denotes the error and | · | denotes the absolute value. The
derivative of the error w.r.t. the estimated signal is given by

∂E

∂ŷ(n)
= (|ŷ(n)| − |y(n)|) · sign(ŷ(n)), (17)

where the function sign(ŷ(n)) denotes the sign of the estimated
signal sample.

The required gradients ∂E
∂ωc

and ∂E
∂K

w.r.t. the cutoff frequency
fc and feedback coefficient K are calculated with the help of the
chain rule of derivatives and can be given by

∂E

∂ωc
=

N∑
n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂ωc
, (18)

∂E

∂K
=

N∑
n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂K
. (19)

It is noteworthy to mention that the gradient ∂E
∂ωc

is heavily weighted
during parameter update such that the initial samples are given
more importance. The altered expression can be given by

∂E

∂ωc
=

N∑
n=1

∂E

∂ŷ(n)

∂ŷ(n)

∂ωc

1

nk
, (20)

where n denotes the sample index and k denotes a positive inte-
ger. This change avoids a possible gradient explosion and ensures

a stable parameter update and smooth convergence. The expres-
sions in Eq. (20) and Eq. (19) can be derived further with the help
of Eq. (17), Eq. (7), and Eq. (11). Finally, gradient clipping is also
performed on both the expressions from Eq. (20) and Eq. (19) in
order avoid any large gradient jumps and ensure a stable conver-
gence. This can be expressed as

∂E

∂ωc
= min

(
αωc ,

∣∣∣∣ ∂E∂ωc

∣∣∣∣) · sign
(

∂E

∂ωc

)
, (21)

∂E

∂K
= min

(
αK ,

∣∣∣∣ ∂E∂K
∣∣∣∣) · sign

(
∂E

∂K

)
, (22)

where αωc and αK are two positive small fractional scalars.
The parameters are finally updated using the gradient descent

method given by

ωc := ωc − ηωc · ∂E

∂ωc
, (23)

K := K − ηK · ∂E
∂K

, (24)

where ηωc and ηK are the corresponding learning rates.

50 100 150 200 250

Epochs

0

2000

4000

6000

f c
in

 H
z

0.2

0.4

0.6

0.8

1

K

,ref

ref

(a) Parameter adaption curves per epoch.

0 100 200 300 400 500

Samples

-0.2

0

0.2

0.4

A
m

p
lit

u
d
e

prediction reference initial

(b) Predicted, reference and initial signals.

Figure 4: Adaption example for: fc,init = 400 Hz, Kinit = 0.8,
fc,ref = 5 kHz, Kref = 0.2

Figures 4 (a) and 4 (b) show two examples of the evolution
of parameters during the adaption process per epoch. In the first
example, the target cutoff frequency is set quite above the initial
cutoff frequency while the target resonance coefficient is set much
below the initial value. In the second example, the target cutoff
frequency is set quite below the initial cutoff frequency while the
target resonance coefficient is set much above the initial value. In
both examples, one can see that the resonance parameter do not
converge to a solution until the cutoff frequency gets close enough
to its target. This is primarily because of a larger overall error gra-
dient when the cutoff frequencies are far apart. The corresponding
initial, reference, and predicted signals are depicted in Fig. 5 (a)
and Fig 5 (b).

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

50 100 150 200 250 300

Epochs

0

5000

10000

15000

f c
in

 H
z

0

0.2

0.4

0.6

0.8

1

K

,ref ref

(a) Parameter adaption curves per epoch.

0 100 200 300 400 500

Samples

-0.4

-0.2

0

0.2

0.4

A
m

p
lit

u
d
e

prediction reference initial

(b) Predicted, reference and initial signals.

Figure 5: Adaption example for: fc,init = 15 kHz, Kinit = 0.3,
fc,ref = 800Hz, Kref = 0.8

4. INTEGRATION IN MACHINE LEARNING

Figure 6 shows a block diagram to illustrate an example of inte-
gration of a differentiable subtractive synthesizer with a DL model.
During training, the DL model learns to map a reference audio sig-
nal y to a set of estimated parameters p̂. When applied to the syn-
thesizer, this set of parameter produces an estimated audio output
ŷ that matches a reference audio input. This process, called tone
matching or timbre matching, uses a loss function to evaluate the
similarity between reference and estimated outputs. To achieve an
update of the DL model weights based on this loss, the error needs
to be backpropagated through the synthesizer with regard to its pa-
rameters. This should help the timbre matching process to perform
better than a system that uses only parameter based loss [15].

y
Subsynth

p̂ ŷ

LossBackpropagation

DL Model

Figure 6: Simple block diagram of a DL model for subtractive
synthesizer parameter estimation.

The audio signals are not directly fed into the DL model but
are subject to pre-processing. A spectro-temporal representation
is key to separate the timbre information and the slower temporal
changes of the sounds.

Tone Matching or Timbre Matching, has been performed using
classical optimization methods but recent approaches tend to use
DL methods. While a DL model requires a lot of time for training
because of the inclusion of the synthesizer in its end-to-end train-
ing process, its performance during testing or evaluation can be
quite accurate and fast, particularly if the trained model is small.
A DL model can lead to a qualitatively better performance than

stochastic optimization based methods [16]. In this work though,
instead of the entire synthesizer, only the Moog filter is experi-
mented with and a simple sample based loss function is used to
drive an end-to-end learning process.

5. CNN BASED PARAMETER ESTIMATION

In this section, an example application is described where a convo-
lutional neural network (CNN) is used to estimate the control pa-
rameters of a Moog filter and Fig. 7 shows the corresponding block
diagram. Initially, a dataset is created with a set of predefined in-
put signals x and ground truth control parameters [ωc,K]ref for
the Moog filter. The set of output signals y from the filter are col-
lected and their spectral representations Y are used as the input to
a CNN. The estimated parameters [ω̂c, K̂] from the CNN and the
corresponding set of input signals x are used with the Moog filter
to generate the estimated output signal ŷ, The loss computed be-
tween y and ŷ is used to train the CNN. It is important to mention
that a loss between [ωc,K]ref and [ω̂c, K̂] can drive the training
process, but the goal of this work is to illustrate a successful train-
ing via backpropagation through the Moog filter. Additionally, if a
CNN has to estimate more control parameters for a complex syn-
thesizer in any later application, the problem might become ill-
posed due to a possibility of many parametric solutions. A direct
loss between audio signals or their spectral representations should
be better for the semantics of sound perception. Both of the loss
functions can be used together as well.

x y
Moog Spec

Y
CNN

^

Moog
ŷ

[ωc,K]ref

[ωc,K]
^

Metric

Loss /

Metric

Figure 7: Block diagram of a CNN integration for Moog filter
parameter estimation.

5.1. Dataset

The dataset used here is composed of 280 audio files at a sample
rate of 44.1Hz. These files are generated using MATLAB. An os-
cillator produces randomly weighted combinations of five different
waveforms (sine, triangle, sawtooth, rectangle and white noise) at
440Hz that are used as input for the Moog filter. These weights are
set to add up to 1. The control parameters of the filter are selected
uniformly in the range [100, 15000]Hz for fc and [0.1, 0.9] for K.
They are paired randomly to generate the reference or ground truth
audio signals.

As pre-processing, magnitude spectrograms of the output sig-
nals from the filter are computed. A window size of 1024 sam-
ples, an overlap of 512 samples, and a 256 points DFT are used.
The resulting matrix is then resized to match the input of the CNN
(128 × 64). Finally, 256 samples of the input and output audio
signals are selected during training to compute the loss. More
samples result in longer training times without adding significant
improvements.

DAFx.4

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

5.2. CNN Architecture

The architecture of the CNN is illustrated in Fig. 8. The input to
the CNN is a resized Spectrogram of the Moog filter output signal.
The network has a simple feedforward architecture composed of
four blocks. In each of the first three blocks, a convolution layer
(Conv) is used followed by a rectified linear unit (ReLU) and a
pooling layer (Pool). The Conv layers use filters of size 3× 3× d,
where d denotes the input feature map depth, and a stride of 2.
96 such filters are used in each Conv layer. The Pool layers per-
form maximum pooling and use a kernel size of 2×2 with a stride
of 2. The ReLU layer uses a leakage factor of 0. The stride in Conv
and Pool layers ensures the reduction of spatial dimensions of the
feature maps. The final block is composed of a fully connected
layer (FC) followed by a ReLU layer. The FC layer vectorizes
the input feature map and delivers an output vector of the required
size. A sigmoid layer can be used instead of a ReLU layer for
faster convergence but boundary values of the estimated parame-
ters suffer due to the saturation regions of the function.

Conv + ReLU + MaxPool

Output Vector (1 x 2)

Stride = 2

Input spectrogram (128 x 64)

Conv + ReLU + MaxPool Stride = 2

Feature (32 x 16 x 96)

Conv + ReLU + MaxPool Stride = 2

Feature (8 x 4 x 96)

FC + ReLU

Feature (2 x 1 x 96)

Figure 8: Block diagram of the CNN architecture.

5.3. Model Performance

Initially, CNN models were constructed to be trained with raw au-
dio snippets of multiple sample lengths. For longer audio snippets
(> 1024 samples), the models converged initially but stagnated
quickly. The models were then trained with the magnitude re-
sponses of the raw audio snippets. While the networks were able
to reduce the loss and show convergent behavior, particularly for
longer audio, the final results were not quite good. Finally, the rep-
resentation described in Section 5.2 is selected as the CNN input.
In order to train the model, the loss function given by Eq. (16) in
section 3.2 is used. The gradients w.r.t. the parameters are also
constrained by gradient clipping for a stable convergence. Similar
to the adaptive Moog filter, the gradient w.r.t. the cut-off frequency
is exponentially suppressed in order to assure a more stable con-
vergence. The given model is then trained for about 1000 epochs
where the learning rate is reduced linearly from 10−4 to 10−8.
A batch size of 8 is selected which results in 35 iterations per epoch
and the adam optimizer [17] is used as the update method. The
model is built in the last version of MatConvNet [12] deep learn-

ing toolbox for MATLAB. The training is performed on a machine
with a Nvidia QUADRO RTX8000 graphical processing unit.

To measure the model performance, sum of squared error (SSE)
function between the estimated outputs and the expected ground
truths is used. Figure 9 (a) shows the logarithm of the SSE be-
tween the estimated [ω̂c, K̂] and expected [ωc,K]ref parameters
while Fig. 9 (b) shows the logarithm of the SSE between the esti-
mated ŷ(n) and expected y(n) signals, measured over the epochs.

50 100 150 200 250 300 350 400 450

Epoch

-3

-2

-1

0

L
o

g
-e

rr
o

r p
a

ra
m

e
te

rs

(a) Parameters error.

50 100 150 200 250 300 350 400 450

Epoch

-1

0

1

2

3

L
o

g
-e

rr
o

r s
ig

n
a

l

(b) Signal Error.

Figure 9: Training error Curves over epochs.

Both of the errors decrease relatively faster within the first
200 epochs and then converges slowly. The training can be per-
formed until 600 epochs beyond which no improvement is achieved.
As mentioned previously, the signal error for backpropagation is
computed with 256 audio samples. Calculation of the loss with
more samples might improve the results but will drastically in-
crease the training time.

Figure 10 shows three audio examples with different types of
signals and different sets of parameters. The first 1024 samples
of the signals are shown. Figure 10 (a) shows an example ground
truth signal generated by a Moog filter for a cutoff frequency of
11549Hz and resonance coefficient of value 0.309. Based on the
corresponding estimated cutoff frequency of 11564Hz and reso-
nance coefficient of value 0.315, the predicted signal is constructed,
denoted by Pred in the plot. The difference between the reference
and estimated signal, denoted by Diff, shows a near perfect recon-
struction. Figure 10(b) shows another audio example where the
predicted cutoff frequency of 3948Hz is close to the ground truth
cutoff frequency of 3867Hz but the predicted resonance coeffi-
cient of value 0.624 is not as close to the ground truth value of
0.712. The difference or error signal is more prominent than the
previous examples. The third audio example shown in Fig. 10 (c)
has additive noise but the network prediction is still quite good as
it closely matches the ground truth values and the difference signal
has a low amplitude.

In general, it can be concluded that the network performs ad-

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

-0.4

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d
e

Pred Ref Diff

Samples
0 200 400 600

(a) f̂c = 11564, K̂ = 0.315,
fc,ref = 11549, Kref = 0.309

-0.4

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d
e

Pred Ref Diff

Samples
0 200 400 600

(b) f̂c = 3948, K̂ = 0.624,
fc,ref = 3867, Kref = 0.712

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
m

p
lit

u
d
e

Pred Ref Diff

Samples
0 200 400

(c) f̂c = 8858, K̂ = 0.963,
fc,ref = 9001, Kref = 0.856

Figure 10: Direct comparison of signal examples.

mirably for most examples across all parameter values in exper-
iment. However, some uncertain results are also observed par-
ticularly around the lower values of the cutoff frequency. Train-
ing with a higher number of samples or including more examples
might resolve such uncertainties and can be experimented as part
of the future work. Additionally, the network training should also
be performed with other forms of loss functions in time or fre-
quency domain to find the best model in terms of error reduction
and convergence. Further experiments should be conducted with
multiple input representations for the CNN.

6. CONCLUSION

This work is a step toward the modeling of differentiable sub-
tractive synthesizers, which would allow to perform tone match-
ing based on psychoacoustic loss functions. Hence, the presented
work should be extended towards the parameter estimation for an
entire synthesizer and inclusion of loss functions considering au-
dio semantics. As further work, other blocks of the synthesizer like
oscillators, envelope generators and audio effects should be differ-
entiated with respect to their parameters. Experiments should be

conducted towards computation of the appropriate input represen-
tation for a given CNN model. Since synthesizers can have a large
number of time or frequency dependent parameters, multiple time-
frequency representations as the model input should be studied.
Multiple loss functions in time and frequency domain should also
be studied in order to find the most appropriate combination for
training a model. Finally the CNN model and its modules should
be studied in order to improve the estimation performance. Finally,
the synthesizer could be implemented in a PyTorch environment
and the performance could be observed and improved.

7. REFERENCES

[1] Robert A. Moog, “A voltage-controlled low-pass high-pass
filter for audio signal processing,” Journal of the Audio En-
gineering Society, october 1965.

[2] Effrosyni Paschou, Fabian Esqueda, Vesa Välimäki, and
John Mourjopoulos, “Modeling and measuring a moog
voltage-controlled filter,” december 2017, pp. 1641–1647.

[3] Tim Stilson and Julius Smith, “Analyzing the moog VCF
with considerations for digital implementation,” 1996.

[4] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam
Roberts, “DDSP: differentiable digital signal processing,”
in International Conference on Learning Representations,
2020.

[5] Purbaditya Bhattacharya, Patrick Nowak, and Udo Zölzer,
“Optimization of cascaded parametric peak and shelving
filters with backpropagation algorithm,” in 23rd Interna-
tional Conference on Digital Audio Effects (DAFx), septem-
ber 2020.

[6] Boris Kuznetsov, Julian Parker, and Fabian Esqueda, “Dif-
ferentiable IIR filters for machine learning applications,”
in 23rd International Conference on Digital Audio Effects
(DAFx), 2020.

[7] Cheng-Zhi Anna Huang, David Duvenaud, Kenneth C.
Arnold, Brenton Partridge, Josiah W. Oberholtzer, and
Krzysztof Z. Gajos, “Active learning of intuitive control
knobs for synthesizers using gaussian processes,” New York,
NY, USA, 2014, Association for Computing Machinery.

[8] Matthew D. Hoffman and Perry R. Cook, “Feature-based
synthesis: Mapping acoustic and perceptual features onto
synthesis parameters,” in International Conference on Math-
ematics and Computing, 2006.

[9] Matthew Yee-King and Martin S. Roth, “Synthbot: An un-
supervised software synthesizer programmer,” 2009.

[10] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo
Despres, and Axel Chemla-Romeu-Santos, “Universal audio
synthesizer control with normalizing flows,” in International
Conference on Digital Audio Effects (DaFX 2019), Birming-
ham, United Kingdom, september 2019.

[11] Vesa Välimäki, Stefan Bilbao, Julius O. Smith, Jonathan S.
Abel, Jyri Pakarinen, and David Berners, DAFX: Digital
Audio Effects, chapter 12: Virtual analog effects, pp. 279–
320, John Wiley & Sons, Ltd, 2011.

[12] Andrea Vedaldi and Karel Lenc, “MatConvNet: Convolu-
tional neural networks for MATLAB,” in Proceedings of
the 23rd ACM International Conference on Multimedia, New
York, NY, USA, 2015, MM ’15, p. 689–692.

DAFx.6

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

[13] François Chollet et al., “Keras,” https://keras.io,
2015.

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer, “Automatic dif-
ferentiation in pytorch,” in NIPS-W, 2017.

[15] Matthew John Yee-King, Leon Fedden, and Mark d’Inverno,
“Automatic programming of vst sound synthesizers using
deep networks and other techniques,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no.
2, pp. 150–159, 2018.

[16] Matthew Yee-King and Martin Roth, “A comparison of para-
metric optimisation techniques for musical instrument tone
matching,” in Audio Engineering Society Convention 130,
january 2011.

[17] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

DAFx.7

https://keras.io

	1 Introduction
	2 Digital Moog Filter
	2.1 Parameters
	2.2 Structure

	3 Backpropagation
	3.1 Partial Derivatives
	3.2 Adaptive Moog Filter

	4 Integration in Machine Learning
	5 CNN based Parameter Estimation
	5.1 Dataset
	5.2 CNN Architecture
	5.3 Model Performance

	6 Conclusion
	7 References

