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ABSTRACT

Artificial reverberation algorithms often suffer from spectral col-
oration, usually in the form of metallic ringing, which impairs the
perceived quality of sound. This paper proposes a method to re-
duce the coloration in the feedback delay network (FDN), a popu-
lar artificial reverberation algorithm. An optimization framework
is employed entailing a differentiable FDN to learn a set of param-
eters decreasing coloration. The optimization objective is to min-
imize the spectral loss to obtain a flat magnitude response, with
an additional temporal loss term to control the sparseness of the
impulse response. The objective evaluation of the method shows a
favorable narrower distribution of modal excitation while retaining
the impulse response density. The subjective evaluation demon-
strates that the proposed method lowers perceptual coloration of
late reverberation, and also shows that the suggested optimization
improves sound quality for small FDN sizes. The method pro-
posed in this work constitutes an improvement in the design of
accurate and high-quality artificial reverberation, simultaneously
offering computational savings.

1. INTRODUCTION

Since the pioneering work of Schroeder and Logan [1], delay-
based digital recursive structures have been used in reverberation
synthesis [2]. Nowadays, one of the most widely used approaches
in artificial reverberation is the feedback delay network (FDN),
a system that generalizes the parallel comb-filter structure by in-
terconnecting delays via a feedback matrix [3, 4, 5]. In FDNs, a
commonly used approach is to first design a lossless prototype [6]
to then achieve the desired frequency-dependent decay with atten-
uation filters [7, 8]. However, a common bane of systems utilizing
comb filters is sound coloration [1]. Strong coloration is undesir-
able in artificial reverberation since it impairs the perceived sound
quality.

Recent research suggests using modal decomposition to study
the properties of the FDN in more detail [9]. The modal decom-
position showed that the coloration in an FDN is related to the
wide distribution of modal excitation values. In particular, modes
with strong excitations are perceived as metallic ringing [10]. The
modal excitation depends on all FDN parameters, and directly im-
proving the coloration remains challenging. Recently, Schlecht
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proposed a method to achieve a uniform magnitude response and
found the necessary conditions for an allpass FDN [11]. However,
this approach suffers from temporal buildup of echoes [10], thus
leaving the need for a more versatile method to design colorless
FDNs.

Although many well-known reverb topologies, such as the
Moorer-Schroeder [12], can be translated into FDN designs, the
design of FDNs still presents several unresolved challenges. These
arise from the inherent trade-off between computational complex-
ity, mode density, and echo density. The cost of implementing the
matrix-vector-multiplication for a single time step in an FDN in-
creases with the number of delay lines and varies depending on the
type of feedback matrix. However, the number of delay lines can-
not be arbitrarily low, as there are certain dependencies between
the delay lengths that become more severe as the number of delays
decreases. In addition, a smaller number of delays decreases both
the modal and the echo density, which leads to metallic sounding
artifacts [13, 14].

Automatic tuning of FDN parameters has been previously ex-
plored in the literature, with genetic algorithms being widely used
[15, 16, 17]. More recently, a multi-stage approach was employed
to optimize FDN parameters to match a target room impulse re-
sponse (IR)[18]. The input, output, direct gains, and delay lengths
were optimized using a genetic algorithm. However, differences
between the model and the target IR were revealed in the listening
tests. To circumvent the challenge of optimizing infinite-impulse-
response filters with differentiable machine-learning techniques,
frequency sampling was used to implement a differentiable ap-
proximation of delay networks. An end-to-end deep-learning
model was presented for the estimation of parameters, although
only the absorption filters and input and output filters were esti-
mated [19].

In this study, we present a novel approach to design FDNs
for colorless artificial reverberation. To this end, we use a differ-
entiable FDN (DiffFDN) in an optimization framework to learn a
set of FDN parameters leading to less coloration. Specifically, we
show that a narrower modal excitation distribution can be achieved
without requiring the allpass property, offering more flexibility
since the reverberation time (RT) values can be arbitrarily set after
designing the prototype FDN. The perceptual evaluation against
several common FDN designs shows that the proposed method
successfully decreased perceived coloration.

The paper is organized as follows. Section 2 offers back-
ground information about FDNs and their modal decomposition.
Section 3 introduces the proposed method of designing colorless
FDNs. The results of the objective evaluation are presented in Sec-
tion 4, and Section 5 shows the results of the listening test. Sec-
tion 6 offers concluding remarks.
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Figure 1: Block diagram of a SISO FDN. Thin and thick lines in-
dicate single- and multichannel connections, respectively.

2. BACKGROUND

This section gives some background information about FDNs and
presents related concepts that are relevant to the proposed method,
such as modal decomposition and homogeneous decay in FDNs.

2.1. Feedback Delay Network

An FDN is a recursive system consisting of delay lines, a set of
gains, and a scalar feedback matrix through which the delay out-
puts are coupled to the delay inputs. An example of a simple
single-input single-output (SISO) FDN architecture is presented
in Fig. 1. The transfer function of the FDN is

Hpzq “ cJ
“

Dmpzq
´1

´ A
‰´1

b ` d , (1)

where A is the N ˆ N feedback matrix, N being the number of
delay lines. The N ˆ 1 column vectors b and c and the scalar
coefficient d respectively represent the input, output, and direct
gains. The operator p¨q

J denotes the transpose. The vector m “

rm1, . . . ,mN s defines the lengths of delays in samples. The cor-
responding delay matrix Dmpzq is created by taking a diagonal
matrix with entries given by rz´m1 , . . . , z´mN s.

The system poles λi are the roots of the generalized character-
istic polynomial ppzq of the system, which is fully characterized
by m and A:

ppzq “ detpDmpzq
´1

´ Aq . (2)

The sum of the delays gives the order of the system, i.e., M “
řN

i“1 mi [20].

2.2. Modal Decomposition

The IR of the FDN can be represented as the sum of complex one-
pole modes, or resonators, in the time domain [9]:

hpnq “

M
ÿ

i“1

hipnq . (3)

Each mode hipnq is defined by the pole λi and the residue ρi:

hipnq “ |ρi||λi|
neȷpn=λi`=ρiq , (4)

where | ¨ | is the magnitude, = indicates the argument of a complex
number in radians, ȷ “

?
´1, and n indicates the discrete time

index. The sum of the delay-line lengths M coincides with the
number of poles.

The transfer function of the FDN (1) can be represented in
terms of its poles and residues from its partial fraction decomposi-
tion as

Hpzq “ d `

M
ÿ

i“1

ρi
1 ´ λiz´1

, (5)

which is often referred to as the modal decomposition of the FDN
[9]. The excitation and initial phase of the ith mode are determined
by the magnitude |ρi| and phase =ρi, respectively, of its corre-
sponding residue, whereas the magnitude and the phase of the ith

pole, |λi| and =λi, respectively, determine its decay rate and fre-
quency.

2.3. Homogeneous FDN

For the design of an artificial reverberator, starting with a lossless
prototype is beneficial. The FDN is said to be lossless if the roots
of ppzq have magnitude equal to one, i.e., |λi| “ 1 for all i [21].
Frequency-dependent RT, here also denoted as T60, is then easily
achieved by extending the delay lines with a frequency-dependent
attenuation filter [4].

In this study, we focus only on the specific case of frequency-
independent homogeneous decay. This refers to the case where all
modes experience the same rate of decay, i.e., |λi| “ γ for all i.
Homogeneous decay is achieved with a feedback matrix A being
the product of a unilossless matrix U and a diagonal matrix Γ,
whose entries are delay-proportional absorption coefficients, Γ “

diagpγm
q. The feedback matrix can be expressed as

A “ UΓ . (6)

A matrix U is unilossless if, regardless of the choice of delays
m, its eigenvalues are unimodular and its eigenvectors are lin-
early independent. A matrix U satisfying the unitary condition,
UUH

“ I , is also unilossless [22, 23]. As U is unilossless, the
modal decay is controlled entirely by gain-per-sample parameter
γ, where 0 ď γ ď 1. The gain-per-sample in dB is

γdB “
´60

fsT60
, (7)

where fs is the sampling rate in Hz and T60 is the reverberation
time defined as the time required for the sound level to decay by
60 dB from the initial steady-state value.

2.4. Coloration in FDN

In artificial reverberation, the properties of the resonating modes
have direct implications on coloration. A flat magnitude response,
implicitly achieved by the allpass property, is often desirable.

Schroeder and Logan [1] made the initial attempt to produce
colorless artificial reverberation by establishing specific require-
ments for the reverberators in addition to a flat frequency response.
Overlapping normal modes across all frequencies, equal RTs for
each mode, sufficient echo density, lack of periodicity in the time
domain, and no periodic or comb-like frequency responses were
deemed necessary to achieve colorlessness [1]. Despite fulfilling
the aforementioned conditions, however, the Schoreder series all-
pass did not attain complete colorlessness.

A recent study was conducted to further understand the role
of modal excitation in late reverberation coloration [10]. Listening
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DiffFDN
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Figure 2: Architecture of the proposed optimization workflow. Dotted lines indicate the stochastic gradient descent method of optimizing
the parameters. Thin and thick lines indicate single- and multichannel connections, respectively.

test results suggest that a narrow distribution of the modal exci-
tation values |ρi| tends to result in a flatter magnitude response.
For large values of |ρi|, coloration starts to become noticeable. In
agreement with [13], the study found that the perception of color-
lessness correlates with the number of modes, and that more than
6000 modes are needed for an IR to be perceived as rather color-
less.

The literature also shows that, for large values of M, the modes
of the FDNs are uniformly distributed [9], preventing additional
coloration that usually results from clusters of modes. Nonethe-
less, a flat magnitude response and a uniform modal frequency
distribution are insufficient to achieve colorlessness.

When the feedback matrix A is diagonal, the FDN takes the
form of a parallel comb-filter structure. If the FDN is homoge-
neous, the transfer function in (1) is equivalent to a combination
of comb filters, where each filter has the transfer function

Hipzq “
1

1 ` γmiz´mi
. (8)

The contribution of each filter to the total energy of the response
can be calculated as

∥Hipzq∥2 “

ż 2π

0

|Hipe
ıω

q|2dω (9)

“
1

1 ´ γ2mi
. (10)

Fundamentally, shorter delays mi contribute more energy and pro-
duce strong, audible metallic-sounding comb peaks, whereas longer
delays mi contribute less energy and tend to be masked by the
more dominant comb filters. In order to achieve colorless FDNs,
we aim to avoid strongly recirculating short delays and encourage
strongly exciting long delays.

2.5. Problem Statement

In this paper, we aim to optimize the feedback delay matrix A,
and input and output gains b and c such that the resulting IR is
colorless. In this study, we keep the number and lengths of the
delays fixed.

From previous studies, we know that coloration is little im-
pacted by the choice of the frequency-dependent attenuation [10].
Thus, the optimization is performed on a long-ringing frequency-
independent prototype FDN.

The proposed method utilizes two losses to improve coloration
and temporal density. A stochastic gradient descent scheme is
used to avoid convergence at spurious local minima. A parameter
remapping guarantees a lossless FDN prototype at each optimiza-
tion step.

3. FDN OPTIMIZATION

In the following, we present a method to reduce coloration in an
FDN response for arbitrary RTs. Stochastic gradient descent is
used to optimize the parameters of a differentiable FDN.

3.1. Differentiable FDN

This work applies the frequency-sampling method to approximate
an FDN as a finite-impulse-response (FIR) filter. This is done by
evaluating the delay matrix DmpzM q at the discrete frequency
points in the vector

zM “ reȷπ
0
M , eȷπ

1
M , . . . , eȷπ

M´1
M s, (11)

where M indicates the total number of frequency bins equally dis-
tributed on the unit circle. The discrete-frequency transfer function
of the FDN thus becomes

HpzM q “ cJ
“

DmpzM q
´1

´ A
‰´1

b ` d . (12)

The diagram of the proposed architecture is shown in Fig. 2.
We integrated HpzM q into an optimization framework to estimate
the set of FDN parameters based on a spectral and a temporal loss
by gradient descent. The learnable parameters are the feedback
matrix A and the input and output gain vectors b and c, respec-
tively. The delay lengths m are set at initialization, and kept con-
stant during training. The direct gain d is set to zero. The FDN is
set to have a homogeneous decay by forcing A to satisfy (6) for a
given γ.

At each training step the estimated channel-wise transfer func-
tion ĤpzM q is computed at M frequency bins. The input to the
network is zM , where the value of M is sampled from the uniform
distribution around values that ensure oversampling. This allows
training the model at different sample rates, which proved to help
avoiding narrow local minima and to improve convergence. To
allow batch processing, the length of ĤpzM q has to be constant
for all values of M . This is achieved by zero-padding ĤpzM q to
length K. The network’s output is evaluated in both the spectral
and temporal domains. The IR of the system is computed from the
K-point inverse discrete Fourier transform, ĥ “ IDFTpĤpzM qq,
where Ĥ is the system transfer function computed from the sum
of the N channels. The process of zero-padding in the frequency
domain results in zero-phase rate conversion [24], and allows eval-
uating the IR at different timestamps.

3.2. Feedback Matrix Parametrization

The unilossless matrix U is computed from the weights W of
a parameterized linear layer. Matrix U is limited to the class of
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Figure 3: Magnitude response of an FDN with random orthogonal
feedback matrix and unitary input/output gains at different values
of gain-per-sample value γ. For high values of γ, the resonances
are better separated due to a smaller half-width.

orthogonal matrices, satisfying the unitary condition for uniloss-
lessness. To ensure orthogonality, at each optimization step W is
mapped to a skew-symmetric matrix, and the matrix exponential is
computed,

U “ eWTr´W J
Tr , (13)

where WTr is the upper triangular part of W and the operator ep¨q

denotes the matrix exponential. The mapping in (13) implicitly
ensures orthogonality of U and can be used in regular gradient
descent optimizers without creating spurious minima [25].

3.3. Gain-per-sample

When A is lossless, i.e., γ “ 1, the modulus of all system eigen-
values is equal to one: |λi| “ 1. However, under this condi-
tion, evaluating HpzM q on the unitary circle becomes unfeasi-
ble, as the discrete generalized characteristic polynomial ppzM q “

detpDmpzM q
´1

´ Aq becomes singular and non-invertible. To
avoid instabilities, we use a homogeneous FDN where A is pa-
rameterized according to (6), and γ is set at initialization to a value
lower than one and kept constant during optimization.

The value of γ used during optimization is chosen by exam-
ining the connection between the mean damping factor δ, used in
room acoustics, and the mean spacing of resonance frequencies
∆f . To guarantee that the modes are well separated, the mean
spacing of resonance frequencies should be larger than the aver-
age resonance half-width [26]

∆f "
δ

π
. (14)

In room acoustics, the limiting frequency below which the modes
are well-separated is called Schroeder frequency, indicated here as
fSchroeder [27]. This frequency marks the threshold above which an
average of at least three modes falls within one resonance half-
width. Using the fact that in FDNs the modal frequencies are
nearly euqally distributed [9], we can derive the limiting average
resonance half-width

∆f |f“fSchroeder
“ 3

fs

M . (15)

We can use the above conditions to determine the minimum value
for T60 to be used during training

T60 "
Mlnp10q

πfs
. (16)

Increasing the value of T60 leads to modes with lower half-widths
and greater separation between them. For a target T60, the value
of γ can be derived from (7). However, as γ approaches 1, the res-
onance peaks in the magnitude response become narrow, making
obtaining a flat magnitude response by combining the resonances
impossible. Fig. 3 shows the effect of increasing γ on the res-
onance width in a short section of the magnitude response. The
sharp peaks visible when γ “ 1 are significantly smoothed when
γ “ 0.9990.

Experiments showed good convergence of the loss used in the
optimization when T60 ď 10 s. During inference γ is a free pa-
rameter, allowing to generate reverberation with any desired T60

value.

3.4. Parameters Initialization

We initialize the values of W , b, and c by drawing from the nor-
mal distribution N p0, N´1

q.
The design of the delays is a rather non-trivial task that re-

quires further constraints. To maximize the echo density, the delay
lengths should be co-prime [28]. However, concentration of delays
around a certain value may lead to perceivable strong fluctuation
of energy over time. Moreover, low-order dependencies, which
are integer linear combinations of delays that coincide with other
integer linear combinations of delays with small coefficients, can
also contribute negatively to the smoothness of the response [22].
To avoid degenerative patterns and ensure a smooth-sounding re-
verb, we choose delays that are logarithmically distributed co-
prime numbers leading to M ě 6000.

3.5. Loss Function

The network is trained on two losses, Lspectral and Ltemporal, respec-
tively, in the frequency and time domains. The spectral loss aims
to minimize the frequency-domain mean-squared error between
the absolute value of the predicted magnitude response for each
channel and the target flat magnitude response. The temporal loss
penalizes sparseness in the time domain. The total loss function is

L “ LspectralpĤpzM qq ` αLtemporalpĥq

“
1

K

N
ÿ

i“1

K
ÿ

k“1

´∣∣∣ĤipzM rksq

∣∣∣ ´ 1
¯p

` α

∥∥∥ĥ∥∥∥
2∥∥∥ĥ∥∥∥
1

,
(17)

where ĤipzM q is the output of the network’s ith channel computed
from the output of the ith delay line and scaled by ci. The operators
∥¨∥1 and ∥¨∥2 denote the ℓ1 and ℓ2 norm, respectively. The value
of the scaling factor α depends on the FDN size and is chosen
during initialization to ensure that the temporal and spectral losses
have similar magnitudes.

Audibility of a resonant frequency depends on its loudness and
on the presence of neighbouring masker tones [29]. To account
for tone masking effects, we adjust the exponent p in LspectralpĤq

based on the sign of the magnitude difference. Specifically:

p “

$

&

%

2 for
∣∣∣ĤipzM q

∣∣∣ ´ 1 ď 0 ,

4 for
∣∣∣ĤipzM q

∣∣∣ ´ 1 ą 0 .
(18)

This adjustment ensures that higher loss values are assigned when
the predicted magnitude response exceeds one. For negative dif-
ferences, LspectralpĤq corresponds to the mean squared error.
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Figure 4: Progression of temporal loss for different values of the
interpolation parameter β. Density of the feedback matrix in-
creases from left to right.

The temporal loss Ltemporalpĥq is computed as the ratio of the
ℓ2 norm to the ℓ1 norm of the estimated IR ĥ. We found that the
absence of this term may lead to sparsity in the learnable parame-
ters and cause the matrix U to converge towards either a diagonal
matrix or its permutation. In this configuration, the magnitude re-
sponse is periodic, with the spacing between peaks and troughs
determined by the delay lengths, and the height of the peaks and
the depth of the troughs depending on the gains. In time domain,
this yields a sparse sequence of impulses whose sound is far from
the intended Gaussian noise-like reverb.

To visualize the impact of the matrix on Ltemporalpĥq, Fig. 4
summarizes the distribution of the loss values computed from an
FDN with five different feedback matrices. The feedback matrix is
interpolated between the values at initialization U and the identity
matrix I:

Aβ “ ep1´βq logpIq`β logpUq , (19)

where β is the interpolation parameter 0 ď β ď 1. Operator
logp¨q represents the matrix logarithm. For β “ 1, the feedback
matrix corresponds to the initial configuration A1 “ U , whereas
for β “ 0 matrix A0 coincides with the identity matrix I . On
each box, the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, re-
spectively. The whiskers stretch to include the most extreme data
points that are not classified as outliers, and any outliers are plotted
separately. The parameters of the FDN are initialized as described
in Sec. 3.1, and the temporal loss is evaluated at 256 different val-
ues of M . The numbers in Fig. 4 show that the temporal loss
Ltemporalpĥq grows for sparser feedback matrices, thus actively pre-
venting convergence towards sparse matrices.

The evolution of losses at each epoch is shown in Fig. 5. Al-
though Lspectral decreases at all displayed epochs, a near-steady
value is attained by Ltemporal after a few iterations. This controls
the FDN and prevents convergence towards a set of comb filters.

4. OBJECTIVE EVALUATION

The following section presents the FDN configuration and the ob-
jective evaluation of the proposed method. The objective assess-
ment is based on the modal excitation distribution.

4.1. Analyzed FDN Configurations

We evaluate a total of six FDN configurations, two sets of delay
lengths for each of the three FDN sizes of N “ 4, 6, 8. The val-

Figure 5: Progression of spectral and temporal components of the
loss function during optimization.

Table 1: Values of the delay-line lengths for each size N of the
analyzed FDNs. In the delay set #1, all the delay lengths are log-
arithmically distributed prime numbers. For the delay set #2, half
of the delay lengths are prime numbers with similar low values,
and half are logarithmically distributed.

N Delay Set #1

4 [1499, 1889, 2381, 2999]
6 [997, 1153, 1327, 1559, 1801, 2099]
8 [809, 877, 937, 1049, 1151, 1249, 1373, 1499]

Delay Set #2

4 [797, 839, 2381, 2999]
6 [887, 911, 941, 1699, 1951, 2053]
8 [241, 263, 281, 293, 1193, 1319, 1453, 1597]

ues of the delay-line lengths are presented in Table 1. In the first
delay set, the delay lengths were prime numbers distributed log-
arithmically. In the second delay set, only the second half of the
delay lengths were logarithmically distributed, and the first half
consisted of prime numbers with similar values. In all configura-
tions, the total number of modes is 6000 ă M ă 9000.

During the training process, we used a sampling rate of fs “

48 kHz, and an inverse discrete Fourier transform of length K “

480000. The dataset consists of integer values M randomly se-
lected from a uniform distribution ranging between Mmin “ 0.8K
and Mmax “ K. To train our model, we randomly selected 80%
of the data from the dataset, and the remaining 20% was used for
validation. The dataset size is 256 values of M . We set the batch
size to 4, and employed the Adam optimizer [30] with a learning
rate of η “ 10´3. Training was stopped after 15 epochs, as exper-
iments showed no further improvement with extended training.

The choice of the gain-per-sample value γ is crucial when op-
timizing the feedback matrix. To satisfy (16) during training, we
set γ “ 0.9999, which implies T60 “ 1.439 s.

Configuration details and audio examples are available on-
line 1. The PyTorch implementation of the proposed method can
be found in the dedicated repository 2. A set of optimized FDN
parameter values is readily available in the FDN Toolbox [5].

DAFx.5



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 6: Distribution of the modal excitation of an FDN with size
N “ 4 at the beginning (Original) and at the end of optimiza-
tion (Optimized), which has led to a decrease of the loudest modal
excitation by about 3 dB.

4.2. Modal Excitation Distribution

We compare the FDN parameters after optimization with the cor-
responding FDN configurations at initialization. All the compared
FDNs are homogeneous and have equal delays and gain-per-sample.
We compute the modal decomposition (5) to analyze the modal ex-
citation distribution of |ρi|.

The histograms in Fig. 6 show the distribution of the modal
excitation at the beginning and at the end of the optimization pro-
cesses for an FDN of size N “ 4. The modal excitation values
have been centered around 0 dB. At initialization, the distribution
appears bimodal with the highest concentration of values around
6 dB and -2.5 dB. After optimization, the peak of the distribution is
centered around 1 dB. The rightmost part of the distribution, which
represents the modes with the highest excitation values, is impor-
tant for coloration. In Fig. 6, the optimization attenuates the loud-
est modes by around 3 dB. The change toward narrower excitation
distribution indicates an improvement in the coloration, which we
further evaluate with a subjective test.

5. PERCEPTUAL EVALUATION

In the following, we describe a listening test conducted to evalu-
ate the perceived coloration in the IRs of the differentiable FDN
optimized with the proposed method.

5.1. Listening Test Procedure

The test followed the Multiple Stimuli with Hidden Reference and
Anchor (MUSHRA) recommendation [31], and it was carried out
using the web audio API-based experiment software webMUSHRA
developed by International Audio Laboratories Erlangen [32].

On each page, the listening test compared four sets of FDN
parameters against a reference. The test items included six config-
urations, i.e., three FDN sizes N “ 4, 6, 8 with two sets of delays.
The sounds were compared for two different RTs. In total, there
were 12 listening test pages with five stimuli each.

At the beginning of the test, a training page was presented to
familiarize the subjects with the sound samples and to adjust the
overall loudness. The loudness was kept unchanged during the rest

1http://research.spa.aalto.fi/publications/
papers/dafx23-colorless-fdn/

2https://github.com/gdalsanto/
diff-fdn-colorless/

of the test. The reference was a white Gaussian-noise sequence due
to its ideal reverberation tail [12], and since it has a flat magnitude
response by definition. During the test, the subjects were asked
to rate the similarity between each of the presented items and the
reference sound on a scale from 0 to 100. On each page, six sounds
were assessed, including an anchor and the hidden reference. The
hidden reference was an instance of white Gaussian noise different
from the reference, to encourage the subject to compare samples
based on their coloration rather than any possible subtle temporal
features.

The test evaluated the coloration of the DiffFDN IRs for the
configurations presented in Sec. 4.1. Each configuration was tested
on a separate page where the number and lengths of the delays
were constant, and only the feedback matrix, input and output
gains were altered. In particular, the FDN implementation of the
Schroeder-Moorer reverberator (SM) with N delay lines was used
as the anchor, whereas for the remaining conditions, the random
orthogonal feedback matrix (RO), the proposed optimized FDN
(DiffFDN) and the Householder (HH) feedback matrix were used.
The RO condition were the initial values of optimization of the
DiffFDN. Unitary input and output gains were used for the HH
condition. The direct gain d was set to zero in all cases. Each in-
dividual IR was normalized to ensure a constant root-mean-square
value across conditions.

The experiment was conducted in a sound-insulated booth at
the Aalto Acoustics Lab, with participants wearing Sennheiser
HD650 headphones. The final items were presented to 12 listen-
ers. One participant was excluded from the analysis as they failed
to correctly identify the anchor more than four times in their re-
sponses. The average age of the participants whose results were
analyzed was 28.6 years with standard deviation of 4.1, and none
of them reported any hearing impairments. All the participants
were either students or employees of the Aalto University Acous-
tics Lab, and had previous experience with the MUSHRA test.

The IRs presented in the first part of the test (expDE) had an
exponential decaying envelope corresponding to T60 “ 2.5 s and
γ “ 0.99994. The subjects were asked to compare the coloration
of the FDN responses against that of decaying white Gaussian
noise. To ease the grading process, the slider was labeled with
0 - certainly colored, 25 - rather colored, 50 - fairly colored / col-
orless, 75 - rather colorless, and 100 - certainly colorless.

The second part of the test (LL) focused on the coloration of
the late reverberation part. It compared the non-decaying IRs with
T60 “ 8 and γ “ 1. In order to exclude the echo build up of the
early reflection from the comparison, the test items started after the
mixing time, i.e., at 6 s. Each audio example was 10 s long. The
slider labels were the same as in the first part of the test.

5.2. Listening Test Results

The results of the listening test are shown in the box charts in Fig. 7
and Fig. 8 for the expDE and LL cases, respectively. The mean-
ing of marks and whiskers on the chart is the same as in Fig. 4
(cf. Sec. 3.5). The shaded regions around the medians help com-
paring the sample medians across different box charts. Shaded re-
gions that do not overlap indicate that the compared box charts
have different medians at the 5% significance level based on a
normal-distribution assumption.

Conducting the Shapiro-Wilk test [33] showed that even when
excluding the reference and anchor conditions, the data did not
follow a normal distribution. In addition, the Wilcoxon signed-
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Figure 7: Results of the listening test on exponential decaying IRs
(expDE), showing that the proposed DiffFDN has the highest me-
dian score of colorlessness in all cases.

Figure 8: Results of the listening test on the late reverberation, em-
ploying lossless FDNs (LL), showing that the proposed DiffFDN
has the highest median score of colorlessness in all cases.

rank test [34] was used to compare the distribution of the scores
given to each pair of conditions within each page. To account for
multiple comparisons (10 hypotheses per page), we applied the
Bonferroni method to adjust the alpha level.

The p-values for all combinations of paired conditions suggest
that all pairs of results are significantly different, with exception of
the lossless case with N “ 8 for RO and HH FDNs (p “ 0.68).
These results are indicated by the overlapping shaded regions of
the corresponding box charts in Fig. 8. This may be due to the lack
of early reflections in the lossless case, which makes differentiat-
ing between conditions difficult. Additionally, the configuration
with a higher number of delays (N “ 8) produces a denser output,
which might result in a more challenging test.

The results presented in Figs. 7 and 8 show that the hidden ref-
erence and anchor signals were easily detected by most subjects,
with few outliers. The median ratings for the proposed method
were consistently higher than those for the remaining conditions,
indicating that the optimization method was successful in improv-
ing colorlessness from the initial values.

In the first part of the test (expDE), increasing FDN sizes re-
sulted in higher ratings for DiffFDN, with median values of 50.5,
74, and 77. The results for lossless FDNs (LL) reported a similar
trend, with overall higher ratings primarily due to the elimination
of the temporal build up. The proposed method was deemed rather
colorless, with median ratings of 84, 89, and 83.5, respectively,
for increasing FDN size. The RO matrix was rated more colorless
than the HH matrix for the configuration with N “ 6 delay lines,
while it was rated more colored in the remaining configurations.
This inconsistency may be attributed to the random sampling of
the orthogonal matrix, which is performed without any preselec-
tion based on perceptual factors.

To emphasize the ratings relative to the proposed method, the

Figure 9: Relative difference of the results of Fig. 7 from the results
of the proposed DiffFDN method (expDE case).

Figure 10: Relative difference of the results of Fig. 8 from the re-
sults of the proposed DiffFDN method (LL case).

box charts in Figs. 9 and 10 were calculated based on the difference
between the DiffFDN and the remaining conditions. The ratings
assigned to the reference are not displayed. The results show that
in the majority of test questions, proposed method was rated higher
than the remaining stimuli. Significant improvements are observed
in the lossless case for N “ 4. Specifically, the median value
of the RO configuration was 59 lower than its optimized version
(DiffFDN). Moreover, in both conditions, the median of the score
differences and their 75th quartiles are consistently negative. The
confidence intervals in Fig. 9 are noticeably narrower compared
to those in Fig. 10, suggesting that the test on lossless FDNs was
more challenging.

6. CONCLUSIONS

This work presents a method for designing colorless artificial re-
verberation using a differentiable feedback delay network
(DiffFDN). The technique optimizes elements of the DiffFDN
architecture—the feedback matrix as well as the input and output
gains—to achieve a flat magnitude response. In addition, the tem-
poral properties of the synthesized reverb are taken into account to
avoid overly sparse results.

In the objective evaluation, we showed that the proposed
method reduces the width of the modal excitation distribution, de-
creasing the number of loudest modes. This indicates that the
DiffFDN achieves more colorless sound and flatter magnitude re-
sponse of the produced reverb.

The results of the listening test show that, compared to other
popular FDN designs, DiffFDN showed a significant improvement
in reverberation quality. Reverberation obtained with DiffFDN
was consistently graded as the most colorless among several con-
ditions, placing it perceptually closer to white Gaussian noise than
the other evaluated methods. This further confirmed the results
of the objective assessment and proved that the proposed method
successfully synthesizes colorless sound.
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