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ABSTRACT

There are millions of sophisticated Android phones in the world
that get disposed of at a very high rate due to consumerism. Their
computational power and built-in features, instead of being wasted
when discarded, could be repurposed for creative applications such
as musical instruments and interactive audio installations. How-
ever, audio programming on Android is complicated and comes
with restrictions that heavily impact performance. To address this
issue, we present LDSP, an open-source environment that can be
used to easily upcycle Android phones into embedded platforms
optimized for audio synthesis and processing. We conducted a
benchmark study to compare the number of oscillators that can be
run in parallel on LDSP with an equivalent audio app designed ac-
cording to modern Android standards. Our study tested six phones
ranging from 2014 to 2018 and running different Android versions.
The results consistently demonstrate that LDSP provides a signifi-
cant boost in performance, with some cases showing an increase of
more than double, making even very old phones suitable for fairly
advanced audio applications.

1. INTRODUCTION

With its billions of users, Android is one of the most widely adopted
technologies existing today [1, 2]. Even the more affordable An-
droid phones have CPU and memory specifications that compare
with or even top those of many platforms commonly used by aca-
demics, researchers and creatives to design audio applications, in-
cluding the Raspberry Pi1, Bela [3] and the Daisy Seed board2.
Yet, the mobile phone market is characterized by a constant evo-
lution of both software and hardware, with new updates and mod-
els released frequently. Although current Android phones boast
impressive technical specifications, they are often abandoned by
users due to software incompatibility or the desire to own a newer,
more advanced device. This consumeristic approach to technology
creates significant environmental and ethical issues.

Firstly, the regular replacement of mobile phones contributes
to a throwaway culture that values disposability over sustainabil-
ity [4]. Electronic waste (e-waste) generated by discarded phones
is a growing concern as it contains hazardous substances such as
lead, mercury and cadmium, which can pollute the environment
and harm human health. Moreover, this consumeristic approach to
technology—that spreads way beyond mobile phones—also per-
petuates a cycle of social and economic inequality [5]. Not ev-

1https://www.raspberrypi.com/
2https://www.electro-smith.com/daisy
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eryone can afford to upgrade their technologies regularly, and the
constant release of new models creates an unnecessary pressure to
keep up with the latest trends, contributing to a sense of inade-
quacy and exclusion among those who cannot afford to do so.

In contrast to these unsustainable trends, this paper describes
LDSP, a technology that enables extending the lifespan of older
Android phones by repurposing them as embedded platforms for
audio application development. LDSP provides an environment
that allows developers to leverage the full potential of the phones’
hardware and avoid the limitations imposed by Android’s runtime
environment. With LDSP, phones that would have otherwise be-
come obsolete can be given new life, decreasing the need for the
purchase of new programmable audio technology and reducing e-
waste. We discuss the implementation of LDSP, its capabilities and
how it can provide a significant boost in performance for audio ap-
plications. Additionally, we present the results of our experiment
using an oscillator bank to compare the performance of LDSP with
that of a typical Android audio app, addressing the open problem
of effectively employing Android phones for audio synthesis and
processing.

2. BACKGROUND

2.1. Technology, E-waste and Upcycling

In the field of audio and music hardware design, there is a larger
issue at play regarding the obsolescence and progress mindset sur-
rounding technological products. This is in part enabled by manu-
facturers seeking to drive trends and increase consumption [6] and
strongly resonates with humans’ innate curiosity and will to exper-
iment. This mindset is economically and environmentally harmful,
given the decreased lifespan of equipment and the increased pro-
duction of e-waste [7]. This issue has underlying epistemologi-
cal roots, where technology-based or electronic arts are tied to the
notion of progress, ‘new is better’, and consumerism, which is un-
sustainable [4]. The process of creating new technologies and their
discard negatively affects the land, water, air, and all living beings.

Among consumer technologies, mobile phones are notorious
for their short product cycles, with an average use time of around
two years [8]. In many cases, phones are replaced with newer
models even if they are still functioning, as a result of the expi-
ration of support for essential apps or the operating system itself.
In the case of Android phones, open software can be leveraged
to extend the life span of the device beyond the end of support
and continue its intended. Examples includes: Lineage OS 3, a
mostly open-source operative system based on Android and main-
tained by a large community of developers; /e/ OS 4 and iodé OS

3https://lineageos.org/
4https://e.foundation/
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5, both open-source mobile operative systems forked from or pow-
ered by Lineage OS that focus on privacy; or the Free Software
Foundation Europe’s initiative Upcycling Android 6 that intends
on teaching the possibilities given by free and open software to im-
prove user agency against technological obsolescence. However,
the applicability of these solutions tends to depend on the specific
model of the phone and support for functionalities can only be ex-
tended for a finite period of time. For example, one of the two
LG G2 Mini phones used in this work to test LDSP (see Section
4) is running Lineage OS 14.1 that is equivalent to Android 7.0,
while the last official Android version that specific model can run
is 5.0.2. This extended the overall life span of the phone of two
years, from 2016 to 2018—i.e., when support for Android 5.0.2
and 7.0 officially ended, respectively. Furthermore, phones fre-
quently encounter significant damage to their screens, batteries,
or other crucial components that render them unusable for daily
use, irrespective of software support. Repairing such devices is in-
creasingly expensive and intricate due to the miniaturized design
of the products, the presence of glued-in parts, and the overall con-
cept of economical obsolescence, where the cost of repairs often
outweighs the value of the device itself [8]. Nonetheless, in many
cases damaged/broken phones can still be turned into different but
functional devices.

There is a tradition of technological disobedience found world-
wide through different approaches that involve recycling and re-
using materials, from hackerspaces [9] to Gambiarra [10] and oth-
ers [11, 12]. These practices recover components and devices that
would otherwise be discarded, finding novel uses for them by sur-
passing limitations in innovative ways, which resist consumerism
and planned obsolescence practically. Such practices shift our un-
derstanding of when an object becomes useless or expendable if it
is not related to its functionality or lack thereof, forcing us to think
critically about how we use, buy, and discard technology.

Various art-related projects and instruments are specifically
aligned with the upcycling of materials and the political implica-
tions of such endeavors. For instance, the Echo project [13] ex-
plores creative and alternative uses of outdated and damaged tech-
nologies, fostering an atmosphere where audiences can engage in
critical and aesthetic debates surrounding the possibilities of these
technologies, away from their intended purposes. Similarly, the
Gatorra instrument [14] was created through a hobbyist approach
to circuitry, repurposing electronic and non-electronic components
to create a unique final product, emphasizing the autonomy of the
creator and promoting innovative ways of engaging with hardware.

Certain composers and musicians, including Yasunao Tone,
Nicolas Collins, and the group Oval [15], use the glitching and
skipping of compact disks to generate new sounds, chance-based
compositions, and indeterminate performances. Though their ap-
proaches to technology may differ, they share an interest in using
seemingly broken technology to encourage novel sounds.

Other instruments, such as the Concentric Sampler [16], re-
purpose outdated technology, like floppy disks and floppy disk
drivers, with additional circuitry that loops and uses time-based
granular synthesis for live performances of lo-fi noise. The au-
thor of this project discusses their motivation for fostering creativ-
ity through physical limitations and misuse of audio technologies.
Similarly, Disky [17] is a D.I.Y. USB turntable that utilizes the
mechanical parts found in obsolete hard disk drives, providing an

5https://iode.tech/
6https://fsfe.org/activities/upcyclingandroid/

[Accessed on 2023/05/26]

accessible, reliable, and low-cost project for audio control. In both
cases, the authors emphasize their motivations driven against the
novelty-driven discard of technology due to its current way of pro-
duction encouraged by consumerism. They see their upcycling
methodology as a creative way of dealing with technology that is
considered obsolete while fostering creativity and community.

2.2. Android Audio Programming

There have been various efforts to turn Android phones into plat-
forms for audio processing and synthesis, with applications like
Nexus [18] and MoMubPlat [19] using web technologies and Pure
Data/libpd, respectively. However, faust2api appears to be the
most comprehensive project to date, offering optimized Faust au-
dio/sensors processing code and graphical user interfaces designed
to explore the acoustic features of handheld devices [20].

Despite their capabilities, all these platforms and environments
are limited by the Android audio stack, which consists of sev-
eral layers and buffers that can introduce significant computational
overhead and latency in audio processing and synthesis applica-
tions. As a result, it is difficult to achieve the satisfactory audio
performance, especially on outdated phones. This problem has
been known to audio processing and synthesis communities for
some time, as discussed in research such as [21].

These issues arise from the structure of the Android applica-
tion framework that allows for hardware-agnostic development,
even for code written in native languages like Faust or C++ us-
ing the Android NDK. Such code has to pass through multiple
layers of the audio stack before it can exchange samples with the
audio driver in kernel space. These layers include the applica-
tion layer, Android’s mixer and the audio HAL, each of which in-
troduces some level of buffering and scheduling that can increase
CPU workload and cause inconsistent latency. Figure 1 represents
the typical audio stack in modern Android app architecture. An-
other crucial detail emphasized in this figure is that developing a
high-performance Android app often requires combining at least
two programming languages: Java for the overall app structure
and C++ for the performance-critical components. Additionally,
in most cases, a graphical user interface (UI) is necessary, which,
in modern Android development, is typically implemented using
yet another language, Kotlin.

Researchers have proposed various solutions to address this
problem, including the technique described in [1], which leverages
the Exclusive Mode of the AAudio API introduced by Google in
2017 to bypass many layers of the audio stack. However, this so-
lution is available only on relatively modern devices (running An-
droid 8 or above). And, in general, more work is needed to fully
address these issues in Android audio processing and synthesis,
particularly for interactive applications.

3. LDSP

LDSP is an open-source cross-platform environment designed to
enable developers to create native C++ audio applications for An-
droid devices. Unlike traditional Android apps that run within the
Android Run-Time Environment/Dalvik Virtual Machine, LDSP
generates executables that are dealt with directly by the kernel and
can directly access memory and hardware resources. Essentially,
LDSP turns Android phones into generic Linux embedded boards,
with the only requirement being that the phone is rooted. This
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Figure 1: Audio stack comparison: LDSP stack (on the right) and
modern Android audio app stack (on the left).

approach has a significant impact on code performance, as demon-
strated later in this work. Currently, LDSP can be downloaded to a
host computer, and developers can use it to cross-compile their na-
tive application and deploy it to their Android phone. The frame-
work includes a C++ API, libraries and examples tailored to mo-
bile audio development, with also direct access to the phone’s sen-
sors, buttons, touchscreen, LED lights and vibration motor. More
details about the compilation process, libraries, features and exam-
ples can be found here [22], while the full source code is available
at LDSP official GitHub repository7.

LDSP is designed with portability in mind, and the low-level
development and deployment workflow allow LDSP applications
to bypass any resource allocation restrictions that standard apps
may encounter. Moreover, LDSP is widely compatible across phones.
Retro-compatibility with older Android versions is one of the most
challenging aspects of Android development. The Android devel-
opment framework is continually advancing, to support upcoming
devices, better streamline general purpose app design and comply
with security and privacy regulations. These are important issues,
but contribute to the quick obsolescence of phones that are oth-
erwise still functional. LDSP offers a solution to give new life
to older devices regardless of the Android version they run or the
hardware features they have. Thanks to the pure C++ implementa-
tion of LDSP, the same code can be built and run on most official
Android versions, including phones with installed custom ROMs8

based on Android.
At the core of the LDSP C++ framework lies a custom audio

7https://github.com/victorzappi/LDSP.git
8‘ROM’ refers to the combination of firmware and operative system.

engine that is built around the TinyALSA library9 and designed to
directly control the Advanced Linux Audio Architecture (ALSA)
kernel drivers. The audio engine provides an API to open any
of the phone’s capture and playback devices, synchronize them
and set up a user-defined audio callback function—called ‘render’.
This render function runs on a dedicated thread and has direct ac-
cess to the audio buffers used by the hardware ALSA driver (i.e.,
the ALSA period). Similarly to the API of Bela, a ‘setup’ and a
‘cleanup’ function are called before the start and after the termina-
tion of the render loop. LDSP’s simple audio implementation op-
timizes the use of the phone’s resources, enabling advanced audio
algorithms and buffer sizes that would typically be prohibitive for
Android apps (see next section). Additionally, LDSP can change
the mode of operation of the CPU’s scaling governor to keep the
clock speed at maximum. And as many Android ROMs run pre-
emptive kernels, the framework is designed to try to assign real-
time priority to the audio thread, hence further improving timing
and performance on supported phones. Figure 1 depicts LDSP au-
dio stack and compares it with that of the modern Android audio
app architecture.

4. COMPUTATIONAL PERFORMANCE ANALYSIS

4.1. Software Benchmark

We developed a C++ oscillator bank class to evaluate the com-
putational performance of LDSP. Oscillators are essential com-
ponents of traditional synthesis techniques and are also used in
unconventional DMIs, as demonstrated in previous works (e.g.,
[23, 24]). While the number of oscillators that can be run in par-
allel is not a universal metric of an audio application’s sonic po-
tential, it provides valuable insight into the musical capabilities
of Android phones running LDSP. To further assess the perfor-
mance gain of LDSP compared to the ‘standard’ Android audio
programming environment, we ran the same code within a cus-
tom mobile audio app and quantified the results. Additionally, we
benchmarked the oscillator bank on a Bela board for reference.

The oscillator bank is initialized with the number of oscilla-
tors and a frequency range when instantiated. The frequencies of
the oscillators are linearly spaced within the specified range. Each
oscillator consists of a sinusoidal wavetable with linear sample in-
terpolation. When a new sample is requested, the oscillator bank
advances all the oscillators, retrieves their samples and sums them
into a single value. The total amplitude is normalized to prevent
clipping. The source code can be found in the LDSP GitHub repos-
itory, under examples.

Although the code could be optimized and tailored to individ-
ual hardware features, such as multicores or vector floating-point
units, we purposely kept the focus on the audio environments and
ran identical code on each device. Moreover, our goal was to mea-
sure the performance of an application designed by a creative with
moderate audio programming skills, as we believe this represents
a valuable test case for LDSP, which is designed with accessibility
in mind.

When used within LDSP, the oscillator bank is initialized in
the setup function and the oscillators’ samples are constantly re-
trieved in the render loop to fill the output audio buffer, following
the same code structure used on Bela. In contrast, running the code
within an Android app required additional work. We designed a

9https://github.com/tinyalsa/tinyalsa [Accessed on
2023/05/26]
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simple application following the latest Android app architecture
guidelines10, comprising a minimalistic UI and a small audio en-
gine. The audio engine runs the oscillator bank and sends samples
to the phone’s audio device, while the UI is used to pass initial-
ization parameters to the oscillator bank, select the audio buffer
size and start/stop the audio stream (Figure 2). This app was in-
spired by the tutorial on wavetable synthesizer by Jan Wilczek11.
As discussed in Section 2.2, Android app development involves
a combination of different programming languages. We built the
UI in Kotlin, utilizing the Jetpack Compose framework, which has
become a standard for modern Android UI development. For op-
timal performance, we implemented the audio engine in C++ and
used the Oboe audio library, which serves as a wrapper for both the
modern AAudio library and the legacy OpenSLES library. Oboe is
designed to ensure high performance and provide backward com-
patibility with older phones and Android versions, which is rele-
vant to our project’s aim.

Figure 2: Phone running the oscillator bank Android audio app.

The audio engine includes a setup function that initializes and
starts the playback stream, as well as a user-defined callback that is
invoked whenever the application’s audio buffer needs to be filled.
This structure allows the oscillator bank class to be used in a simi-
lar fashion as in LDSP. The parameters and functions of the audio
engine are mirrored in a Kotlin model, which can be directly ac-
cessed from the UI to set the number of oscillators and start/stop
playback. The Java Native Interface in Android is used to call the
C++ functions directly from the Kotlin model. The source code of
the Android application can be found here: https://github.
com/victorzappi/android-osc-bank.git.

4.2. Methodology

We measured the maximum number of oscillators that a selection
of phones could play in parallel using different buffer sizes, using
both LDSP and the Android app. In real-time digital audio, in-
creasing the number of samples buffered in memory can improve
computational capabilities. However, larger buffer sizes can also
increase action-to-sound latency, which tends to limit the usability
of the application in interactive scenarios [25]. To obtain a com-
prehensive view of phone performance, we tested a range of buffer

10https://developer.android.com/topic/
architecture [Accessed on 2023/05/26]

11https://thewolfsound.com/
android-synthesizer-1-app-architecture/ [Accessed
on 2023/05/26]

sizes, focusing on powers of two, which is a common set of values
for real-time audio applications. Our tests started from the lowest
buffer size supported by each phone (typically 32) and increased
up to 1024. Each oscillator bank configuration was tested 10 times
for a minimum of 45 seconds. If any underruns occurred during
this time, the configuration was deemed unreliable for real-time
use, and the number of oscillators had to be decreased. We used
steps of five oscillators. The first five seconds of each run were
discarded from the test window, as considered a warm-up period
for the application. All phones were set to airplane mode and no
other apps were running during the tests.

It’s worth noting that the choice of buffer size is limited by
the architecture of Android audio apps. This in turn depends on
both the specific hardware and the Android version running on it.
For this reason, our tests included also values that depart from the
initial pool and comply with each phone’s Android Audio HAL
as well as the inner workings of the Oboe library. We selected
the low-latency audio device, when available on each phone, for
testing. This is the audio device capable of supporting smaller
buffer sizes, and all tests were run using its native sample rate and
default number of channels (48 kHz and 2 channels on all tested
devices). These settings were retrieved via one of the helper scripts
available in LDSP.

In LDSP, we disabled audio capture, sensors, and control in-
puts/outputs using the appropriate command-line flags. This was
done to match the features implemented in the Android app’s audio
engine and avoid unfair computational overhead. We passed the
tested buffer size and the current number of oscillators as command-
line arguments to the LDSP executable. As illustrated in Figure 1,
the buffer size set within LDSP corresponds with the period size
requested from the ALSA driver. We fixed the ALSA ring buffer
to two periods.

Within the Android app, we paid particular attention to the au-
dio engine setup and the parameters used to build an efficient audio
stream12. The engine works with a high-priority callback, and the
stream requests exclusive access to the audio device for optimal
performance. We also explicitly set the Oboe performance mode
to low-latency, which is expected to improve Android’s mixer re-
sponsiveness.

Figure 1 shows that the audio signal synthesized by Android
apps has to pass through several buffering stages before reaching
the ALSA driver, namely: the application buffer, which is filled
at every Oboe callback; the mixer’s buffer, often referred to as the
‘internal buffer’; and the Audio HAL buffer, which is filled by the
mixer and then passed to the driver. All data transfers between
these buffers happen in bursts, whose size depends on the audio
device. Our app allows requesting the application buffer size from
the UI, along with the number of oscillators. Then, the audio en-
gine automatically tries to set the internal buffer to the same size as
the application buffer, which is the lowest value possible. In some
scenarios, this also allows for samples to be transferred in single
bursts (see Section 4.4.1). However, the ALSA period cannot be
modified with any Android audio library and is set by the Audio
HAL along with the size of the ring buffer, which was fixed to
twice the period size on all tested phones. Section 4.4 details how
these constraints were taken into account on each phone to assure
a fair comparison between LDSP and the app. As a general rule,
we started by checking what buffer sizes Oboe managed to set on

12https://developer.android.com/ndk/guides/
audio/aaudio/aaudio#optimizing-performance [Accessed
on 2023/05/26]
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each phone, and then we passed to LDSP a single buffer size that
combined all Android buffering stages.

4.3. Tested Devices

We tested a total of six phones, which varied in release year, An-
droid version, CPU specifications and overall tier. This hetero-
geneous pool of devices was selected for two reasons. First, we
wanted to assess the performance of LDSP across hardware with
different capabilities. Second, we wanted to gather some prelim-
inary data on the actual portability of the environment. This is of
particular importance when targeting the upcycling of obsolete de-
vices and was one of the bigger design challenges during the initial
stage of development of the project.

The first phone we tested is a Xiaomi Mi 8 Lite. It was released
in 2018 and is a high-end device running a stock Android 9 ROM.
The second phone is a Huawei P8 Lite from 2015 with Android 5.0
installed. At launch, it was considered a mid-tier device. The third
and fourth phones are different models of the Asus ZenFone line.
One is a ZenFone 2 Laser (Asus1) released in 2016, equipped with
Android 6.0. The other is a ZenFone Go (Asus2) from 2015, run-
ning Android 5.1; it was considered a ‘budget phone’ upon release,
but has a slightly higher clock speed than Asus1. The last two
phones are both old LG G2 Mini models released in 2014 (LG1
and LG2). LG1 runs Lineage OS 14.1, a custom ROM equivalent
to Android 7.0, while LG2 has a stock Android 4.4 ROM. The de-
tails and hardware specifications of the tested devices, including
Bela’s, are listed in Table 1.

Table 1: Tested devices’ details.

Device Year CPU RAM Android
Xiaomi 2018 octacore 1.8-2.2 GHz 6 GB 9
Huawei 2015 octacore 1.0-1.2 GHz 3 GB 5.0
Asus1 2016 quadcore 1.2 GHz 2 GB 6.0
Asus2 2015 quadcore 1.3 GHz 1 GB 5.1
LG1 2014 quadcore 1.2 GHz 1 GB 7.0
LG2 2014 quadcore 1.2 GHz 1 GB 4.4
Bela 2013 singlecore 1 GHz 512 MB -

4.4. Results

4.4.1. Android 9

The Xiaomi phone runs Android 9, enabling Oboe to utilize the
modern AAudio library. AAudio allows for exclusive access to
the audio device, bypassing the internal buffer, whose size was
therefor not taken into account when calculating the total buffers
tested via LDSP. The app reported a size of 192 samples for both
the Audio HAL buffer (i.e., the ALSA period) and the burst size.
Therefore, only total buffer sizes larger than 192 samples could
be tested on both the app and LDSP. We increased the applica-
tion buffer size in steps of 192 samples to optimize data transfer
to the HAL within the app and avoid unnecessary overhead. The
only exception is the starting value of 192 samples, which was ap-
proximated by setting a symbolic application buffer size of one
sample. Table 2 (left) shows the values we tested, expressed as the
combination of Android’s application and HAL buffers, as well as
the maximum number of oscillators measured in the two environ-
ments.

Despite careful choice of audio parameters that could benefit
the app, results are largely in favor of LDSP. For sizes that are in-
teger multiples of the HAL buffer, LDSP showed a performance
gain that ranged from slightly above 25% to 81%. At 192 sam-
ples, the impact of removing the application buffer stage is visi-
ble in Android, and the gain reaches almost 700%. Entries below
192, accessible only to LDSP, showcase that the phone is capable
of running large numbers of oscillators even with typically small
buffer sizes. This reflects the overall high-end specifications of the
Xiaomi.

4.4.2. Android 7.0–5.0

The Huawei, the two Asus phones and LG1 all run versions of
Android that do not support AAudio13. On these devices, Oboe
falls back to using the OpenSLES library for audio processing,
leading to a series of important limitations on the audio settings
and overall performance. Firstly, the audio device cannot be ac-
cessed in exclusive mode, meaning that the samples synthesized
by the application have to transit through the internal buffer of An-
droid’s mixer before reaching the Audio HAL. This was taken into
account when computing the total buffer sizes passed to LDSP.
Secondly, the buffer size requested by audio apps is ignored as
OpenSLES is set to use the most optimal configuration for both
the application and internal buffer, as reported in the Audio HAL.
The values in use can be checked by inspecting the mixer’s status
using the command dumpsys media.audio_flinger from
an Android Debug Bridge shell. Finally, depending on the im-
plementation of the HAL, there is no guarantee that the library
matches the actual size of the bursts employed by the audio de-
vice, leading to possible overhead during data transfer.

Table 2 (right) displays the results of the tests run on the Huawei.
The audio device on this phone only supports a single ALSA pe-
riod size of 960 samples, as smaller and even larger sizes result
in continuous underruns in the audio stream. When running the
app, the mixer reported the expected 960 samples for the Audio
HAL buffer (matching the supported ALSA period), plus a total of
1924 samples for the application and internal buffers—a surpris-
ingly large value given the overall specifications of the phone. De-
spite running with a buffer three times smaller, LDSP showcased
a performance gain of almost 340%.

Table 3 presents the results for Asus1 (top), Asus2 (middle)
and LG1 (bottom). In spite of their lower technical specifications,
these phones exhibit good overall audio performance and greater
flexibility than the Huawei. They all support Android’s fast mixer,
which enables the use of smaller buffer sizes and requires a lower
computational footprint. During app runtime, the fast mixer re-
ported 240 samples for all three buffering stages, resulting in a
total size of 720 samples.

On Asus1, OpenSLES effectively matches the optimal buffer-
ing configuration and manages to sustain 200 oscillators in real-
time. LDSP provides a moderate 22.5% gain at the equivalent
buffer size, but with a third of the app’s optimal buffer size, it
can still run 200 oscillators. Overall, Asus1’s audio hardware and
firmware are well-suited for interactive audio applications.

The performance of the app on Asus2 falls short compared to
other device, with a maximum of only 50 oscillators. This suggests
that the configuration employed by OpenSLES is sub-optimal in
this case. Nevertheless, LDSP demonstrates the real potential of

13AAudio was introduced with Android 8.0 and is not retro-compatible.
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Table 2: Results - Xiaomi Mi 8 Lite (left), Huawei P8 Lite (right) (*native ALSA period size).

Env.
Buff. 1024 960 768 576 384 192* 128 64 32

LDSP 355 350 335 320 290 235 225 190 85
Android app - 275 265 255 160 30 - - -

Env.
Buff. 2884 960*

LDSP - 175
Android app 40 -

Table 3: Results - Asus ZenFone 2 Laser (top), Asus ZenFone GO
(middle), first LG G2 Mini (bottom) (*native ALSA period sizes).

Env.
Buff. 1024 720 512 240* 128 64 32

LDSP 255 245 235 200 180 165 40
Android app - 200 - - - - -

1024 720 512 240* 128 64 32
LDSP 185 180 175 165 150 135 120

Android app - 50 - - - - -
1024 720 512 240* 128 64 32

LDSP 180 180 180 175 175 160 110
Android app - 165 - - - - -

the phone. When using the same total buffer size as the app, perfor-
mance improves by 260%. Other buffer sizes yield good numbers
of oscillators, albeit lower than those measured on Asus1. Notably,
the phone stably runs 120 oscillators at the small buffer size of 32
samples. None of the other tested phones reach this count when
using the lowest buffer size supported.

The test results for LG1 reveal good audio capabilities and
overshadow the age of the phone. LDSP’s performance gain com-
pared to the Android app is at just under 10%. This is likely due to
the fact that the CPU has already reached a plateau at a buffer size
of 720 samples, where further increase in buffer size does not lead
to significant improvements in the maximum count of oscillators.
However, LDSP still manages to run a significant number of os-
cillators at lower buffer sizes, including as low as 32 samples. In
fact, at this end of the scale, LG1 outperforms the high-end Xiaomi
phone.

4.4.3. Android 4.4 and Bela

LG2 was the last phone to be benchmarked. Unfortunately, we
discovered that it is not possible to build the Android app for its
outdated Android 4.4 operating system, which is not compatible
with the Jetpack Compose framework. Although alternative UI
design packages are available for Android versions below 5.0, im-
plementing such a change would have required a massive redesign
of the app architecture, as well as a complete re-run of the previous
tests. We deemed the app redesign beyond the scope of this work
and we decided to only run LDSP on LG2. Table 4 presents the
results from LG2 and Bela, both tested using the same buffer sizes,
but neither having a direct comparison with the Android app.

LG2’s maximum number of oscillators is identical to LG1, ex-
cept for the value reported at 32 samples. This may be due to the
differences in the ROMs loaded on the two phones. Android 4.4 is
likely less optimized for real-time audio than Android 7.0; further-
more, LG1 runs a custom ROM, based on Android 7.0 but much
more lightweight. Despite these disadvantages, the similar results
between the two phones suggest that LDSP’s optimizations still
manage to harness most of the device’s computational power for

audio synthesis.
Bela’s performance is limited by the BeagleBone Black’s lower

specifications, but its buffer size scale reaches values that are inac-
cessible to all the other devices, showcasing its unique ultra-low-
latency capabilities.

5. DISCUSSION

LDSP outperforms the Android app in terms of the number of os-
cillators that can be run on all tested devices and buffer sizes. This
suggests that LDSP can better utilize the computational power of
the devices for audio synthesis. While this is in line with our ex-
pectations due to LDSP’s optimized audio stack structure, the de-
gree of improvement is sometimes beyond what we anticipated,
even exceeding 100%. As a result, even phones that were previ-
ously considered unsuitable for audio applications using standard
Android app development, such as ASUS1 and LG2, reveal the
actual potential of their underlying hardware when using LDSP.
This may open up new musical possibilities for already discarded
technology and reminds us that we often underestimate the nature
and the origin of the objects we interface with [26, 5]. In fact, one
may be surprised to discover that a 2014 Android phone can reli-
ably run more than 150 real-time oscillators using an audio buffer
of only 64 samples.

However, when viewed through the lens of sustainability, this
seemingly favorable scenario may pose some risks. Like circuit-
bent devices [27, 5], upcycled LDSP phones may not age linearly.
LDSP’s unconstrained access to CPU and hardware capabilities
enables the design of audio and musical applications that may
put components under significant strain, such as CPU overheating,
battery draining and constant high memory data rates. This can
lead to a quicker decrease of the phone’s lifespan. Nonetheless,
we designed LDSP as a tool to repurpose phones that have already
reached the end of their product life cycle, at least by modern con-
sumeristic standards. From this perspective, we believe that even
reckless phone usage via LDSP would result in an almost neutral
environmental impact.

The oscillator bank experiment shows how LDSP empowers
developers to optimize the balance between performance and re-
sponsiveness of their applications, by fine-tuning buffer size. While
this may seem like a minor detail to experienced audio program-
mers and creatives, our tests expose the limitations of Android in
this regard. Modern Android versions offer little flexibility when
it comes to adjusting the overall buffering mechanism, while older
versions such as Android 7.0 and lower straight remove this possi-
bility.

Our experiments with various Android devices have helped us
understand the rationale behind these architectural constraints. For
instance, some devices like Huawei have limited audio codecs that
support fixed periods only. To overcome this, Android relies on a
multi-stage buffering mechanism that sits atop the Audio HAL and
low-level audio driver, granting applications enough time to com-
plete audio synthesis or processing even when the native period
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Table 4: Results - second LG G2 Mini (LG2) and Bela.

Env.
Buff. 1024 512 256 128 64 32 16 8 4 2

LG2 180 180 180 175 160 100 - - - -
Bela 100 105 105 80 80 80 80 75 70 25

may not be enough. Conversely, LDSP buffers are always con-
strained by the native period size of the audio device. While the
Android multi-buffering mechanism is useful for general-purpose
multimodal applications, it adds unnecessary overhead and can in-
troduce buffers whose sizes are inappropriate for responsive audio
applications, as our results suggest.

Portability is an important feature that emerges from LDSP’s
results. We could have possibly either upgraded the ROM or down-
graded the UI package to run the Android app on LG2. Yet, the
fact that LDSP seamlessly runs on all phones including this very
old one is a way more valuable result. The presence of ALSA low-
level drivers is the only strict requisite for LDSP to be supported
on a phone. ALSA started being included in the Android kernel
since Android 2.3 and it is now the most widely used audio driver
across all brands and models of phones. This means that phones
released as early as 2010 are very likely to support LDSP and run
the same that code we tested on our 2018 Xiaomi. While harder
to find and more modest in terms of hardware as well as software
capabilities, such old phones can still be spotted in flee markets,
garages and even in secluded drawers within our very homes. We
believe they can be instrumental to unleashing creativity in spite of
and because of their limitations [23], and we are looking forward
to testing one.

Compared to standard Android development, LDSP offers a
streamlined solution that eliminates the need for developers to learn
and use different packages and frameworks based on the phone’s
age and setup. Instead, LDSP is based on standard C++, making
it a one-size-fits-all solution that also requires less hardware and
software for development. Whereas Android Studio is typically
the only option for deploying an application on a phone, LDSP is
development environment-agnostic and allows for the use of leaner
editors, resulting in faster and less memory/power-intensive com-
pilation.

Additionally, the comparison with Bela showcases how LDSP
offers a low entry fee for creatives. Bela can leverage block-based
processing on the onboard NEON vector floating point unit to
reach 700 oscillators [23]. When combining C++ and Assem-
bly, these results hold for buffers as small as 16 samples. While
similar optimization techniques can be carried out on phones via
LDSP14, a person who wants to repurpose old technologies may
not be familiar with the hardware specifics of a discarded phone,
nor may they want to delve into low-level optimization audio prac-
tices. Nonetheless, our entry-level code yielded better results than
Bela’s even on budget/old phones, suggesting a larger audio appli-
cation domain with minimal coding effort.

6. CONCLUSIONS

In this paper, we discussed how LDSP can be used to harness the
potential of old Android phones and foster the design of creative
audio applications. We ran an experiment using six different An-

14All the tested devices come equipped with the NEON.

droid phones to test the performance of an oscillator bank appli-
cation built using the LDSP C++ framework. Results suggest that
LDSP outperforms the standard Android app in terms of the num-
ber of oscillators that can be run on all tested devices and buffer
sizes. This is likely due to LDSP’s optimized audio stack struc-
ture, which better utilizes the computational power of the devices
for audio synthesis.

While often referring to the impact that the size of the buffer
has on the responsiveness of the application, more tests are neces-
sary to measure the actual latency of audio applications designed
with LDSP and compare them with results obtained with equiva-
lent Android applications.

In our judgement, the central emphasis placed by LDSP as a
project on upcycling and reclaiming conventional technology in-
vites innovative approaches to engage with it, both practically and
politically. This engagement entails acknowledging our agency
and responsibility towards the technologies we have created, used
and discarded. By reusing and exploring new ways to interact with
off-the-shelf devices, we shift our focus towards sustaining them
in a manner that nurtures creativity rather than solely pursuing the
allure of the latest technology [28].

The utilization of ready-made technologies also holds the po-
tential for maintenance through community-driven practices and
shared knowledge [29]. Given the abundance of Android tech-
nology expertise available in varying degrees, the likelihood of
continued support is somewhat assured. Therefore, it becomes
paramount for us to collaborate with musicians and developers, as
such partnerships would expand the project’s capabilities to cater
to diverse needs, interests, and skill sets while fostering a sense of
community across different spheres of action.

LDSP was designed with accessibility in mind, as evident th-
rough its collection of examples and libraries, as well as its overall
simplicity. However, it does require basic C++ or equivalent cod-
ing skills to fully explore its potential. In this study, we highlighted
the advantages of working with low-level C++ for achieving opti-
mal audio performance. However, it is important to note that this
comes at the cost of a less accessible environment compared to
other Android audio frameworks. To address this issue, we have
recently introduced support for Pure Data patches by integrating
libpd directly into the core low-level audio engine of LDSP. This
enhancement offers users the flexibility to build their LDSP appli-
cations using Pure Data exclusively or to combine Pure Data with
C++, allowing for a tailored balance between code complexity and
performance. In fact, it is worth mentioning that the use of libpd
introduces some computational overhead that may impact the per-
formance of audio applications (this is seen in Bela too). We plan
to conduct further tests to quantify this impact within the LDSP
environment.
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