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ABSTRACT

This “Late Breaking Results” paper presents an ongoing project
aiming at providing an accessible and easy-to-use platform for
high sampling rate real-time audio Digital Signal Processing
(DSP). The current version can operate in the megahertz range and
we aim to achieve sampling rates as high as 20 MHz in the near fu-
ture. It relies on the Syfala compiler which can be used to program
Field Programmable Gate Array (FPGA) platforms at a high level
using the FAUST programming language. In our system, the audio
DAC is directly implemented on the FPGA chip, providing excep-
tional performances in terms of audio latency as well. After giving
an overview of the state of the art of this field, we describe the way
this tool works and we present ongoing and future developments.

1. INTRODUCTION

Sampling rate selection in the context of real-time audio Digital
Signal Processing (DSP) is impacted by a wide range of factors.
Beside psychoacoustic considerations (i.e., Nyquist frequency, hu-
man hearing range, etc.), aliasing, hardware, and computational
power all play an important role. While 48 kHz is fairly standard
as it puts the Nyquist frequency (24 kHz) well above the human
hearing range, it is fairly common nowadays to see professional
audio systems running at 96, 192, 384, and even 768 (in some rare
cases) kHz, minimizing aliasing and audio latency (to the detri-
ment of computational power).

Until recently, the use of sampling rates in the megahertz range
for real-time applications was mostly reserved to researchers with
very specific needs. At this rate, real-time constraints are such that
standard processor architectures which are traditionally used for
audio DSP (i.e., CPUs, DSPs, and microcontrollers) can’t really
keep up. That’s why ASICs1 and FPGAs2 are used when such
performances are needed. On this kind of platform, the speed at
which an algorithm can be run is mostly limited by the maximum
clock tolerated by the system and the “length” of the corresponding
electronic circuit (i.e., the time it takes to go from point A to point
B in the algorithm).

In the music technology industry, FPGAs have been used for
high sampling rate applications in a few rare products. A good ex-
ample is the Novation Summit3 which is a “hybrid” analog/digital

1Application-Specific Integrated Circuit.
2Field-Programmable Gate Array.
3https://novationmusic.com/en/synths/summit – All
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synthesizer where basic digital oscillators (e.g., sine, etc.) are im-
plemented on an FPGA and computed at 24 MHz. They “market”
this as “digital approximating analog,” which is certainly appeal-
ing in the analog synth community.

Beyond simple waveform oscillators, implementing more
complex audio DSP algorithms on an FPGA is a notoriously hard
task. The use of Hardware Description Languages (HDLs) such
as Verilog or VHDL combined with fixed point arithmetic makes
the programming of this kind of platform completely out of reach
to most audio DSP programmers. While some high-level environ-
ments are available such as Simulink4 or Vivado Block Design,5

they’re almost all based on the combination of pre-“compiled”
(“synthesized”6 using FPGA terminology) objects, significantly
limiting the scope of what can be implemented.

We recently released Syfala7 [1], the first “audio DSP to FPGA
compiler” relying on the FAUST programming language8 [2]. This
open source tool allows us to fully program a series of Digilent
development boards (i.e., Zybo Z7-10/20 and Genesys) based on
Xilinx/AMD FPGAs to carry out real-time audio signal process-
ing tasks. In this context, we explored a wide range of target ap-
plications leveraging the unique performances of FPGAs for audio
DSP: ultra-low latency processing [1, 3], spatial audio [4], etc.

While FPGAs can easily keep up with very high audio sam-
pling rates (in the megahertz range, as mentioned above), the
fastest audio codec9 chips available on the market such the Analog
Devices ADAU1787 don’t go beyond 768kHz. There are two po-
tential solutions to this problem: (i) using general-purpose Analog
to Digital/Digital to Analog Converters (ADC/DAC), etc., (ii) im-
plementing audio ADC/DACs directly on the FPGA. Both meth-
ods require the use of additional circuitry to implement reconstruc-
tion filters, carry out impedance matching, etc. The main disad-
vantage of (i) is that interfacing an external chip operating in the
megahertz range with an FPGA through its GPIOs can be chal-
lenging for prototyping if the circuit is not properly shielded. On
the other hand, (ii) offers an extremely robust and reliable solution
since everything happens directly on the FPGA. If the sampling
rate is high enough, there’s no need for complex reconstruction fil-
ters and a simple RC lowpass filter consisting of a resistor and a
capacitor (providing a very slow roll-off) is sufficient for this task.

4https://www.mathworks.com/discovery/
fpga-programming.html

5https://www.xilinx.com/products/design-tools/
vivado.html

6In the context of FPGAs, the word “synthesized” is the equivalent to
“compiled” on other platforms.

7https://github.com/inria-emeraude/syfala
8https://faust.grame.fr
9Throughout this paper, “audio codec” will refer to a hardware compo-

nent implementing an audio ADC/DAC (not an audio compression algo-
rithm).
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In this “late breaking result” paper, we present the current sta-
tus of an ongoing project aiming at providing built-in audio AD-
C/DAC support as part of the Syfala tool-chain without using any
additional complex hardware. Our goal is to offer the same level
of performances as commercial audio codecs while allowing for
sampling rates in the megahertz range. This will potentially open
the way to a broad range of new developments towards improv-
ing virtual analog systems, considering audio DSP from a more
continuous standpoint, reducing aliasing and artifacts, etc.

First, we give a brief overview of the state of the art of the
field of ADC and DAC design as well as of existing works around
implementing ADCs and DACs on FPGAs. Then we demonstrate
how we implemented a second order delta-sigma (∆Σ) DAC in
our Syfala tool-chain and we present its performances. We finally
discuss the prospect and potential challenges of implementing a
higher order ∆Σ DAC as well as an ADC on an FPGA. We also
briefly talk about some possible difficulties related to running au-
dio DSP algorithms in real-time at a high sampling rate.

2. BACKGROUND

2.1. ∆Σ ADCs and DACs

∆Σ modulation [5] is by far the most commonly used technique
for implementing audio ADC and DAC nowadays [?]. Most au-
dio codec chips available on the market rely on this method. A
first order ∆Σ DAC is based on an integrator, a 1-bit DAC, and
a comparator (see Figure 1). It converts a digital signal (i.e., a
stream of samples) into a stream of pulses (bits) generated at a
high frequency. The more pulses, the higher the analog voltage
at the output of the DAC. The audio sampling rate, the clock of
the DAC, and the order of the ∆Σ modulator are interconnected
parameters which all influence the resulting Signal to Noise Ra-
tio (SNR) [6]. A higher order ∆Σ modulator allows for a lower
OverSampling Ratio (OSR) [6]. The OSR directly determines the
SNR of the system. For example, if a first order ∆Σ modulator
is used with an OSR of 32, then the SNR will be around 40 dB.
With an OSR of 32, for an audio sampling rate of 48 kHz, the
clock of the ∆Σ modulator has to be 1.536 MHz. On the other
hand, if a fifth order ∆Σ (which is the standard used for audio
codec chips) modulator is used with the same configuration, then
the SNR will increase to 124 dB. Note that there exists many dif-
ferent ∆Σ modulator topology when going beyond second order
presenting different advantages and tradeoffs in terms of numeri-
cal stability [6]. These SNR figures are independent from the bit
depth of incoming samples which can also be a source of quantiza-
tion noise. Hence, if 16 bits audio samples are provided to a fifth
order ∆Σ DAC with an OSR of 32, the resulting SNR should be
around 98 dB.

To summarize, a higher order ∆Σ modulator can help increas-
ing the audio sampling rate of the system while preserving a rea-
sonable SNR. Also, the higher the clock of the ∆Σ modulator, the
better the performances of the system in all respects.

Once the stream of pulses is generated, it must of course be
filtered (lowpass) to reconstruct the analog signal. Using a high
audio sampling rate can help decrease the complexity of the filter
needed for this task. The lower the order of the reconstruction fil-
ter, the more progressive its roll-off. Hence, the -6 dB per octave
provided by a simple first order RC filter (which can be imple-
mented with just a resistor and a capacitor) is enough if the audio
sampling rate is in the megahertz range.

∆Σ ADC work in a similar way but are usually slightly more
challenging to implement as they imply the use of a hardware com-
parator which is not necessarily built-in/directly available on FP-
GAs [7].

u(n)

-
z

z−1
1 bit DAC

v(n)

z−1

Figure 1: First order ∆Σ DAC where u(n) is the digital signal
input and v(n) is a stream of pulses.

2.2. ∆Σ ADCs and DACs on FPGAs

FPGAs are a convenient platform for implementing ∆Σ DACs
and ADCs (if the FPGA provides differentiated general purpose
inputs). Indeed, running a ∆Σ modulator at a very high speed
(more than 100 MHz) and connecting its output to a General Pur-
pose Input/Output (GPIO) is trivial. In fact, coding a first order
∆Σ DAC is often a basic exercise/example when learning FPGA
programming.10 Implementing a second order ∆Σ DAC is not
that much more complicated and examples of such projects can
be easily found on the web.11 Things get significantly more com-
plex when considering third order and beyond because of stabil-
ity issues. Hence, while constructing a third, forth, or fifth order
∆Σ DAC is fairly straightforward, formatting coefficients and pre-
venting numerical/rounding errors is potentially very challenging.
Various tools such as the Matlab delta-sigma toolbox12 can help
with that. Additionally, various papers on on this topic have been
written over the years [8, 9, 10, 11].

∆Σ ADCs face more or less the same challenges as their DAC
counterparts. As mentioned previously, implementing a ∆Σ ADC
on an FPGA is significantly simpler if the chip provides differen-
tial inputs as those can potentially be used to implement the re-
quired differentiator at the beginning of the algorithm [6]. If the
FPGA chip doesn’t provide differential inputs, then a hardware
differentiator should be used, making the design significantly more
complex and hence “defeating the purpose” of using an FPGA for
this task.

3. IMPLEMENTATION IN THE CONTEXT OF SYFALA

Syfala [1] allows us to run FAUST programs on Xilinx FPGAs-
based boards such as the Digilent Zybo Z7 or Genesys without
having to write a single line of hardware description language code
(which is normally used to program FPGAs).

The standard version of the Syfala compiler can target vari-
ous audio codec chips including the one built-in on the Digilent
FPGA Zybo (see Figure 2) and Genesys boards. We implemented
a custom first and second order ∆Σ DAC integrating to the Syfala

10https://www.fpga4fun.com/PWM_DAC_2.html
11https://github.com/hamsternz/second_order_

sigma_delta_DAC
12https://www.mathworks.com/matlabcentral/

fileexchange/19-delta-sigma-toolbox
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tool-chain and that can be used as an alternative for audio codecs.
Hence, if the -sd option is used when calling the Syfala compiler,
the audio output of the system is implemented through a second
order ∆Σ DAC. The current version is multichannel which means
that a new ∆Σ DAC is instantiated for each output of the FAUST
DSP program and associated to a GPIO on the board.

Figure 2: The Digilent Zybo Z7 FPGA board used for this project.

When the -sd option is used, the audio sampling rate of the
system is automatically switched to 5 MHz. The master clock of
the FPGA is 125 MHz yielding an OSR of 25 and hence providing
a SNR of about 70 dB. At such a high sampling rate, using a one
pole RC filter as described in §2.1 is acceptable and is enough to
minimize aliasing. Hence, each DAC GPIO must be connected to
such a filter. For a cut-off frequency of 20 kHz, a 880 Ω resistor
and a 0.01 µF capacitor can be used. A 10 µF capacitor should
also be put in series to get rid of DC. Different values for the sam-
pling rate can be specified too using the appropriate Syfala option
(--sample-rate), bearing in mind that diminishing its value
increases the SNR and vice versa.

Master Clock
(125 MHz)

Downsample Clock
(5 MHz) Audio DSP

Control DSP DDR

∆Σ DAC

GPIO

Analog LowpassAudio Out

FPGA

CPU

Figure 3: Implementation overview of the system. Clock signals
are depicted with dotted arrows.

As the ∆Σ DAC is seamlessly integrated to the Syfala tool-
chain (see Figure 3), all the other functionalities of this environ-

ment remain active/available (i.e., use of DDR for long delays,
control computations happening on the ARM processor which is
part of the board, etc.).

4. HIGH SAMPLING RATE AUDIO DSP

Running audio DSP algorithms in real-time at a high audio sam-
pling rate can present various challenges which are often related to
precision/numerical errors. This of course can greatly vary from
one algorithm to another, but obviously running more samples
through a filter or computing a wave-table oscillator index using
a phasor based on a delta increment can all be significantly im-
pacted by this. A good example of that is the default sine wave
oscillator in FAUST which is based on a wave table (represented
here by the sin function) and whose implementation takes the
following form:

phasor(freq) = (+(freq/ma.SR) ~ ma.frac);
osc(freq) = sin(phasor(freq)*2*ma.PI);

The ~ in phasor represents a recursive signal and ma.frac
yields the fractional part of a decimal number. In that case,
freq/ma.SR is not precise enough at 5 MHz to provide an accu-
rate frequency. This is just a simple example to demonstrate that
high audio sampling rate can be really enabling on one side but
can also creates many issues on the other.

5. FUTURE WORK

The ultimate goal for this project is to eventually integrate a 5th
order ∆Σ DAC as well as ADC to the Syfala tool-chain.

As mentioned in §2.2, implementing a 5th order ∆Σ DAC on
an FPGA is not trivial because of the potential instability of this
kind of algorithms due to numerical/rounding errors. This problem
is reinforced by the fact that these errors tend to get worse as the
clock of the ∆Σ modulator increases.

VHDL-based solutions do exist though [11] and we plan to ex-
ploit them to potentially reach this goal. Alternatively, we’re also
particularly interested in investigating the potential use of FAUST
for writing these algorithms and comparing their performances
with their VHDL counterparts. The FAUST version would miti-
gate numerical errors because of the use of floating points whereas
the VHDL version would probably be more efficient from a com-
putational standpoint but more prompt to rounding errors. It would
also be interesting to investigate the use of FloPoCo13 [12] (which
is a tool for generating arithmetic cores on FPGAs) in this context.

Along the same lines, we hope to be able to provide a ∆Σ
ADC in Syfala using similar approaches to that described in [7].
This should be possible on the boards supported by Syfala which
all have differential general purpose inputs. As for the DAC, it will
be interesting to compare a FAUST implementation to a VHDL
one.

6. CONCLUSIONS

The domain of high sampling rate real-time audio DSP is widely
unexplored because it has been out of reach for a very long time.
Many algorithms would benefit from running at a higher sampling
rate, mitigating artifacts and potentially opening new possibilities
such as improving virtual analog systems, considering audio DSP

13https://www.flopoco.org/
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from a more continuous standpoint, etc. The system that we pre-
sented in this paper and that we’re currently developing provides
an accessible and easy-to-use platform for this kind of applications
without making compromises in terms of performances, quality,
etc. Beyond this, it might also allows us to simplify the overall
design of Syfala by completely getting rid of audio codecs and
providing even better latency performances.

7. ACKNOWLEDGMENTS

This project has been partially funded by the French ANR (Agence
Nationale de la Recherche) through the FAST project14 (ANR-20-
CE38-0001).

8. REFERENCES

[1] Maxime Popoff, Romain Michon, Tanguy Risset, Yann Or-
larey, and Stéphane Letz, “Towards an fpga-based compila-
tion flow for ultra-low latency audio signal processing,” in
Proceedings of the 2022 Sound and Music Computing Con-
ference (SMC-22), Saint-Étienne, France, June 2022.

[2] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[3] Loïc Alexandre, Pierre Lecomte, Marie-Annick Galland, and
Maxime Popoff, “Feedback acoustic noise control with faust
on fpga : application to noise reduction in headphones,” in
Proceedings of the 2022 Sound and Music Computing Con-
ference (SMC-22), Saint-Étienne, France, June 2022.

[4] Romain Michon, Joseph Bizien, Maxime Popoff, and Tanguy
Risset, “Making frugal spatial audio systems using field-
programmable gate arrays,” in Proceedings of the 2023 New
Interfaces for Musical Expression (NIME-23), Mexico City,
Mexico, 2023 (Paper accepted to the conference and to be
published in June 2023).

[5] Francis DeJager, “Deltamodulation, a method of pcm trans-
mission using the 1-unit code,” Philips Research Reports,
vol. 7, no. 6, pp. 442–466, 1952.

[6] Richard Schreier, Gabor C Temes, et al., Understanding
delta-sigma data converters, vol. 74, IEEE press Piscataway,
NJ, 2005.

[7] PA Harsha Vardhini, “Analysis of integrator for continuous
time digital sigma delta adc on xilinx fpga,” in Proceed-
ings for the 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT). IEEE,
2016, pp. 2689–2693.

[8] AJ Magrath, IG Clark, and MB Sandler, “Design and imple-
mentation of a fpga sigma-delta power dac,” in Proceedings
for the 1997 IEEE Workshop on Signal Processing Systems.
SiPS 97 Design and Implementation formerly VLSI Signal
Processing. IEEE, 1997, pp. 511–521.

[9] Ralf Ludewig, Oliver Soffke, Peter Zipf, Manfred Glesner,
Kong Pang Pun, Kuen Hung Tsoi, Kin Hong Lee, and Philip
Leong, “Ip generation for an fpga-based audio dac sigma-
delta converter,” in Field Programmable Logic and Appli-
cation, Jürgen Becker, Marco Platzner, and Serge Vernalde,

14https://fast.grame.fr

Eds., Berlin, Heidelberg, 2004, pp. 526–535, Springer Berlin
Heidelberg.

[10] R.C.C. Cheung, K.P. Pun, S.C.L. Yuen, K.H. Tsoi, and
P.H.W. Leong, “An fpga-based re-configurable 24-bit 96khz
sigma-delta audio dac,” in Proceedings. 2003 IEEE In-
ternational Conference on Field-Programmable Technology
(FPT) (IEEE Cat. No.03EX798), 2003, pp. 110–117.

[11] Zbigniew Kulka and Marcin Lewandowski, “An fpga-based
sigma-delta audio dac,” in New Trends in Audio and Video /
Signal Processing Algorithms, Architectures, Arrangements,
and Applications SPA 2008, 2008, pp. 39–42.

[12] Florent De Dinechin and Bogdan Pasca, “Designing custom
arithmetic data paths with flopoco,” IEEE Design & Test of
Computers, vol. 28, no. 4, pp. 18–27, 2011.

DAFx.4

https://fast.grame.fr

	1  Introduction
	2  Background
	2.1   ADCs and DACs
	2.2   ADCs and DACs on FPGAs

	3  Implementation in the Context of Syfala
	4  High Sampling Rate Audio DSP
	5  Future Work
	6  Conclusions
	7  Acknowledgments
	8  References

