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ABSTRACT

In designing a frequency tracker, the goal is to follow the con-
tinual time variation of the frequency from a particular sinusoidal
component in a noisy signal with a high accuracy and a low sam-
ple delay. Although there exists a plethora of frequency track-
ers in the literature, in this paper, we focus on the particular class
of frequency trackers that are built upon an adaptive notch filter
(ANF), i.e. a constrained bi-quadratic infinite impulse response
filter, where only a single parameter needs to be estimated. As
opposed to using the conventional least-mean-square (LMS) al-
gorithm, we present an alternative approach for the estimation of
this parameter, which ultimately corresponds to the frequency to
be tracked. Specifically, we reformulate the ANF in terms of a
state-space model, where the state contains the unknown param-
eter and can be subsequently updated using a Kalman filter. We
also demonstrate that such an approach is equivalent to doing a
normalized LMS filter update, where the regularization parameter
can be expressed as the ratio of the variance of the measurement
noise to the variance of the prediction error. Through an evaluation
with both simulated and realistic data, it is shown that in compari-
son to the LMS-updated frequency tracker, the proposed Kalman-
updated alternative, results in a more accurate performance, with
a faster convergence rate, while maintaining a low computational
complexity and the ability to be updated on a sample-by-sample
basis.

1. INTRODUCTION

Frequency estimation is a well-known problem in signal process-
ing with a long history [1, 2] and continues to be relevant for a
number of audio-related applications1 including acoustic feedback
detection [3, 4], automatic music transcription [5], tuning of mu-
sical instruments, and audio effects such as pitch-shifting just to
name a few. Specifically, it refers to the problem of estimating the
frequency of a sinusoidal component from a set of noisy observa-
tions. In cases where the periodic component of the noisy obser-
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vations consist of harmonically-related sinusoidal components and
it is the lowest frequency component that is being estimated, the
problem is often referred to as fundamental frequency (f0) estima-
tion or pitch estimation [1, 2].

In this paper we are concerned with following the continual
time variation of the frequency pertaining to a particular sinusoidal
component of an audio signal, and hence we refer to the type of
frequency estimation as frequency tracking. The main considera-
tion for a frequency tracker is that it needs to have a low sample
delay, with the ideal case being zero delay, and can be updated on
a sample-by-sample basis. More concretely, the problem of fre-
quency tracking can be summarized as finding an updated estimate
of the frequency given a new set of samples or simply just one (in
the real-time scenario) and a prior estimate of the frequency [6].
Several approaches for this have been proposed in the literature
[6, 7, 8, 9], where the problem is referred to as pitch tracking.

The frequency tracker investigated in this work is one based
on adapting the coefficients of a constrained bi-quadratic (biquad)
infinite impulse response (IIR) filter [3, 4, 10, 11, 12], which func-
tions as an adaptive notch filter (ANF). In a nutshell, the centre
frequency of the ANF is continually updated so as to cancel a high-
energy sinusoidal component in an attempt to minimize the mean-
square of the output signal power. One main advantage of using
the constrained biquad filter is that only one parameter needs to be
adapted in order to obtain a frequency estimate. Furthermore, by
expressing the filter in its direct form II, this single parameter can
be updated very efficiently [12] such as with a least-mean-square
(LMS) algorithm [3, 4], resulting in a frequency tracker that can
be updated on a sample by sample basis. Moreover, the compu-
tational complexity is very low, making the algorithm suitable for
real-time applications.

Our contribution in this paper is a subtle but powerful exten-
sion of the aforementioned approach, whereby we reformulate the
ANF in terms of a state-space model, with the state containing
the unknown parameter to be estimated. In such a formulation,
a Kalman filter [13] can then be used for updating the state and
hence for frequency estimation and tracking. We subsequently re-
fer to this frequency tracker2 as a Kalman ANF (KalmANF). We
will demonstrate that the KalmANF is equivalent to a normalized
LMS (NLMS) filter update [14, 15], where the regularization pa-
rameter can be expressed as the ratio of the variance of the mea-
surement noise to the variance of the prediction error [14], both of
which can be tuned accordingly. This results in a more accurate
frequency tracker as compared to one that uses an ANF updated
with an LMS algorithm, while maintaining a low computational

2As a consequence of using the ANF approach, we stick to the term of
frequency tracking as opposed to pitch estimation since an estimation of
the frequency will not necessarily correspond to a fundamental frequency,
but to the frequency of the sinusoidal component contributing to most of
the energy in the audio signal.
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complexity and the ability to be updated on a sample-by-sample
basis.

In relation to prior work, a state-space approach of the ANF
has also been considered in [16], however an alternative formula-
tion was used, and a relation with the normalized LMS was not
established. In [17], an extended Kalman filter was used to up-
date a single parameter adaptive comb filter (i.e. multiple ANFs),
whereas we consider a single ANF in this paper, which allows us
to have a linear state-space model. Several other Kalman filtering-
based approaches to frequency tracking also exist [18, 19, 20, 21,
22], but they are not built upon an ANF.

The remainder of this paper is organized as follows. In Section
2, we review the ANF, i.e. the constrained biquad IIR filter, and
how the LMS algorithm is used to update the filter coefficients.
In section 3, we reformulate the problem in terms of a state-space
model where the state contains the relevant filter coefficients to be
updated. By applying a Kalman filter, it is then shown how the
KalmANF is equivalent to using an NLMS algorithm with a well-
defined time-varying regularization parameter. In section 4, we
evaluate the KalmANF in comparison to its LMS-based counter-
part on both simulated and realistic data, where it is demonstrated
that the KalmANF outperforms the ANF frequency tracker that
uses an LMS algorithm in terms of its accuracy and convergence
speed.

2. LEAST-MEAN-SQUARE ADAPTIVE NOTCH FILTER

Let us consider the following signal model in the discrete-time
domain, with n being the discrete-time index:

y(n) = Ao(n) sin [nωo(n) + ϕo(n)] + g(n) (1)

where y(n) is a measured signal consisting of a sinusoidal com-
ponent, Ao(n) sin [nωo(n) + ϕo(n)], with time-varying param-
eters: amplitude Ao(n), phase ϕo(n), digital angular frequency
ωo(n) = 2πfo(n)/fs, where fo(n) is the frequency (Hz), and fs
is the sampling frequency (Hz). This model is very broad in the
sense that the remaining component, g(n) can be representative of
a number of signals such as a broadband desired signal, additional
harmonics, or simply noise depending on the application. Given
the measurement, y(n), our goal is to track the time-variation of
fo(n). The approach that we follow is to design an ANF that can
be applied to y(n) to effectively suppress the sinusoidal compo-
nent and by consequence will also result in a frequency tracker.

A well-known technique of designing an ANF is to adaptively
compute the parameters of a constrained IIR filter [10, 11, 12],
which can be done quite efficiently using an LMS algorithm [3].
In this paper, since our signal model only consists of one sinu-
soidal component, we will simply consider a constrained biquad
IIR filter, i.e. with two-zeros and two-poles. Firstly, let us recall
the biquad filter in the z-domain without any constraints:

H(z−1) =
bo + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(2)

which for bo = 1, can be expressed in polar coordinates (in the
complex plane) in terms of a zero radius, ζ, and zero angle ωz ,
and a pole radius, ρ, and pole angle, ωp as follows

H(z−1) =
(1− ζejωzz−1)(1− ζe−jωzz−1)

(1− ρejωpz−1)(1− ρe−jωpz−1)
(3)
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Figure 1: (Left) Pole-zero plot of a constrained biquad IIR filter
configured as a notch filter. The poles and zeros lie on the same
radial line defined by ω = π/4, where the zeros are placed on
the unit circle and the poles at a distance ρ = 0.8. (Right) The
corresponding magnitude and phase response. A notch is clearly
visible at ω = π/4 with a very narrow bandwidth due to ρ = 0.8.

where b1 = −(ζejωz + ζe−jωz ) = −2ζ cos(ωz), b2 = ζ2, a1 =
−2ρ cos(ωp), and a2 = ρ2. In order to convert this filter into
a more suitable form where its coefficients can be adapted, two
constraints need to be subsequently introduced.

The first of these constraints as proposed in [10] is to make the
poles and zeros lie on the same radial line, defined by angle ω in
the complex plane (see Fig. 1), i.e. ωz = ωp = ω. These poles
and zeros must also lie completely within the unit circle, where the
zeros would be in between the poles and the unit circle in order to
define a notch filter. The intuition behind this is that placing a zero
near to the unit circle would attenuate all the frequency compo-
nents in the neighbourhood of the angular frequency, ω, defining
that particular radial line. Placing a pole on the same radial line
then creates a resonance at ω, with the bandwidth of the notch fil-
ter becoming narrower as ρ → ζ.

The second constraint on the biquad filter is to let the zeros all
lie on the unit circle [11] so that ζ = 1. In this case the frequency
component at ω would be completely attenuated and the pole at the
same radial line would once again create a resonance at ω, with the
bandwidth of the notch filter becoming narrower as ρ → 1 .

Imposing these constraints on the biquad filter of (3), results
in the constrained biquad filter:

H(z−1) =
(1− ejωz−1)(1− e−jωz−1)

(1− ρejωz−1)(1− ρe−jωz−1)

=
1− 2 cos(ω)z−1 + z−2

1− 2ρ cos(ω)z−1 + ρ2z−2

=
1− az−1 + z−2

1− ρaz−1 + ρ2z−2
(4)

where a ≜ 2 cos(ω) = 2 cos(2πf/fs) is the only parameter we
need to estimate (since it appears in both the numerator and de-
nominator) and is directly related to the centre frequency, f , of the
notch filter. Consequently, by adapting the a coefficient, the centre
frequency of the notch filter also changes resulting in an ANF. The
pole-zero plot and corresponding magnitude and phase response
of an example constrained biquad filter is shown in Fig. 1.

In order to estimate the frequency, fo, of the sinusoid in (1), we
need to find the parameter, a, such that when the ANF is applied
to the input (or measured) signal, y(n), the output signal power of

DAFx.2



Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Figure 2: Direct form II of the constrained biquad filter.

the filter is minimal in the mean-squared sense. This would imply
that the centre frequency of the ANF would have been updated to
be fo, thereby cancelling the high-energy sinusoid, resulting in a
minimum mean-square output signal power.

An efficient method to estimate a can be derived by consider-
ing the direct form II of the constrained biquad filter [12] as illus-
trated in Fig. 2. The implementation equations are given as

s(n) = y(n) + ρa(n− 1)s(n− 1)− ρ2s(n− 2) (5)
e(n) = s(n)− a(n− 1)s(n− 1) + s(n− 2) (6)

where y(n) is the input to the constrained biquad filter (the mea-
sured signal from (1)), e(n) is the output, and s(n) is introduced
as an auxiliary variable. In this form, the biquad filter is explicitly
split into two sections. The first is a two-pole resonance IIR filter
illustrated on the left side of Fig. 2 corresponding to the denom-
inator of (4) and whose difference equation is given by (5). The
second section is a finite impulse response (FIR) two-zero notch
filter illustrated on the right side of Fig. 2, corresponding to the
numerator of (4) and whose difference equation is given by (6).

We can now proceed to estimate a by minimizing the mean-
squared output signal power of the filter, i.e. minimizing the mean-
square of e(n). In [12], it was proposed to only update the FIR
section of the biquad filter, i.e. estimate the coefficient a in the
FIR section, and since this a occurs in both the numerator and
denominator in (4), this estimate can be simply copied to the IIR
section of the biquad filter. An LMS algorithm can then be used to
estimate a by making use of (6) as follows [3, 4]

â(n) = â(n− 1) + µ

(
− ∂e2(n)

∂a(n− 1)

)
= â(n− 1) + 2µs(n− 1)e(n) (7)

where µ is the step size parameter. As opposed to estimating a,
we could alternatively attempt to directly estimate ωo = 2πfo,
however this would result in a nonlinear update equation that will
not have the properties of an LMS algorithm, and hence we stick
to estimating a from which we can then obtain an estimate for fo.

The algorithm for computing frequency estimates using such
an LMS update is given in Algorithm 1 and we subsequently refer
to the resulting frequency tracker as LMS-ANF. In Algorithm 1,
N is the length of the signal, y(n), and due to the s(n − 2) term,
we simply start the for loop from n = 2 and initialize s(0) and
â(1), s(1). Since arccos(â(n)/2) does not exist for |â(n)| > 2,
we have additionally imposed a constraint on the values of â(n)
such that â(n) is re-initialized to zero when |â(n)| > 2, i.e. we
restart the algorithm3 with an initial frequency estimate at half of

3This is certainly not the only strategy to deal with out of range values

the Nyquist frequency. By defining the computational complexity
as the number of multiplications per recursion, from Algorithm 1,
we can deduce that the LMS-ANF has a computational complexity
of 11 multiplications per recursion. It should also be noted that in
addition to obtaining a sample-by-sample update of the estimated
frequency, we also obtain a sample-by-sample update of the out-
put (i.e. adaptive notch-filtered input signal), e(n), however we
are only concerned with the former as it pertains to the frequency
tracker.

As previously mentioned, by thinking of the biquad filter as
consisting of a two-pole IIR resonance filter, followed by a two-
zero FIR notch filter as depicted in Fig. 2, we can give the follow-
ing interpretation to the algorithm. The two-pole IIR resonance
filter amplifies the frequency component in y(n) corresponding to
the initial value of â(n−1) according to (5) so that the signal s(n)
would have a fairly dominant component4 at f̂o(n− 1). The two-
zero FIR notch filter then attempts to reduce the error, e(n) by can-
celling this same frequency component that was amplified in s(n)
as evident by (6). If the true sinusoidal component in y(n) was not
amplified in s(n), then the two-zero FIR notch filter would yield a
mean-square of e(n) that remains sufficiently large. Consequently
a step size according to (7) is taken to update â, which corresponds
to “trying” another frequency to be amplified and notched. This
procedure repeats until the frequency corresponding to the true si-
nusoidal component in y(n) is found, since applying a notch to
this component will minimize the mean-square of e(n).

Algorithm 1 LMS Update of the ANF (LMS-ANF)

Initialize â(1), s(0), s(1) = 0
Set µ, ρ

1: for n = 2 to N − 1 do
2: s(n) = y(n) + ρâ(n− 1)s(n− 1)− ρ2s(n− 2)
3: e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2)
4: â(n) = â(n− 1) + 2µs(n− 1)e(n)
5: if |â(n)| > 2 then
6: â(n) = 0
7: end if
8: f̂o(n) = (fs/2π) arccos(â(n)/2)
9: end for

3. KALMAN-BASED ADAPTIVE NOTCH FILTER
(KALMANF)

In this section, we derive an alternative algorithm for the estima-
tion of a in (4) using a Kalman filter. We will refer to this algorithm
as KalmANF and demonstrate that it is an example within the fam-
ily of normalized LMS algorithms that are based on the Kalman
filter [14]. Let us firstly recall the vector form of the state-space
model [23, 24]:

x(n) = Cx(n− 1) +w(n) (8)
z(n) = Hx(n) + v(n) (9)

where x(n) ∈ RL is the state vector at time n, C ∈ RL×L is
the state-transition matrix, w(n) ∈ RL is the process noise vector,

for â(n), but an investigation into this aspect of the ANF is out of the scope
of this work.

4This of course depends on the value of ρ chosen as well as the signal-
to-noise ratio of y(n).
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which is modelled as a zero-mean, Gaussian process with covari-
ance matrix Q ∈ RL×L, z(n) ∈ RM is the measurement vector,
H ∈ RM×L is the measurement matrix, and v(n) ∈ RM is the
measurement noise vector, also modelled as a zero-mean, Gaus-
sian process but with covariance matrix R ∈ RM×M .

For dynamical systems which can be described in the state-
space form of (8) and (9), the state-vector at time n can be esti-
mated using a Kalman filter. The Kalman filter consists of two
steps: (i) a prediction (or update) stage and, (ii) an estimation (or
measurement) stage, which are performed in a recursive manner,
and are given by the following equations [23, 24]

x̂(n|n− 1) = Cx̂(n− 1) (10)

P̂(n|n− 1) = CP̂(n− 1)CT +Q (11)

K(n) = P̂(n|n− 1)HT
(
HP̂(n|n− 1)HT +R

)−1

(12)

v(n) = z(n)−Hx̂(n|n− 1) (13)
x̂(n) = x̂(n|n− 1) +K(n)v(n) (14)

P̂(n) = [I−K(n)H] P̂(n|n− 1) (15)

where K(n) is the Kalman gain, the notation x̂(n|n− 1) denotes
a prediction of x(n) based on measurement samples up to time
n − 1, and the prediction error is defined as x(n) − x̂(n|n − 1)
with a covariance matrix, P(n), whose estimate is denoted as
P̂(n). The first two equations, (10) and (11), are the prediction
equations, which update the state and the covariance matrix of the
prediction error from measurement samples up to time n− 1. The
subsequent equations are the estimation equations. v(n) in (13)
is also referred to as the innovation signal, which is the error be-
tween the new measurement at time n and the prediction based
on measurement samples up to time n − 1, and is used to update
the state-vector estimate at time n in (14) along with the Kalman
gain, K(n), computed in (12). The prediction error covariance
matrix at time n is finally updated in (15), and the entire sequence
of equations is repeated for the next time index.

By following the strategy of estimating a in the FIR section of
the constrained biquad filter from Fig. 2 and copying the estimate
to the IIR section, we can use (5) and (6) to define a state-space
model corresponding to the form of (8) and (9) as follows:[

a(n)
1

]
︸ ︷︷ ︸

x(n)

=

[
1 0
0 1

]
︸ ︷︷ ︸

C

[
a(n− 1)

1

]
︸ ︷︷ ︸

x(n−1)

+

[
w(n)
0

]
︸ ︷︷ ︸

w(n)

(16)

s(n)︸︷︷︸
z(n)

=
[
s(n− 1) −s(n− 2)

]︸ ︷︷ ︸
H(n)

[
a(n)
1

]
︸ ︷︷ ︸

x(n)

+ e(n)︸︷︷︸
v(n)

(17)

Focusing firstly on (17) and comparing with (9), it is evident that
we have defined s(n) as our measurement, which is a scalar. Al-
though we do not explicitly measure s(n), it is a function of the
input signal, y(n), and therefore we can use (5) with a(n − 1) =
â(n − 1) to obtain a value for s(n). We can also observe that
the measurement matrix, H(n), is now time-varying and depends
on two previous measurement samples. The measurement noise
vector is also simply a scalar and is the error, e(n), we want to
minimize in the ANF context.

Finally we can observe that the state vector, x(n) is a function
of a(n), which is the parameter that we want to estimate. With the

measurement equation defined, the state equation of (16) follows
directly from (8), where C is simply an identity matrix and w(n)
has one non-zero value, w(n), since it is only a(n) that needs to
be updated.

We can simply proceed to use the equations (10) - (15) to ob-
tain an estimate for a(n). However, because of the low dimension-
ality of the state-space equations defined in (16) and (17), we can
also substitute them into (10) - (15) to obtain simpler and more
intuitive expressions to understand how a(n) is being estimated.

Since C is an identity matrix, (10) is simply

x̂(n|n− 1) =

[
â(n|n− 1)

1

]
=

[
â(n− 1)

1

]
(18)

We initialize the estimate of the covariance matrix of the pre-
diction error, P̂(n), and the covariance matrix of the process noise,
Q with only one non-zero entry so that (11) reduces to

P̂(n|n− 1) =

[
p̂(n|n− 1) 0

0 0

]
=

[
p̂(n− 1) + q 0

0 0

]
(19)

where q is the variance of w(n), which is a hyperparameter of the
proposed algorithm.

Since the measurement equation of (17) is scalar, the covari-
ance of the measurement noise boils down to the variance of e(n),
which we denote as r, another hyperparameter. Using the time-
varying measurement matrix, H(n) from (17) and P̂(n|n − 1)
from (19), the Kalman gain follows from (12) as

K(n) =
s(n− 1)

s2(n− 1) + r
p̂(n|n−1)

[
1
0

]
(20)

From (14) we then obtain the update equation for the state
vector. Since the second element in the state vector is always 1
and the Kalman gain is zero for this entry, we will in fact just have
a scalar update equation as follows:

â(n) = â(n− 1) +
s(n− 1)

s2(n− 1) + r
p̂(n|n−1)

e(n) (21)

where using (13), e(n) is given by

e(n) = s(n)− s(n− 1)â(n− 1) + s(n− 2) (22)

which is identical to (6) but with a(n− 1) = â(n− 1).
Finally from (15), the update of the first and only non-zero

element of the covariance matrix of the prediction error is

p̂(n) =

(
1− s2(n− 1)

s2(n− 1) + r
p̂(n|n−1)

)
p̂(n|n− 1) (23)

It can now be seen that (21) is indeed in the form of a normal-
ized LMS (NLMS) filter update [14, 15], with a time-varying step
size of 1/

[
s2(n− 1) + r/p̂(n|n− 1)

]
, where the term s2(n−1)

provides the normalization and r/p̂(n|n−1) acts as a time-varying
regularization parameter. As opposed to having to choose this reg-
ularization parameter in a heuristic manner [25], an optimal value
is now defined in the Kalman filter context as the ratio of the
variance of the measurement noise to the variance of the predic-
tion error obtained from measurements samples up to time n − 1
[14]. We also note that a similar, yet time-invariant expression for
the NLMS parameter was obtained in a Bayseian framework in
[26, 27].
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A summary of the KalmANF frequency tracker is given in Al-
gorithm 2. As with the LMS-ANF, due to the s(n − 2) term, we
simply start the for loop from n = 2 and initialize s(0), â(1), s(1),
and p̂(1). The constraints are also imposed on â(n) to ensure
arccos(â(n)/2) exists. We can also deduce that the KalmANF
has a computational complexity of 14 multiplications per recur-
sion (in line 7, only two multiplications are counted since k(n)
would have been computed in line 4), which is the same order of
magnitude as the LMS-ANF.

Algorithm 2 Kalman-based/NLMS update of the ANF (KalmANF)

Initialize s(0), s(1), â(1), p̂(1) = 0
Set r, q, ρ

1: for n = 2 to N − 1 do
2: p̂(n|n− 1) = p̂(n− 1) + q
3: s(n) = y(n) + ρâ(n− 1)s(n− 1)− ρ2s(n− 2)

4: k(n) = s(n−1)

s2(n−1)+ r
p̂(n|n−1)

5: e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2)
6: â(n) = â(n− 1) + k(n)e(n)

7: p̂(n) =

(
1− s2(n−1)

s2(n−1)+ r
p̂(n|n−1)

)
p̂(n|n− 1)

8: if |â(n)| > 2 then
9: â(n) = 0

10: end if
11: f̂o(n) = (fs/2π) arccos(â(n)/2)
12: end for

4. EVALUATION

We evaluate the performance of the KalmANF in relation to the
LMS-ANF using both simulated and realistic data. We firstly use
simulated data so that we can compare frequency estimates to a
ground truth, and consequently make observations on the general
performance of the KalmANF in relation to the LMS-ANF. We
then apply the algorithms to realistic acoustic data and compare
how well a dominant frequency component is tracked. For both the
LMS-ANF and the KalmANF, it was always the case that −2 ≤
â(n) ≤ 2 so that the constraint of â(n) = 0 when |â(n)| > 2 was
never executed. We do not consider an evaluation of the KalmANF
against other types of pitch/frequency trackers that are not based
upon the ANF as this is beyond the scope of this work. The code
used to generate all of the results that follow is available at [28].

4.1. Simulated Data

4.1.1. Instantaneous change in frequency

In this first simulation, we observe the performance of the KalmANF
and LMS-ANF for the situation where there is an instantaneous
change in frequency of the sinusoidal component of the input sig-
nal, so as to initially gauge how well the algorithms are suited for
rapidly changing sinusoidal components. We synthesized an input
signal of duration 4 s consisting of a sinusoid embedded in white
Gaussian noise at a sampling frequency of 8 kHz and with a signal
to noise ratio of 2 dB. For the first 2 s, the frequency of the sinu-
soid was 1500 Hz, after which the frequency was instantaneously
changed to 500 Hz for the remainder of the signal. The ampli-
tude of the sinusoid was 0.5, and its initial phase was set to zero.
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Figure 3: Averaged Norm-Mis from the LMS-ANF and KalmANF
across 100 different signal realizations consisting of a sinusoid
whose frequency instantaneously changes in frequency at 2 s and
white Gaussian noise at an SNR of 2 dB. (a) Using an ANF with
ρ = 0.95, (b) Using an ANF with ρ = 0.7. In both cases, µ =
1 · 10−3 for the LMS-ANF and q = 8 · 10−5, and r = 10 for the
KalmANF.

Therefore, at any point in time, this signal corresponded to the sig-
nal model of (1), where Ao(n) = 0.5, ϕo(n) = 0, and fo(n)
varied according to the aforementioned frequency of the sinusoid.

We applied both the LMS-ANF and KalmANF algorithms to
this input signal to estimate the frequency, f̂(n), of the sinusoid
over time. In order to quantify the performance of both algorithms,
we computed the normalized misalignment (error) between the es-
timated frequency and the true frequency as follows:

Norm-Mis(n) = 20 log10
|fo(n)− f̂o(n)|

fo(n)
(24)

We repeated this procedure for 100 different realizations of
white Gaussian noise and averaged the normalized misalignment
across the different realizations. Fig. 3 shows this averaged Norm-
Mis for two values of ρ. In Fig. 3 (a), ρ = 0.95 for a narrow
bandwidth notch filter, and in Fig. 3 (b), ρ = 0.7 for a wider
bandwidth notch filter. In both simulations, µ = 1 · 10−3 for the
LMS-ANF and q = 8 ·10−5, and r = 10 for the KalmANF. These
parameters were chosen such that the initial convergence rates for
ρ = 0.95 of both algorithms were approximately similar as shown
in Fig. 3 (a).

Despite the similar initial convergences rates, however, in Fig.
3 (a) we can firstly observe that the KalmANF converges to a lower
steady state Norm-Mis than the LMS-ANF both during the first 2
s and after the instantaneous change in the frequency of the input
signal. We can also observe that the KalmANF converges faster
than the LMS-ANF after this instantaneous change in frequency,
without any change to the aforementioned algorithm parameters.
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Figure 4: Mean of the steady state Norm-Mis for the LMS-ANF
and KalmANF (after averaging over 100 different realizations) as
a function of the input SNR. The signal was 4 s and consisted of a
sinusoid embedded in white Gaussian noise.

In Fig. 3 (b) where ρ = 0.7, the KalmANF now converges to
a similar steady state Norm-Mis as the LMS-ANF, but however
at a faster rate both during the first 2s and after the instantaneous
change in the frequency.

It should be noted that since we have initialized â = 0, the
initial frequency estimate is half of the Nyquist frequency (fs/4).
Hence the tracking of low frequencies at higher sampling frequen-
cies can result in longer convergence times, which would be par-
ticularly problematic for the LMS-ANF due to its fixed step size.
If there is some prior knowledge of the dominant frequency con-
tent of the signal however, the sampling frequency could be chosen
so that the initial frequency estimate is close to this dominant fre-
quency.

4.1.2. Influence of ρ and input SNR

In order to observe the influence of ρ and the input SNR on the
performance of the algorithms, in this simulation, we used a 4
s input signal consisting of a single sinusoidal component with
Ao(n) = 0.5, ϕo(n) = 0, and fo(n) = 868Hz embedded in
white Gaussian noise at fs = 8kHz. We ran the KalmANF and
the LMS-ANF for ρ = 0.6 and ρ = 0.95 for a range input
SNRs = {−5, 0, 5, 10, 15} dB. For each input SNR and ρ, we
ran the algorithms using 100 different realizations of white Gaus-
sian noise and averaged the Norm-Mis across the different real-
izations. We then computed the mean of the steady state Norm-
Mis using the last 2s of the averaged Norm-Mis across the dif-
ferent realizations. In other words, we computed the mean of a
converged region of the Norm-Mis such as that between 3 s and
4 s in Fig. 3 (a). For the LMS-ANF, µ = 1 · 10−3, and for
the KalmANF, r = 10, but q was varied such that for the differ-
ent values of ρ and all input SNRs, the convergence rates of both
the LMS-ANF and KalmANF were approximately the same. For
ρ = 0.95, q = {10, 4.5, 2.5, 1.9, 1.7} · 10−5, and for ρ = 0.6,
q = {4, 2.5, 2, 2, 2} · 10−5, where each value of q corresponds
to the particular input SNR in the range {−5, 0, 5, 10, 15} dB.
As can be seen from (21), the ratio r/p̂(n|n − 1) directly affects
the time-varying step size, and hence can be tuned to obtain a de-
sired convergence speed by varying r and/or q. In general, when

there is more uncertainty in the system model, such as in low SNR
conditions, q should be set to a larger value (as was done in this
simulation), which would consequently yield larger step sizes, al-
lowing the algorithm to accommodate for larger deviations from
the system model.

Fig. 4 shows the mean of the steady state Norm-Mis plotted
against the input SNR for the different algorithms and different
values of ρ. We can observe that for the larger value ρ = 0.95,
the KalmANF outperforms the LMS-ANF by achieving a lower
steady state Norm-Mis, and hence a more accurate frequency es-
timate, whereas for the smaller value of ρ = 0.6, both algorithms
achieve the same the steady state Norm-Mis. In general however,
for both algorithms, the results suggest that larger values of ρ are a
preferable choice as they result in a lower steady state Norm-Mis.
As expected, we can also observe that the performance of all algo-
rithms degrades as the SNR decreases, and is particularly poor for
the smaller values of ρ at very low input SNRs.

4.2. Real data

In this section, we evaluate the KalmANF using two realistic acous-
tic signals, both of which conform to the model in (1), but where
the signal represented by g(n) is different for each case.

4.2.1. Musician Wren

The first signal we consider is that of a musician wren (Cyphorhi-
nus arada), a bird in the family of brown passerine birds, known for
its melodious birdsong that spans a considerable frequency range.
Fig. 5 (a) shows the spectrogram of an excerpt of musician wren
recorded in Uiramutã, Brazil taken from www.xeno-canto.org5. As
can be observed, the birdsong is fairly sinusoidal and spans a range
of about 2 kHz, with substantial and almost instantaneous jumps in
frequency. The remaining component of the signal, g(n), in this
case is the noise of the outdoor environment, which is not fully
white or Gaussian, and in fact consists of impulsive-type sounds
presumably due to rainfall.

In Fig. 5 (b), the estimated frequency tracks at each sample
using the LMS-ANF and the KalmANF, both with ρ = 0.95 are
overlaid on the same spectrogram of 5 (a), so as to visualize how
well the frequency of the birdsong is being tracked. For the LMS-
ANF, µ = 0.3 and for the KalmANF, q = 8 · 10−3 and r = 1.
The LMS-ANF could not be tuned to match the convergence rate
of the KalmANF since larger values of µ resulted in an unstable
filter. This demonstrates that firstly, the KalmANF is able to con-
verge faster than the LMS-ANF. Secondly, it can also be observed
that the KalmANF is able to quickly adapt to the rapid changes in
frequency of the birdsong. In most cases, the KalmANF appears to
yield a more accurate frequency estimate as compared to the LMS-
ANF. In particular, around 2.3 s, it can be seen that the impulsive
background noise negatively impacts the frequency estimation of
the LMS-ANF, whereas the KalmANF estimate remains fairly sta-
ble by comparison. It is also noted that there were no sinusoidal
components to be tracked in the first 1.2s and between approxi-
mately 3.5s and 4.7s, and hence frequency estimates during these
times are meaningless. It nevertheless does provide some insight
into the convergence of the filters when there is no dominant sinu-
soidal component.

5This recording has a catalogue number XC 513058 and was recorded
by Gabriel Leite.
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Figure 5: (a) Spectrogram from an excerpt of a musician wren
(Cyphorhinus arada). (b) Overlaid frequency tracks, i.e. sample-
by-sample frequency estimates for the LMS-ANF and KalmANF
with ρ = 0.95, µ = 0.3, q = 8 · 10−3, r = 1. (c) Output signal
from the KalmANF.

Finally, to give a better impression of the performance of the
KalmANF, Fig. 5 (c) shows the spectrogram of the error signal
(output) of the KalmANF defined in (22). Upon comparison with
Fig. 5 (a), it can be seen that the sinusoidal component of the bird-
song has been significantly attenuated, implying that the frequency
of the birdsong has been accurately tracked.

4.2.2. Flute

Here we consider a short passage from a flute with both rapid and
slow frequency changes taken from freesound6. Fig. 6 (a) shows
the spectrogram of this signal (which was converted to a mono
signal and resampled to 16 kHz). There is a strong sinusoidal
component along with several harmonics. Hence the signal still
conforms to the model of (1) with a dominant sinusoidal compo-

6“Flute trill" by juskiddink (https://freesound.org/people/juskiddink/)
licensed under CCBY 4.0.
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Figure 6: (a) Spectrogram from a short flute passage. (b) Over-
laid frequency tracks for the LMS-ANF and KalmANF with rho =
0.93, µ = 5 · 10−3, q = 5 · 10−4, r = 10. (c) Output signal from
the KalmANF.

nent, but the remaining part of the signal, g(n), would now consist
of the harmonics and any background noise.

In Fig. 6 (b) the estimated frequency tracks at each sample
using the LMS-ANF and the KalmANF, both with ρ = 0.93 are
overlaid on the spectrogram of 6 (a). For the LMS-ANF, µ =
5 · 10−3 and for the KalmANF, q = 5 · 10−4 and r = 10. Just
as in the birdsong example, the LMS-ANF could not be tuned to
match the convergence rate of the KalmANF since larger values
of µ resulted in an unstable filter. Hence, the KalmANF has a
faster convergence rate than the LMS-ANF, and is able to quickly
adapt to the frequency changes with a fairly accurate frequency
track. Once the LMS-ANF has converged, it generally follows a
similar frequency track to that of the KalmANF, but with a much
larger variance around the fundamental frequency, particularly to-
ward the end of the signal. Similar to Fig. 5 (c), Fig. 6 (c) shows
the spectrogram of the error signal output of the KalmANF, where
we can observe a significant attenuation of the dominant sinusoidal
component.
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5. CONCLUSION

We have developed a fast frequency tracker that is based on up-
dating a single parameter of an adaptive notch filter (ANF) with
a Kalman filter (KalmANF). Whereas this parameter is conven-
tionally updated using a least-mean-square (LMS) algorithm, in
this work, we reformulate the ANF (which is a constrained bi-
quadratic filter) in terms of a state-space model, where the state
contains the parameter to be updated. By using a Kalman filter to
update the state, we have also demonstrated that such an update is
equivalent to a normalized LMS (NLMS) filter update where the
regularization parameter can be expressed as the ratio of the vari-
ance of the measurement noise to the variance of the prediction
error. Using both simulated and realistic data, it was shown that
in comparison to the ANF-based frequency tracker using an LMS
algorithm, the KalmANF resulted in a more accurate performance,
with a faster convergence rate, while maintaining a low computa-
tional complexity and the ability to be updated on a sample-by-
sample basis.
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tion in Adaptive Filtering,” IEEE Trans. Audio Speech Lang.
Process., vol. 19, no. 6, pp. 1734–1742, 2011.

[26] T. van Waterschoot, G. Rombouts, and M. Moonen, “MSE
optimal regularization of APA and NLMS algorithms in
room acoustic applications,” in Proc. 2006 Int. Workshop
Acoustic Echo Noise Control (IWAENC ’06), 2006.

[27] T. van Waterschoot, G. Rombouts, and M. Moonen, “Op-
timally regularized adaptive filtering algorithms for room
acoustic signal enhancement,” Signal Processing, vol. 88,
no. 3, pp. 594–611, 2008.

[28] R. Ali, “KalmANF: A frequency tracker based on a
kalman filter update of a single parameter adaptive notch fil-
ter,” GitHub repository, 2023, https://github.com/
randyaliased/KalmANF.

DAFx.8

https://github.com/randyaliased/KalmANF
https://github.com/randyaliased/KalmANF

	1  Introduction
	2  Least-Mean-Square Adaptive Notch Filter
	3  Kalman-based Adaptive Notch Filter (KalmANF)
	4  Evaluation
	4.1  Simulated Data
	4.1.1  Instantaneous change in frequency 
	4.1.2  Influence of  and input SNR

	4.2  Real data
	4.2.1  Musician Wren
	4.2.2  Flute


	5  Conclusion
	6  References

