
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

DESIGNING A LIBRARY FOR GENERATIVE AUDIO IN UNITY

Enrico Dorigatti and Stephen Pearse

School of Creative Technologies
University of Portsmouth

Portsmouth, UK
enrico.dorigatti@port.ac.uk | stephen.pearse@port.ac.uk

ABSTRACT

This paper overviews URALi, a library designed to add generative
sound synthesis capabilities to Unity. This project, in particular,
is directed towards audiovisual artists keen on working with al-
gorithmic systems in Unity but can not find native solutions for
procedural sound synthesis to pair with their visual and control
ones. After overviewing the options available in Unity concerning
audio, this paper reports on the functioning and architecture of the
library, which is an ongoing project.

1. INTRODUCTION

Unity is a game development software used in a range of scenarios
by a diverse and wide audience, from enthusiasts to researchers in
academia. Besides its capabilities concerning the development of
multi-platform games and software—Mac OS, Windows, iOS, and
Android being the most popular ones—the wide choice of options
and the flexibility it offers makes it the ideal, user-friendly environ-
ment for fast prototyping especially when it comes to VR (virtual
reality), XR (extended reality), and the production of virtual and
simulated environments. Examples of the widespread usage and
diverse contexts of application can be found in [1] and [2] (VR);
[3] (business); [4] (visualisation of biomedical data); [5] (schol-
arly research); and [6] (automotive). Furthermore, it is also used
within the artistic context. Interestingly, there is a general lack of
academic resources reporting on this usage of Unity; however, it
is possible to trace it back by visiting the websites of some artists
and reading their artistic statements or program notes—although,
as the focus is usually on the artistic outcome or message conveyed
by an artwork, the tools used in the creative process are often omit-
ted. Some examples, however, are reported below, and, addition-
ally, a dedicated page on the Unity website, reports and highlights
the specific features the software offers to artists and designers1.

Unity is composed of two main components. Firstly, a ro-
bust graphics and 3D engine allow one to quickly and easily draft
complex scenes and environments using 3D models, lights and
shadows, and materials with custom properties, as well as effects
such as particle systems, filters, and custom shaders—either writ-
ten in GLSL or created via the built-in node-based editor. Further-
more, the physics engine allows for the design of interactions be-
tween objects and, in general, the different surfaces of the environ-
ment, making it possible to create complex behaviours that either

1https://unity.com/solutions/artist-designers
Copyright: © 2023 Enrico Dorigatti et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

mimic real-world physics or introduce randomness and imaginary
behaviours.

Within Unity, these two systems work seamlessly, and, to-
gether with the possibility to control the behaviour of almost any
parameter via custom C# scripts—thus connecting graphic power
to computation—makes Unity the ideal environment when it comes
to the design of generative art systems based on algorithms, either
contemplating human interaction or not. Some examples this way
are given by the works of Danish artist Carl Emil Carlsen2, some
software developed by the composer and media artist Giovanni Al-
bini, such as Memoriale3, and Life4, a generative artwork devel-
oped by the first author and based on the Life algorithm developed
by J. H. Conway [7]. However, when it comes to audio, Unity
does not natively offer the same level of flexibility one can find in
its components dedicated to scripting and visuals, especially when
it comes to algorithmically based projects.

Nowadays, the main competitor of Unity is Unreal Engine, a
source-available proprietary software which includes Metasound5,
a low-level, sample-accurate node-based system that allows devel-
opers to create synthesis and music systems within the engine—one
of the most notable additions to the fifth version of the software.
However, despite the great potential of Unreal Engine, establish-
ing itself as the leading and reference platform in a wide range of
scenarios spacing from architecture and automotive rendering and
visualisation to game development, it is a popular opinion (e.g. on
dedicated websites6 or online communities7), especially amongst
enthusiasts and small or indie developers that it has a steeper learn-
ing curve and developing a project from scratch with it requires
much more effort—although strategies such as the Blueprints sys-
tem8 have been implemented to ease it out. Unity, on the contrary,
has established itself as the go-to platform for fast prototyping and
creation, especially when it comes to mobile devices. In this per-
spective, the project presented in this paper could be seen as a rudi-
mental version of Metasound, an attempt to fill the gap concerning
procedural audio synthesis in Unity highlighted when developing
Life. The goal of URALi is thus to offer user-friendly generative
audio capabilities directly from within Unity.

2https://cec.dk/
3https://play.google.com/store/apps/details?id=com.albinigiovanni.memoriale
4https://www.enricodorigatti.com/wp-content/uploads/2022/01/Life.mp4
5https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-

engine/
6https://gamedevacademy.org/unity-vs-unreal/
7https://www.quora.com/Is-Unity-easier-than-Unreal
8https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/Blueprints/GettingStarted/

DAFx.1

https://www.port.ac.uk/about-us/structure-and-governance/organisational-structure/our-academic-structure/faculty-of-creative-and-cultural-industries/school-of-creative-technologies
mailto:enrico.dorigatti@port.ac.uk
mailto:stephen.pearse@port.ac.uk
https://unity.com/solutions/artist-designers
http://creativecommons.org/licenses/by/4.0/
https://cec.dk/
https://play.google.com/store/apps/details?id=com.albinigiovanni.memoriale
https://www.enricodorigatti.com/wp-content/uploads/2022/01/Life.mp4
https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/metasounds-in-unreal-engine/
https://gamedevacademy.org/unity-vs-unreal/
https://www.quora.com/Is-Unity-easier-than-Unreal
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

2. AUDIO IN UNITY

When it comes to generative audio, Unity does not natively of-
fer solutions matching its possibilities in terms of graphics and
physics. However, besides the stock audio filters providing com-
mon effects such as delay, echo, equalisation, and 3D spatialisa-
tion, different approaches can be followed to deal with sound when
designing an application. Such approaches imply choosing differ-
ent objects and workflows and are highly dependent on the type of
project one is developing.

2.1. Audio Clips

The main way to deal with audio is based on the usage of pre-made
clips loaded as assets of the application in development and which
can be played when necessary—for example, when an action is
performed in the case of a game or a button is pressed in the case of
a user interface. Some methods of the AudioClip9 object allow the
programmer to retrieve information from the audio file—such as
frequency, number of channels, and duration—and perform fairly
advanced operations, such as setting the sample data that the clip
contains. It is clear, however, that filling a clip with procedurally
generated audio data is not a trivial operation and, on average, this
method will mostly come in handy for shaping the amplitude of
the original data, as shown in the example provided along with the
documentation of the method10.

Therefore, whilst audio clips are necessary in the average sce-
nario—for example in the case of a game, where a finite set of de-
fined actions and thus audio events is repeated over and over and
possibly manipulated through the stock filters based on the prop-
erties of the action itself such as the composition of the ground
for footstep—they are not the ideal solution in the case of gener-
ative and algorithmic systems, when the properties of the system
itself ‘evolves’ unpredictably, based on the state of an algorithm.
The most common scenario involving the usage of clips sees a
scene prepared with an audio listener component—the ‘ears’ of
the user—and different audio clips ready to be triggered when a
condition occurs and possibly manipulated and filtered by the spa-
tial properties of the space in which the scene takes place, as well
as the distance of the player from the spot where the action hap-
pens. Employing AudioClip objects can be seen as the standard
and most common way of dealing with audio in Unity and fits the
vast majority of use cases—although it offers a limited amount of
options and freedom.

2.2. Middleware

Another possible way to deal with audio in Unity is to employ au-
dio middleware such as the popular Wwise11 or FMOD12. Those
tools, designed and developed with the video game industry in
mind are meant to offer flexibility in this specific context, allowing
studios to separate the development of the audio engine from the
development of the game engine, keeping them, however, linked
and eventually integrating them together. The functioning of mid-
dleware is mainly based on the audio clips a sound designer im-
ports, which can however be triggered and manipulated in complex
ways based on the calls and parameters the middleware receives

9https://docs.unity3d.com/ScriptReference/AudioClip.html
10https://docs.unity3d.com/ScriptReference/AudioClip.SetData.html
11https://www.fmod.com/unity
12https://www.fmod.com/unity

from the game engine—an approach granting a high amount of
freedom and flexibility.

The drawback of this approach to audio in Unity is that soft-
ware such as Wwise and FMOD can be complex to master and
not everybody, especially in the case of one-man-teams, is likely
to learn them from scratch—on the contrary, in medium to big-
sized game studios, there are professionals whose job is just to
integrate the sounds provided by the sound designers, building all
the pipeline and system necessary to make them work smoothly in
accordance to what happens in the game engine, thus providing a
smooth interaction between the two systems.

2.3. Third-party software

Furthermore, another and more experimental way to deal with au-
dio in Unity contemplates the connection of third-party software
providing specific environments, tools, and abstractions for sound
and music—the most popular ones being SuperCollider, Pure Data,
ChucK, and Max/MSP—through protocols such as the popular
OSC [8]. These software are well known in the experimental mu-
sic and sound design contexts for providing sandboxes in which it
is possible to create algorithms for sound synthesis and manipula-
tion and algorithmic music composition.

Offering probably the highest amount of flexibility, however,
similar to what happens with middleware, they are different sys-
tems and languages from Unity, which means that, once again,
one has to learn how to use them from scratch. On top of that,
unlike Wwise or FMOD, they are not designed to natively inte-
grate with Unity, as they are primarily conceived as standalone
software. Thus, this means that one has to employ tools acting
as bridges to port their functionalities within the software devel-
oped in Unity, which in turn leads to compatibility issues and the
impossibility of using all the functions, classes, and objects avail-
able—especially when it comes to export a project for platforms
such as Android. Projects like Chunity [9] have been developed to
offer a fully-functioning connection between Unity and the ChucK
audio programming language [10], allowing one to fully integrate
Chuck code within Unity projects. However, this solution does
not solve the issues of the different languages, which still forces
an artist or developer to learn a different and specific one.

2.4. OnAudioFilterRead

There is one last option to deal with audio in Unity natively by
taking advance of the possibility offered by implementing a cus-
tom OnAudioFilterRead13 function. According to the documenta-
tion, it fits the audio DSP chain as a custom filter—a filter is each
effect within the chain, such as an echo effect or a low-pass fil-
ter—manipulating the data flowing from the preceding one. How-
ever, if OnAudioFilterRead is the first or sole filter in the chain,
it can be used to procedurally generate the audio data. The pur-
pose of OnAudioFilterRead is, to summarise, to provide an ’access
window’ on the audio data passing through. Beyond that, it is the
programmer’s choice to decide where to place it and, therefore,
whether to use it to generate the data or only access and manip-
ulate the existing ones—as an example, multiplying them by 0.5
will approximately halve the level output level.

Similar to what has been previously said about the AudioClip
object, the challenge resides in that generating audio procedurally
can be challenging. However, the difference lies in the way the two

13https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html

DAFx.2

https://docs.unity3d.com/ScriptReference/AudioClip.html
https://docs.unity3d.com/ScriptReference/AudioClip.SetData.html
https://www.fmod.com/unity
https://www.fmod.com/unity
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

systems work. Whilst audio clips are especially useful when deal-
ing with fixed sounds that do not change and need to be played
only when necessary (e.g. a footstep occurring only when the
player moves a step), OnAudioFilterRead, on the contrary, gives
the possibility to create, manipulate and, in general, work on con-
stant streams of data in real-time. This, in turn, makes possible the
realisation of a flexible framework for the algorithmic generation
of the samples—that is, the procedural generation of sounds.

3. URALI

Taking advantage of the OnAudioFilterRead function, URALi is
a library designed and developed to provide an easy-to-use frame-
work for procedural audio in Unity without the need for external
software such as Wwise or FMOD nor specialised programming
languages such as SuperCollider or Pure Data and related bridging
software when the connection is not natively possible. URALi is
the acronym for Unity Real-Time Audio Library, and, as the name
suggests, it offers a collection of functions and classes meant to
work as the building blocks for audio algorithms. The function-
ing of the library recalls the fashion of the aforementioned audio
programming languages, where the programmer can use, connect-
ing them together, a set of objects and functions which eventually
will compose an algorithm for audio synthesis or manipulation.
As it happens in SuperCollider, such objects are defined by strings
instead of being represented by visual nodes, characteristics of lan-
guages such as Pure Data or Max/MSP.

The development of URALi started with different motivations,
as it originally was an exploratory attempt to investigate possible
solutions for generative audio in Unity for the artwork described in
[7]. However, as the system developed proved worthy, and, most
importantly, with potential yet to explore, it was reworked with the
goal of building a solid, flexible, and scalable framework designed
to offer easy and efficient access and utilisation of the functions
and objects of the library, avoiding the drawback of the other audio
solutions previously explored [11].

3.1. Design of the Library

The first consideration done while developing the library was that
relying on the thread running OnAudioFilterRead for the calcula-
tion of the audio samples would lead—especially in the case of
complex synthesis algorithms with many different generators, and
especially when running on older systems—to slowdowns and data
starvation. The official OnAudioFilterRead documentation indeed
states that it needs to process chunks of audio data at fixed in-
tervals to provide a smooth stream; should it not be able to do
so—for example, due to too many calculations to perform—the
data stream would break and, perceptually, this would result in
glitches. For this reason, OnAudioFilterRead runs on a separate
thread, which incidentally means that many Unity functions can
not be used. This considered, as every operation performed within
the dedicated thread would reduce the headroom for further pro-
cessing and increase the risk of occurring in data starvation, it was
decided to split the calculation of the data from their retrieval.

The solution implemented consisted of another separated thread
continuously computing new audio samples without timing or con-
straints. The results are stored in a circular buffer accessible both
by this dedicated thread and OnAudioFilterRead, and the safety
of the data concerning overwriting is guaranteed by a system of
flags which pauses the calculation of new samples if there is no

more space available for storing them. Whilst paused, through
busy waiting [12], the thread periodically checks if some buffer
space has been marked as free by the flag system and possibly re-
sumes its activity. The free space is flagged as that by OnAudioFil-
terRead, which, when necessary, fetches chunks of data from the
buffer and, by leveraging the flag system, marks the correspond-
ing slots as overwritable. Retrieved data are then sent through the
pipeline, ready to be outputted or modified by any filters natively
available in Unity, should they be stacked in the DSP chain.

User side, URALi is designed as a sandbox in which the pro-
grammer can work with all the classes and methods contained in
the library and beyond. This means that it is possible to integrate
and expand an audio chain built with the objects available from
within URALi with custom processes and logic, as well as data,
from other parts of the program—for example, to control the fre-
quency of an oscillator based on the speed of the player, which
is calculated in a separate script. URALi is indeed written in C#,
the scripting language used in Unity, and this makes it possible to
have a seamless stream of data to and from other scripts and to use
functions defined elsewhere.

Concretely, URALi needs the programmer to define a synthe-
sis function in which to build the actual synthesis chain. This func-
tion has to be passed to the class implementing the audio engine,
and this latter has to be started. Once done, the dedicated audio
thread of the library initiates its task, and audio data become avail-
able from the circular buffer as they get calculated. As a last step,
to fetch these data and have them outputted, the programmer needs
to implement a custom OnAudioFilterRead function from which to
access, through a specific call to the library, the circular buffer, to
retrieve the next chunk of audio data.

Outside the code, in the inspector, URALi, which within the
environment is represented by OnAudioFilterRead, is visualised
by the default visualisation of the latter, namely a VU meter show-
ing the output level and the processing time it takes. However,
due to the library design, this number should always stay in the
green zone—provided that no additional operations are performed
in OnAudioFilterRead—as all the calculations are done in the ded-
icated thread. As the OnAudioFilterRead representing the library
is a node of the audio chain, it is possible to stack it with all the
audio effects shipped with Unity, such as echo, delay, and filters.
The possibility to seamlessly integrate URALi within the existing
audio ecosystem of Unity makes it possible to streamline its de-
velopment, avoiding the necessity of implementing, and thus du-
plicating, audio effects already available natively.

4. CONCLUSIONS

URALi is a project forked from specific technical and artistic re-
search; thus, its advancement in terms of maintenance, optimisa-
tion, and implementation of new functions relies solely on the ef-
forts and free time of the first author. This is why, although the
project started in 2017 and was initially presented in 2019 [13],
an initial version has not been released yet, and the documenta-
tion has not been compiled. At the current time, URALi provides
access to an envelope generator, granular [14], frequency modula-
tion (FM) [15], and additive synthesisers, waveshaper, LFO (low-
frequency oscillator), lookup oscillator with built-in tables and the
possibility to load new ones, panners with different pan laws, clas-
sic waveform oscillators (sawtooth, triangular, square, sinusoidal),
and white noise generator. While implementing these nodes, the
problem of aliasing [16] was faced and subsequently addressed by

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

implementing the technique described by Välimäki et al. [17].
Other functionalities are already listed for implementation and

have been selected by also taking inspiration from the palette of
well-established software such as Max/MSP14. However, unlike
this language, it was chosen to not include any object dealing with
logic as, given the nature of URALi and the language in which
it is written, and based on what has been discussed previously, it
would be easier for a programmer to implement their custom con-
ditions and logic to fit their peculiar case rather than understanding
and adapting any generic object provided by the library. This is
diametrally different from what happens in Max/MSP, where the
possibility to use stock objects offering even the most basic logic
functions, controls, and tasks improves the readability of the code
and prevents the programmer from building large networks of con-
trol objects or even being forced to deal with scripting. In general,
however, the confrontation with other musicians and artists would
be beneficial for the development of URALi as it would help to
understand what is missing and what should be prioritised.

Currently, some demos of URALi, built for Windows-based
machines, are available and aim to demonstrate some key features
of the library: the procedural generation of audio, the seamless
integration within the Unity audio ecosystem and the broader en-
vironment, and the possibility to control real-time the parameters
of the synthesis algorithm. Each demo is a standalone application
and showcases one or more of these features. Specifically, each of
them employs a different audio generator unit (e.g. waveshaper,
noise, FM synthesizer) and the movement of the mouse on both X
and Y axes to control relevant parameters. Furthermore, some em-
ploy stock Unity audio effects (e.g. a low-pass filter, an echo). The
code of these demos was written by linking the library to the Unity
project as a .dll file and follows the structure mentioned earlier, as
it is composed of the implementation of the synthesis function, the
instructions to set up the audio engine, and the code to control the
particle system in the middle—which has a merely aesthetic role
although shares the data of the mouse position with the audio chain
to loosely determine the direction of the particles. The demos will
be made open source at release time as example projects; currently,
however, the executable files can be sent upon request to the first
author, and an audiovisual recording showcasing the functioning
of some of them is available as well15.

5. ACKNOWLEDGMENTS

The first author acknowledges the University of Portsmouth - Fac-
ulty of Creative and Cultural Industries for the PhD Scholarship
supporting this research.

6. REFERENCES

[1] J. Jerald, P. Giokaris, D. Woodall, A. Hartholt, A. Chandak,
and S. Kuntz, “Developing virtual reality applications with
unity,” in 2014 IEEE Virtual Reality (VR), 2014, pp. 1–3.

[2] S. Wang, Z. Mao, C. Zeng, H. Gong, S. Li, and B. Chen,
“A new method of virtual reality based on unity3d,” in 2010
18th International Conference on Geoinformatics, 2010, pp.
1–5.

[3] S. Patil, G. Gaikwad, S. Hiran, A. Ikhar, and H. Jad-
hav, “metaar – ar/xr shopping app using unity,” in 2023

14https://docs.cycling74.com/max8/vignettes/max_alphabetical
15https://www.enricodorigatti.com/wp-content/uploads/2021/12/URALi.mp4

International Conference for Advancement in Technology
(ICONAT), 2023, pp. 1–11.

[4] N. H. Khalifa, Q. V. Nguyen, S. Simoff, and D. Catchpoole,
“A visualization system for analyzing biomedical and ge-
nomic data sets using unity3d platform,” in Proc. 8th Aus-
tralasian Workshop on Health Informatics and Knowledge
Management, 2015, pp. 47–53.

[5] F. Fontana, R. Paisa, R. Ranon, and S. Serafin, “Multisen-
sory plucked instrument modeling in unity3d: From keytar
to accurate string prototyping,” Applied Sciences, vol. 10,
no. 4, pp. 1452, Feb 2020.

[6] R. Schroeter and M. A. Gerber, “A low-cost vr-based auto-
mated driving simulator for rapid automotive ui prototyping,”
in Adjunct Proceedings of the 10th International Conference
on Automotive User Interfaces and Interactive Vehicular Ap-
plications, New York, NY, USA, 2018, AutomotiveUI ’18, p.
248–251, Association for Computing Machinery.

[7] E. Dorigatti, “Automating art: A case-study of cellular au-
tomata in generative multimedia art,” in Proc. Intl. Com-
puter Music Conf.(ICMC), Limerick, Ireland, Jul. 3-9 2022,
pp. 175–181.

[8] M. Wright, “Open sound control: an enabling technology
for musical networking,” Organised Sound, vol. 10, no. 3,
pp. 193–200, 2005.

[9] J. Atherton and G. Wang, “Chunity: Integrated audiovi-
sual programming in unity.,” in Proc. Intl. Conf. New In-
terfaces for Musical Expression (NIME), Genova, Italy, Jun.
5-7 2018, pp. 102–107.

[10] G. Wang and P. R. Cook, “Chuck: A concurrent, on-the-
fly, audio programming language,” in Proc. Intl. Computer
Music Conf. (ICMC), Singapore, Sep. 29-Oct. 4 2003.

[11] E. Dorigatti, “Interacting with audio in unity [manuscript
submitted for publication],” in Proc. Conf. Dictionary for
Multidisciplinary Music Integration (DiMMI), Trento, Italy,
Nov. 25-26 2022.

[12] F. Corradini, G. Ferrari, and M. Pistore, “Eager, busy-waiting
and lazy actions timed computation,” Electronic Notes in
Theoretical Computer Science, vol. 7, pp. 96–114, 1997, EX-
PRESS’97.

[13] E. Dorigatti, “Urali: a proposal of approach to real-time au-
dio synthesis in unity,” in Proceedings of the 16th Sound
& Music Computing Conference, I. Barbancho, L. J. Tardón,
A. Peinado, and A. M. Barbancho, Eds., Malaga, Spain, May
28–31 2019, pp. 86–87.

[14] C. Roads, “Introduction to granular synthesis,” Computer
Music Journal, vol. 12, no. 2, pp. 11–13, 1988.

[15] J. M. Chowning, “The synthesis of complex audio spectra
by means of frequency modulation,” journal of the audio
engineering society, vol. 21, no. 7, pp. 526–534, september
1973.

[16] J. Schimmel, “Audible aliasing distortion in digital audio
synthesis.,” Radioengineering, vol. 21, no. 1, 2012.

[17] V. Välimäki, J. Pekonen, and J. Nam, “Perceptually in-
formed synthesis of bandlimited classical waveforms using
integrated polynomial interpolation,” The Journal of the
Acoustical Society of America, vol. 131, no. 1, pp. 974–986,
2012.

DAFx.4

https://docs.cycling74.com/max8/vignettes/max_alphabetical
https://www.enricodorigatti.com/wp-content/uploads/2021/12/URALi.mp4

	1 Introduction
	2 Audio in Unity
	2.1 Audio Clips
	2.2 Middleware
	2.3 Third-party software
	2.4 OnAudioFilterRead

	3 URALi
	3.1 Design of the Library

	4 Conclusions
	5 Acknowledgments
	6 References

