
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

DYNAMIC STOCHASTIC WAVETABLE SYNTHESIS

Raphael Radna

Department of Music
University of California, Santa Barbara

Santa Barbara, CA
rradna@ucsb.edu

ABSTRACT

Dynamic Stochastic Synthesis (DSS) is a direct digital synthesis
method invented by composer Iannis Xenakis and notably em-
ployed in his 1991 composition GENDY3. In its original con-
ception, DSS generates periodic waves by linear interpolation be-
tween a set of breakpoints in amplitude–time space. The break-
points change position each period, displaced by random walks via
high-level parameters that induce various behaviors and timbres
along the pitch–noise continuum. The following paper proposes
Dynamic Stochastic Wavetable Synthesis as a modification and
generalization of DSS that enables its application to table-lookup
oscillators, allowing arbitrary sample data to become the basis of a
DSS process. We describe the considerations affecting the devel-
opment of such an algorithm and offer a real-time implementation
informed by the analysis.

1. INTRODUCTION

Iannis Xenakis proposed Dynamic Stochastic Synthesis (DSS) as a
time-domain method of producing “complex sonorities” with “nu-
merous and complicated” transients [1]. In DSS, the cyclical por-
tion of a periodic wave (wave cycle) is defined by a number of
breakpoints in amplitude–time space. Waves are produced by lin-
ear interpolation between adjacent breakpoints. The breakpoints
shift positions each period, continuously affecting the pitch, am-
plitude, and timbre of the synthetic tone produced and giving rise
to its “dynamic” character (Fig. 1).

The “stochastic” element refers to the displacement of the
breakpoints in both dimensions by random walks. Various prob-
ability distributions (Cauchy, logistic, etc.) can be applied, each
affecting the movement of the breakpoints in its distinctive way
[2]. Xenakis also specified high-level parameters to constrain the
displacement: the random walk step size governs its magnitude,
and elastic barriers reflect excessive values back within a speci-
fied range. These parameters influence the degree of similarity
between successive wave cycles. If only slight variation is permit-
ted, tones of stable pitch and timbre are produced; conversely, a
parameter state that allows profound dissimilarities between wave
cycles causes the output to tend towards noise. Additionally, the
number of breakpoints used correlates with spectral brightness.

The original DSS software GENDY dates from the late 1980s
and operated in a non-realtime capacity. Since then, several re-
searchers have implemented DSS with experimental alterations

Copyright: © 2023 Raphael Radna. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time (samples)

–1

0

1

L
ev

el
Figure 1: Two contiguous DSS wave cycles. The second is a vari-
ation of the first, produced by stochastic displacement of its four
breakpoints. The period of the second cycle is shorter, indicating
an increase in pitch.

that seek to enhance its sound or functionality in some way, in-
cluding interactive operation and analysis [3], time-variant param-
eter automation [4], wave-cycle sequencing strategies [5], touch-
sensitive and gestural interfaces [6], and applications of physical
models to the algorithm [7, 8]. Our own previous DSS-related
research culminated in the Xenos plug-in synthesizer, which intro-
duced pitch quantization to DSS [9].

While these contributions have all helped to extend and sus-
tain interest in DSS, none have addressed the inherent limitation
of its basis in breakpoint interpolation synthesis. One possibility
in this direction is the application of DSS to standard wavetable
oscillators. Although DSS does not read a lookup table directly,
it realizes equivalent sample data at runtime through breakpoint
interpolation; this process bears similarity to dynamic wavetable
techniques, such as scanned synthesis [10, 11]. Dynamic Stochas-
tic Wavetable Synthesis (DSWS) thus uses the procedures of DSS
to apply its characteristic, stochastic pitch and timbre evolution to
arbitrary sample data, instead of generating abstract waves from
linear ramps. In this way, DSWS reimagines DSS as an audio pro-
cessor rather than a synthesizer, increasing the timbral range of the
technique, enabling general DSS-based modulation, and facilitat-
ing interpolation between arbitrary timbres and DSS.

2. DYNAMIC STOCHASTIC WAVETABLE SYNTHESIS

The DSWS prototype described in this paper is implemented in
Max/MSP using the GenExpr metalanguage for audio program-
ming. The code is open source and available for download from
https://github.com/raphaelradna/dsws.

2.1. Wavetable Segmentation

While DSS begins with the definition of breakpoints for linear in-
terpolation, DSWS begins by segmenting a wavetable into a num-

DAFx.1

https://music.ucsb.edu/
mailto:rradna@ucsb.edu
http://creativecommons.org/licenses/by/4.0/
https://github.com/raphaelradna/dsws

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

ber of regions whose pitches and amplitudes will be individually
manipulated. For simplicity and efficiency, we have chosen to di-
vide the wavetable into an arbitrary number of segments of equal
size. Our implementation allows for as few as one segment, in
which case the entire wavetable is affected uniformly, or as many
as 256. The number of segments is variable at runtime. As in DSS,
a greater number of segments results in a brighter timbre (Fig. 2).

0 50 100 150 200 250

Segments

0

0.5

1

1.5

2

2.5

3

3.5

C
en

tr
oi

d
(k

H
z)

Figure 2: The spectral centroid increases with the number of
wavetable segments. Measurements were taken using a sinusoidal
wavetable and with otherwise constant parameters: a steady pitch
of A1 (55 Hz) and maximum amplitude fluctuation.

2.2. Table Lookup, Modification, and Output

DSWS has at its core a wavetable oscillator that derives sample
values by reading through a lookup table at a variable frequency
[12]. It imposes DSS-like behavior on a wavetable of N samples
by dividing it into M segments and applying individual, random,
pitch and amplitude deviations to each segment. For each sample
in the input wavetable x[n], where 0 ≤ n < N , the index m of its
containing segment is the greatest integer less than M multiplied
by ϕ, its phase within the wavetable:

m = ⌊Mϕ⌋ , (1)

where the phase ϕ in range 0 ≤ ϕ < 1 is given by

ϕ =
n

N
. (2)

The deviations are regenerated each period and stored in series P
and A, respectively, each of length M . The pitch deviation P [m]
of the segment containing x[n] modulates the base oscillator pitch
p. These values, initially expressed as floating-point MIDI notes,
are summed, converted into a frequency in Hz, and divided by the
sampling rate fs to produce a phase increment φ for table lookup:

φ =
440 · 2

p+P [m]−69
12

fs
. (3)

The effective frequency therefore changes with each segment
as the table is read and fluctuates around p. By contrast, the per-
segment amplitude deviation is added to the wavetable data. To
avoid introducing discontinuities into the wave cycle, an individual
amplitude deviation a is derived for each input sample x[n] by
linear interpolation between the amplitude deviation A[m] of its
containing segment and that of the subsequent segment A[k]:

a = (1− µ)A[m] + µA[k] , (4)

with the index k of the subsequent segment given by

k =

{
m+ 1, if m < M − 1

0, if m ≥ M − 1
, (5)

and the interpolation parameter µ attained by

µ = Mϕ−m. (6)

Finally, a (4) is added to x[n] to produce output sample y[n]. To
prevent clipping, any y[n] greater than 1 or less than −1 is reduced
or increased, respectively, by the amount d that it lies out of range:

y[n] =

1− d, if x[n] + a > 1

−1 + d, if x[n] + a < −1

x[n] + a, if − 1 ≤ x[n] + a ≤ 1

, (7)

where
d = |x[n] + a| − 1 . (8)

DSWS can thus be conceptualized in part as a segmented, stochas-
tic wavefolder (Fig. 3) [13].

(a)
–1

0

1

L
ev

el

(b)
–1

0

1

(c)
–1

0

1

Figure 3: Asymmetrical amplitude folding of a sinusoidal
wavetable resulting from a DSWS process with (a) two segments,
(b) four segments, and (c) sixteen segments.

2.3. Deviation Generation and Iteration

The per-segment pitch and amplitude deviations are produced by
random walks that are iterated every wave cycle. New values are
generated in the range [−1, 1] according to some probability distri-
bution (we use uniform randomness for demonstration purposes)
and added to the previous deviations to produce new ones. Two
parameters influence this process: the step size scales the random
value, constraining its magnitude and thus limiting the difference
between deviations across cycles, and the barrier position defines
the random walk space, i.e., the minimum and maximum possible
deviation values. The sum of the previous deviation and new ran-
dom value can in general fall outside of the range defined by the
barriers; following Xenakis’s design, any such sums are reflected
back into range in the manner of (7) and (8).

Because the random value can be either positive or negative,
the deviation can either increase or decrease from one wave cycle
to the next, regardless of the step size. The barrier position param-
eter limits the range of the random walks symmetrically around
a single value; the amplitude walks center around zero, while the
pitch walks center around p, the base oscillator pitch. As a result,
reducing both barrier position parameters to zero reproduces the
input wavetable at a constant pitch. The parameters of the pitch
random walk are specified in equal-tempered semitones, and those
of the amplitude random walk are specified as proportions of the
full amplitude range.

2.4. Single-Segment Pitch Fluctuation

Manipulating individual sections of a wavetable in the manner of
DSWS introduces knees in the output wave at the segment bound-

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

0 200 400 600 800

Time (samples)
(a)

–1

0

1

L
ev

el

0 5 10 15 20

Frequency (kHz)
(b)

−20

0

20

40

60

M
ag

n
it

u
d

e
(d

B
)

0 200 400 600 800

Time (samples)
(c)

–1

0

1

L
ev

el

0 5 10 15 20

Frequency (kHz)
(d)

−20

0

20

40

60

M
ag

n
it

u
d

e
(d

B
)

Figure 4: Effects of DSWS pitch fluctuation on the waveform and spectrum in (a), (b) standard and (c), (d) single-segment modes. The
deformations visible in waveform (a) are caused by eight extreme pitch deviations per wave cycle. These scatter partials throughout
spectrum (b), including by aliasing. Because the frequency of waveform (c) modulates only once per cycle, its sinusoidal shape is preserved,
producing spectrum (d), which shows less energy in the high-frequency range despite otherwise identical parameters: a center pitch of C5
(523.25 Hz), pitch barrier range of ± two octaves, pitch step size of six semitones, and no amplitude fluctuation.

aries, causing high-frequency distortion. While the amplitude fluc-
tuation writes these directly into the sample data, the pitch fluctua-
tion also causes them implicitly by modifying the phase increment
for each segment, potentially tens or hundreds of times per cycle.
As a result, pitch fluctuation is not generally timbre-neutral, but
also affects the spectrum of the resulting tone.

To better isolate perceived pitch and timbre transformations,
we can treat the entire wavetable as a single segment for the pur-
pose of pitch fluctuation, regardless of the number of segments
used for amplitude fluctuation. In this case, the pitch fluctuation
occurs once per cycle, i.e., at oscillator frequency in Hz. Since
this rate typically still falls within the microsound timescale, rapid
pitch modulation remains perceptible while timbral distortions are
reduced (Fig. 4). This method produces more volatile pitch move-
ment for the same step size and barrier position parameters, be-
cause the frequency of the wave cycle depends on a single pitch
deviation instead of the average of several. It also contradicts DSS,
which stipulates an equal number of pitch and amplitude fluctua-
tions per cycle, but may be subjectively preferable in its adapta-
tion to wavetable synthesis due to its ability to preserve the shape,
and therefore timbre, of a particular wavetable. We thus propose
single-segment pitch fluctuation as the default behavior of DSWS.

3. DISCUSSION

This section elaborates on our DSWS prototype, providing insight
into certain design choices and their ramifications, and suggesting
possible alternatives or areas for further development.

3.1. Wavetable Selection and Sound Quality

Sine, triangle, square, and sawtooth wavetables are included in
our DSWS implementation. The classical waveforms were pro-
duced by additive synthesis using 64 harmonics, which, at a sam-
pling rate of 44.1 kHz, prevents aliasing for fundamental frequen-

cies up to approximately 344.5 Hz. Further antialiasing measures
were not taken, as the linear interpolation of DSWS, like that of
DSS, ultimately produces its own aliasing artifacts [2]. A more
complete implementation could apply additional solutions for an-
tialiased wavetable synthesis, such as those described in [14], and
offer band-limited interpolation algorithms for producing the per-
sample amplitude deviations [15].

Our implementation can also generate noise wavetables us-
ing uniform randomness, load external single-cycle sample data in
.wav format, or use an empty wavetable. Since using a wavetable
with all values zeroed produces linear ramps between amplitude
deviations, we can say that DSS is a special case of DSWS.

3.2. Wavetable Segmentation Method

Although we divide the wavetable into equal parts, other segmen-
tation methods could be applied and affect the results in distinct
ways. A piecewise linear approximation algorithm, for example,
could fit the segment boundaries to places of pronounced change in
the slope of the sample data (Fig. 5). Furthermore, a method that
optimizes the fit within a specified error tolerance, as in [16], could
determine the ideal number of segments and their boundaries for
arbitrary wavetables. Further investigation is needed to assess the
significance of the wavetable segmentation method in DSWS.

3.3. Optimization Considerations

The DSWS prototype reads the sample data from a source wave-
table, transforms them, and writes the results into a second wave-
table, which is read at the oscillator output. Although every wave
cycle is regenerated from the source data in this manner, continuity
between them is maintained because the deviations are influenced
by their own previous values. Our implementation uses a second
wavetable primarily for the purpose of visualization; an alterna-
tive and possibly more efficient design would calculate the values

DAFx.3

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

(a)

(b)

Figure 5: Segmentation of a sinusoidal wavetable into seven parts
using (a) equal distribution and (b) piecewise linear fit via global
optimization of the least squares method [17].

continuously and write them directly to the output buffer, without
otherwise storing them.

The per-segment pitch and amplitude deviation data defining
the transformation have the same memory footprint as the ampli-
tude–time breakpoints of traditional DSS. In a polyphonic imple-
mentation using this method, each voice would have unique arrays
of deviations but read a single source wavetable, avoiding expen-
sive array-copy operations. Because the barrier position param-
eters control the random walk space, i.e., the degree of pitch or
amplitude deviation from the source, this approach also affords in-
terpolation between the original wavetable and its transformation.

3.4. Limitations

A complete reproduction of all DSS features is beyond the scope of
this work. Therefore, certain components of the mature form of the
technique, namely second-order random walks and variable prob-
ability distributions, have not been implemented. This decreases
the number of parameters, which simplifies the prototype, but also
reduces its sound design potential.

Additionally, because the per-segment pitch fluctuations affect
table read frequency and are not written explicitly into the sample
data, the built-in waveform display object in Max/MSP does not
represent the horizontal distortions they produce. These are visu-
alized, however, in the oscilloscope-style display.

4. CONCLUSION AND FUTURE WORK

We have described DSWS, an experimental synthesis method ex-
ploring the application of Iannis Xenakis’s DSS algorithm to table-
lookup oscillators. We also presented a prototype demonstrating
its basic principles. The technique could be developed further,
e.g., by integrating additional probability distributions, segmenta-
tion methods, and interpolation algorithms; or by combining with
sophisticated wavetable techniques, such as wavetable crossfading
and multiple-wavetable synthesis [18]. Furthermore, by expanding
DSS into a sample-processing paradigm, DSWS suggests imple-
mentation as a filter that applies an iterative window of stochastic
pitch and amplitude distortions to streaming audio input.

5. REFERENCES

[1] Iannis Xenakis, Formalized Music: Thought and Mathemat-
ics in Composition, Pendragon Press, Stuyvesant, revised
edition, 1992.

[2] Marie-Hélène Serra, “Stochastic Composition and Stochas-
tic Timbre: GENDY3 by Iannis Xenakis,” Perspectives of
New Music, vol. 31, no. 1, pp. 236–257, 1993.

[3] Peter Hoffmann, “The New GENDYN Program,” Computer
Music Journal, vol. 24, no. 2, pp. 31–38, 2000.

[4] Andrew Brown, “Extending Dynamic Stochastic Synthesis,”
in Proc. 2005 Int. Computer Music Conf., Barcelona, Spain,
2005, pp. 111–114.

[5] Sergio Luque, “The Stochastic Synthesis of Iannis Xenakis,”
Leonardo Music Journal, vol. 19, pp. 77–84, 2009.

[6] Nick Collins, “Implementing Stochastic Synthesis for Su-
perCollider and iPhone,” in Proc. Xenakis Int. Symposium,
2011.

[7] Luc Döbereiner, “Phingen: A Physically Informed Stochas-
tic Synthesis Generator,” in Proc. 2011 Int. Computer Music
Conf., Huddersfield, UK, 2011, pp. 57–60.

[8] Emilio Rojas and Rodrigo Cádiz, “A Physically Inspired Im-
plementation of Xenakis’s Stochastic Synthesis: Diffusion
Dynamic Stochastic Synthesis,” Computer Music Journal,
vol. 45, pp. 48–66, 2022.

[9] Raphael Radna, “Xenos: Xenharmonic Stochastic Synthe-
sizer,” M.S. thesis, University of California, Santa Barbara,
2022.

[10] Robert Tubb, Anssi Klapuri, and Simon Dixon, “The Wablet:
Scanned Synthesis on a Multi-Touch Interface,” in Proc. 15th
Int. Conf. Digital Audio Effects (DAFx-12), York, UK, 2012,
pp. 192–199.

[11] Tendsin Mende, Lars Engeln, Matthew McGinity, and Rainer
Groh, “Creative sound modeling with signed distance fields,”
in Mensch und Computer 2022 - Workshopband, Bonn, 2022,
Gesellschaft für Informatik e.V.

[12] Curtis Roads, The Computer Music Tutorial, MIT Press,
Cambridge, MA, 1996.

[13] Fabián Esqueda, Henri Pöntynen, Vesa Välimäki, and Julian
Parker, “Virtual Analog Buchla 259 Wavefolder,” in Proc.
20th Int. Conf. Digital Audio Effects (DAFx-17), Edinburgh,
UK, 2017, pp. 192–199.

[14] Günter Geiger, “Table Lookup Oscillators Using Generic
Integrated Wavetables,” in Proc. 9th Int. Conf. Digital Audio
Effects (DAFx-06), Montreal, Canada, 2006.

[15] Julius O. Smith, Digital Audio Resampling Home Page,
http://www-ccrma.stanford.edu/˜jos/resample/, January 28,
2002.

[16] Bernd Hamann and Jiann-Liang Chen, “Data Point Selec-
tion for Piecewise Linear Curve Approximation,” Computer
Aided Geometric Design, vol. 11, pp. 289–301, 1994.

[17] Charles Jekel and Gerhard Venter, “pwlf: A Python Li-
brary for Fitting 1D Continuous Piecewise Linear Func-
tions,” 2019.

[18] Andreas Franck and Vesa Välimäki, “Higher-Order Inte-
grated Wavetable Synthesis,” in Proc. 15th Int. Conf. Digital
Audio Effects (DAFx-12), York, UK, 2012.

DAFx.4

http://{www-ccrma}.stanford.edu/~{}jos/resample/

	1 Introduction
	2 Dynamic Stochastic Wavetable Synthesis
	2.1 Wavetable Segmentation
	2.2 Table Lookup, Modification, and Output
	2.3 Deviation Generation and Iteration
	2.4 Single-Segment Pitch Fluctuation

	3 Discussion
	3.1 Wavetable Selection and Sound Quality
	3.2 Wavetable Segmentation Method
	3.3 Optimization Considerations
	3.4 Limitations

	4 Conclusion and Future Work
	5 References

