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ABSTRACT

Due to advances in computational power, physical modelling for
sound synthesis has gained an increased popularity over the past
decades. Although much work has been done to accurately sim-
ulate existing physical systems, much less work exists on the use
of physical modelling simply for the sake of creating sonically in-
teresting sounds. This work presents a mass-spring network, in-
spired by existing models of the physical string. Masses have 2
translational degrees of freedom (DoF), and the springs have an
additional equilibrium separation term, which together result in
highly nonlinear effects. The main aim of this work is to create
sonically interesting sounds while retaining some of the natural
qualities of the physical string, as opposed to accurately simulat-
ing it. Although the implementation exhibits chaotic behaviour
for certain choices of parameters, the presented system can create
sonically interesting timbres, including nonlinear pitch glides and
‘wobbles’.

1. INTRODUCTION

Mass-spring networks for sound synthesis have been investigated
for over 40 years. Originally introduced in a musical context by
Cadoz et al. [1, 12} 3], mass-interaction models have seen recent
developments by Leonard and Villeneuve in [4}|5]. The modular-
ity of mass-spring networks and their simple formulation make it
an attractive physical modelling technique for creating interesting
sounds relatively quickly.

As one is restricted to a finite number of nodes in space (i.e.,
the masses), other physical modelling techniques have been often
used to model the musical string. Over the past 50 years, the string
has been modelled using various methods, including physically-
inspired methods such as the Karplus-Strong algorithm [6] and
digital waveguides [7]], as well as modal synthesis [8]], and finite-
difference time-domain (FDTD) methods [9, [10]. For an ideal
string, the latter methods have an equivalent mass-spring formu-
lation as described in [[L1, Sec 6.1.1], but once one wants to add
stiffness, FDTD methods are a much more straightforward alter-
native.

The above models assume low-amplitude string vibration such
that the string can be approximated using a linear model. High-
amplitude string vibration results in an initial higher pitch of the
string after which it decreases due to an effect called tension modu-
lation [12]. To include this effect in the string model, it needs to be
extended to be nonlinear instead. One of the most recent works on
nonlinear string modelling is due to Ducceschi & Bilbao in [13],
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who use a mixed FDTD/modal scheme and energy quadratisation
techniques, to model the geometrically exact string.

One could imagine that a proper implementation of the nonlin-
ear string requires a very involved mathematical formulation, and
quickly loses simplicity in implementation. As opposed to FDTD
methods, a mass-spring formulation treats the discrete nodes of
the implementation as separate connected entities, rather than as
part of a predefined system, which provides additional flexibility
in several aspects. One of these is the relatively easy extension to
additional degrees of freedom (DoF) per node. In most traditional
FDTD schemes, each node only has one degree of freedom, which
in the case of the string is the transverse displacement [11]. If we
allow for more degrees of freedom, this could potentially lead to
interesting nonlinear effects. Furthermore, every mass and spring
can be treated as a separate entity of which parameters can be set
independently of each other also potentially leading to interesting
sonic qualities.

The aim of this work is not to accurately simulate the nonlinear
stiff string, but instead to create a flexible model that can produce
string-like sounds with interesting nonlinear sonic qualities. To
this end, this work uses a mass-spring formulation due to its flex-
ibility and relatively simple formulation. The main additions with
respect to an FDTD implementation of the (damped) ideal string
are using 2 DoF for each mass and an equilibrium separation for
the springs connecting neighbouring masses. These two additions
together, result in pitch glides and interesting timbres not feasible
with linear models.

The rest of this paper is structured as follows: Section [2] de-
scribes the continuous-time model starting with the description of
the 2-DoF mass and extending this to a sequentially connected
network resembling a string. Section [3] discretises the model and
uses analogies to the FDTD formulation to determine the stability
and fundamental frequency of the system. Section 4] provides re-
sults and discusses several experiments done using the presented
schemes, and Section[3]concludes.

2. MODEL

2.1. Single mass

Before considering a network of masses and springs, first consider
a single mass u = u(¢) with time ¢ (in s), defined over two spatial
DoF,

u=[us w]. )

Here, uz = ux(t) and uy(t) describe the = and y-location of the
mass, respectively (in m). Using the 9; operator to denote differ-
entiation with respect to time, the ODE describing the dynamics
of a 2-DoF mass-spring system connected to the origin is (such as
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Figure 1: The effect of lo on the trajectory of a 2-DoF mass-spring
system. The mass will be pulled towards the origin ([0, 0]) if it is
outside of the red region. If the mass is in the red region instead, it
will be pushed away from the origin. Here, the mass is initialised
at [lo, lo] and given a small horizontal velocity in the negative x-
direction.

done in [4])

Md*u=—Kf-2
[[all
mass M > 0 (in kg), spring constant K > 0 (in N/m), equilibrium
spring separation /o > 0 (in m) and spring force f (in N). Further-
more, ||u|| describes the magnitude of u (in m), which when using
two DoF is defined as

lul| = y/u2 +u . 3)

The equilibrium separation /o, can be seen as introducing a zone
where the spring pushes the mass away from the equilibrium rather
than pulling it towards it. See Figure/[l]

One can observe that if lo = 0, Eq. (@) reduces to a mass-
spring system whose dimensions are uncoupled; in other words, o
introduces coupling between the two dimensions.

with  f = [u| —lo, @)

2.2. Multiple masses

Going towards a string-like mass-spring network, one can create
a system of Npass masses connected by Nipring springs, which are
related as follows:

Ninass = spring + 1. (4)

Subscript m = {0, ... Ngring } Will be used to index the masses,
i.e., mass m will be described by the state u,, = un,(t). For a
system of length L (in m), the masses are initially placed along the
x-axis with no displacement in the y-direction according to

1w (0) = [mAe 0], )

where Ag = L/ Nqpying is the initial distance between two consec-
utive masses. Connecting the masses such that the spring forces

between masses m and m + 1 positively affects mass m and the
force between masses m and m — 1 negatively affects mass m
yields
2 Um+1 — U
Matum:Kf7rL+1/2 - =

Mt — ]

u,n —u 1 (6)
m m—
—Kfm1jp7———
”um — Um—1 H
where the spring force between masses m and m + 1 is
fm+1/2 = ||um+1 - umH —lo. (7)

Notice that M applies to all masses and K and [p apply to all
springs in the network.

2.3. Boundaries

Although in a mass-spring context one does not usually speak of
boundary conditions, conditions for the first and the last mass still
need to be defined. These are set to the following states:

w(t)=1[0 0], and un,, (t)=[L 0], V. (8

2.4. Damping

Similar to the damped stiff string (see e.g. [11]), one can add
damping terms to Eq. (6) according to

M&fum =...—20MOoium

4+ 22M0; (Wmt1 — Um) — 22M O (W, — Wim—1), ©)
with mass damping 0 > 0 and spring damping z > 0 (both in
s~1). The spring damping term acts as a frequency-dependent
damping term, analogous to the damped stiff string. As the im-
plementation of this damping term is also analogous to its imple-
mentation in the stiff string it can be shown to be passive under
similar conditions (see Sec. [B.1.2).

Using the following shorthand notation

A Um41 — Um

U, =S 10
e a— (10
one can simplify Eq. (9) to
8152um = % (um+1 —2um + um—l)
Klo 1
-—— WU —Up
% Unt1/2 1/2)

— 200¢um + 220 (Wm41 — 20U + Um—1) .

Figure ] illustrates possible stable states (initially excited and af-
ter damping) of the 2-DoF mass-spring network described in this
section for low and high values of /o.

3. DISCRETE TIME

One can discretise continuous time according to ¢ = nk, with
time index n = 0,1,..., time step k = 1/f; (in s) and sample
rate fs (in Hz). The position of mass m can then be discretised at
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Figure 2: Possible stable states for different values of lo.

time ¢ according to u,, (t) & uj,. To approximate the continuous-
time derivatives used in the previous section, the following finite-
difference (FD) operators need to be introduced:

By 2 (it~ ul) (120)
Oum &S 6 up, £ % (up, — uﬁfl) , (12b)
Soul 2 i (i —ul ), (20

which are the forward, backward, and centred difference respec-
tively. The former two are first-order accurate, whereas the latter
is second-order accurate [[11]. A second-order differentiation can
be approximated using

1 _
Uy, & Syul, 2 el (uﬁfl — 2uy, + uy, 1) ,  (13)
which is also second-order accurate.

Using these definitions, Eq. (TT) can then be discretised to the
following scheme:

n K n n n
5tiu7n = M (u'm+1 - 2u7n + uanl)
Kl n n 14
- Wo(um-ﬁ-l/Q Uy 1/2) 1
— 206 uy, + 220~ (up, 1 — 2uy, + Uy, 1),
where
ur’:wrlm e 15)

a1 —uimll”

is Eq. (I0) discretised. Notice that the first-order FD operators are
chosen to yield the highest accuracy, while keeping the scheme ex-
plicit. Appendix [7]provides an alternative, implicit discretisation.

To implement scheme (T4), it needs to be expanded to an up-

date equation, or recursion:

2K k?
M

(1 +ok)up™ = (2 - - 4zk> u,

M

Klok? . "
- M ( m+1/2_um—1/2)

Kk? n n
+ ( + 22k> (Urmg1 +Up_q) (16)

+ (ok 4 42k — Duly ' — 22k (un )y +ulh),

which, after division by (1 4 ok), can be solved for u”;*.

3.1. Analogies to FDTD schemes

If one is familiar with FDTD methods, it is easy to see the resem-
blance between scheme (T4) and FDTD schemes of the (damped)
1D wave equation. Despite some differences (being the term in-
cluding [y and the possibility for additional DoF), this resemblance
can still be used to find definitions for the fundamental frequency
and stability, as will be presented in this section. For completeness,
the FDTD scheme of the 1D wave equation is given here.

The transverse displacement of an ideal string of length L (in
m) can be described by state variable u = u(z, t) (in m), which is
defined over space = € [0, L] (in m) and time ¢ (in s). Space z is
subdivided into Ngp equally sized intervals according to z = [h
with spatial index | = {0, ..., N}, and grid spacing h (in m).
Time ¢ is discretised according to the same definitions presented at
the beginning of this section. Using these definitions, u(z, t) can
be approximated by grid function u;*.

Introducing the following FD operator, which approximates a
second-order spatial derivative

1
i~ Sypuf & 2 (w1 — 2u” +uiq), (17)

the discrete damped 1D wave equation can be described by the
following scheme [[11]]:

Suul = 8pult — 2008 uy + 2010;— Sl (18)

Here, cis the wave speed (in m/s), and oo and o are the frequency-
independent (in s~') and the frequency-dependent damping coef-
ficients (in m?/s), respectively.

3.1.1. Fundamental frequency

To obtain the fundamental frequency (in Hz) of a string of length
L (in m) fixed at the ends, one uses

C

fo=57- (19)

Ignoring the damping terms for now (as these do not influence fy),
one can compare the update equation of the 1D wave equation with
that of the mass spring network in Eq. (T6):

n 262k2 n n— Czkz n n
ul+1 = (2— 7) u — u; ! + — (w1 + i q),

h2 h2
n+1 2Kk2 n—1 Kk2 n n
u,  =[(2- M uy — Uy + M (um+1 + umfl) .
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One can observe that the following combination of variables is
analogous to each other:

2
c K
— —. 21
=i @
As the mass-spring network does not make use of A we can use
h = L/Ngp (in the case of the Courant number A\ = ck/h = 1 for
the 1D wave equation), and substitute this to yield
2 A72
C NFD K

=, 22

12 i (22)

As Ngp describes the number of intervals (rather than the number
of grid points) in the FDTD scheme, this is analogous to the num-
ber of springs in the mass-spring network Nypring. Using its relation
to the number of masses Nmass in Eq. @), rearranging Eq. (22) in
terms of ¢, and substituting this into Eq. (T9) yields

K/M

fo - Nmass - ]-.

(23)
It is interesting to note that the fundamental frequency is solely
determined by the spring constant, the mass, and the number of
masses in the system. Therefore, the length L no longer has an
influence on the fundamental frequency of the system.

3.1.2. Stability
The stability condition for Eq. (I8) can be shown to be [14]

2,2
c‘k 4o 1 k

st <L (24)
Comparing Eqs. (T4) and (I8) again, an analogy between the fol-
lowing variables can be made

o1 /h = 2z,

which, after including Eq. (ZI), one can rewrite (Z4) the following
stability condition for the mass-spring network

Kk?

+4zk < 1.

As is the case for the 1D wave equation, the closer this condition
is to being satisfied with equality, the higher the simulation band-
width. As we would like to have control over this condition later
on, this is rewritten to

KE?
M

where 0 < A < 1 determines the bandwidth limit of the simula-
tion.

+4zk <A, (25)

3.2. Implementation

Assuming that the fundamental frequency is known, Eq. @3) can

be rewritten to
K/M

Nimass = ~————— + 1. 26
2fo 20
Rewriting Eq. (23) in terms of K /M,
K < (A —4zk)

M = K2

and substituting this into Eq. 26), yields

Neo > (A —4zk)

> 0 +1. 27)

As Nmass 1s an integer, a rounding operation needs to be performed
on Eq. (27) that also satisfies the condition. The following can
therefore be used to calculate the number of masses

B (A —4zk)
Nmass = \\ 2f0k’ + 17

where | -] is the flooring operation. Finally, either M or K can
be fixed to an arbitrary value, and the other can be calculated by

rewriting Eq. (26)
K = M(2f0(Nmass - 1))2 (29)

(28)

Here, M is kept fixed and K is changed, analogous to changing
the tension of a string and keeping the mass per unit length fixed.

3.3. Output

One can obtain the output of the system by selecting one mass and
following its state over time. For an interesting stereo effect, the
longitudinal (z) and transverse (y) dimensions, can be mapped to
the left and right channel, respectively. As uy ,, has an initial non-
zero location due to Eq. (3) this needs to be corrected for, resulting
in

Ot (1) = Up 1y — Moo and  Origni (1) = Uy 1y (30)

where m, € {0, Npring } is the index of the mass selected for the
output.

3.4. Extension to anisotropic systems

Another advantage of using a mass-spring formulation as opposed
to a FDTD one, is that it is relatively straightforward to use differ-
ent parameter values for different parts of the network. Although
this subsection will not be further discussed in the next sections,
it is interesting to mention a simple extension of Eq. (T4) to be
anisotropic.

One can rewrite Eq. to allow for different values for M
and K along the networklﬂ% sing M, to denote the mass of mass
m, and K, 11,2 to describe the spring force between masses m
andm + 1,

MmO = Kong1/2 fms12Ums1)2
— K12 fm—172Um—1/2
— 20 M, 0ru, 31
+22Mpy 11720 (Wmg1 — Uim)
—22Mp, 1720 (W — Um—1) .

Here,

1
5 (M1 + M) (32)
is the average mass of two neighbouring masses. Please note that
the fundamental frequency calculation in Eq. (23) does not hold
for an anisotropic system.

Mm+1/2 =

In principle, o, 2, and Iy could also have been chosen to vary along
the network, but are left constant for the sake of brevity.
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3.4.1. Stability

In order to keep the system stable, the stability condition in Eq.
([25) needs to be adapted to challenge the condition most:

Knaxk?
TR+ dzk <A, (33)
where
Kiax = max K,,11/2 and  Mpin = min  M,,.
me{0,..., Nsp,.i“g} me{0,..., Nmass }
(34)

4. RESULTS AND DISCUSSION

This section presents the results of several simulations using Eq.
(T6) with different parameter values and discusses these. Sound
examples can be found online [[15]].

4.1. Simulation setup

As according to Eq. (23) the length of the system L does not
change the eventual behaviour of the system, we can set L =
Nipring such that Ag = 1 and Eq. (§) simplifies to

un(0)=[m 0].

This way, the value of /o can be seen as a ratio of the initial differ-
ence between two consecutive masses (i.e., o = 0.5 yields a rest-
ing length of half the initial distance between two masses). The
system is then excited by giving mass me. € {0,..., Noring } an
initial displacement of e in both x and y directions:

ug% = u,lnC = [me +e e] . 35)
Notice that with this setup, the output in Eq. (30) has to be nor-
malised (divided) by e to yield output in the [—1, 1] range. Table
shows the other parameters used for the experiments and provides
usable ranges for some.

4.2. Chaotic behaviour

The first thing to note, is that for values of A close to 1 in Eq. (23),
non-zero values of o cause increasingly chaotic behaviour, which
causes the system to produce ‘buzzing’ output. This is in line with
what Bilbao mentions in [[L1}, p. 229], stating that

“... for a nonlinear system, anomalous behavior may be observed
when the grid spacing is chosen close to the stability bound.”

The behaviour is most likely caused by a numerical integration
error of the nonlinear term, which is (most probably) why the
implicit implementation in Appendix [7] shows slightly improved
behaviour in this regard. It is important to note that the chaotic
behaviour does not imply that the implementation is unstable; al-
though the system might never fully decay, it does not exhibit ex-
plosive behaviour!

The system has been tested for different values of Iy, z and A
to see whether it would either exhibit chaotic behaviour or decay
instead. These tests have been repeated at f; = 44100 and f, =
88200. A full overview of the results can be found in Figure[3] All
generated sounds can be found via [15] and were obtained through

Eq. (30).

Table 1: Parameter values divided into static parameters used to
generate the results and parameters that can be tweaked to gener-
ate different behaviour.

Parameter [ Symbol (unit) [ Value
Static parameters

Mass M (kg) 0.01
Fundamental freq. fo (Hz) 100

Spring stiffness K (N/m) Eq. 29
Mass damping o™ 1

Initial displacement e (m) 100

Initial inter-mass dist. Ap (m) 1

Excited mass me (-) me = [0.63Nypring |
Output mass me (-) 10
Number of masses Ninass (<) Eq. 28)
Altered parameters

Stability bound AG) 0<A<1
Spring damping z(s™hH z € 0,57
Equilibrium sep. lo (m) lo € ]0,27]
Sample rate fs (Hz) fs € [44100, 88200]*

*these numbers are to determine usable ranges, but the parameters are not
bounded by these values.

The results indicate that lower values for A and [ are the
main factors for preventing chaotic behaviour. Similar results are
obtained for both sample rates (even slightly in favour of f; =
44100). This is because the simulation is not actually oversam-
pled; more masses are added according to Eq. (28) due to a de-
crease in k. If one instead oversamples without changing any other
parameters, this automatically decreases A in Eq. (Z3)) resulting in
reduced chaotic behaviour. Although this retains a high simulation
bandwidth, it does increase the computational cost.

If the eventual goal is to implement this algorithm in real time,
a better option would be to reduce A manually. Although this de-
creases the simulation bandwidth, it decreases chaotic behaviour
without increasing the computational complexity (even reducing it
by reducing the number of masses in springs through Eq. (28)!).
Results show that if one chooses z > 3, values for A < 0.1 result
in non-chaotic behaviour for ly € [0, 2] (and probably higher).

The fact that an increase in the spring damping z decreases
chaotic behaviour follows from the fact that the chaotic oscillations
cause rapid extensions and contractions of the springs. This will be
more damped for higher values of z. Furthermore, a higher value
for z also increases the speed that the simulation reaches a stable
equilibrium.

4.3. Frequency-domain behaviour

Spectrograms of the simulation with parameters lo = 0.75, z =
2, A = 0.1 can be seen in Figure [d] The results and discussion
below assume that A and z are chosen such that the system does
not behave chaotically.

All non-zero values of o have a tension-reduction effect on
the string in the transverse (y) direction. In the longitudinal (z)
direction, however, the effect of /o on the frequency depends on its
value with respect to the initial distance between the masses Ag.
For lp < Ao, the equilibrium separation in the springs eventually
(after damping) cancel each other out, and the system will — after
a slight ‘wobble’ downwards in pitch — return to its original funda-
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fs = 44100 fs = 88200

lo=025 lp=0.25

A\ =z 1 2 3 4 5 AN\ oz 1 2 3 4 5
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0.15 0.15
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lp=0.5 lp=05
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0.15 0.15

0.2 0.2

lo=0.75 lo=0.75
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0.1 0.1
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lop = lo=1
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0.2 0.2
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0.1 0.1
0.15 0.15
02 02

Figure 3: Simulation results for A = {0.05,0.1,0.15,0.2}, z = {1,...5} and lo = {0.25,0.5,0.75,1,1.25,1.5,1.75, 2}. Simulations
lasted for 5 seconds and green cells indicate that the output decays within this time. Red cells indicate that the output does not decay within
this time, and the system is therefore considered to exhibit chaotic behaviour. Orange cells are boundary cases, where the decay is slightly
longer than usual, but the output decays within 5 s.
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Figure 4: Spectrograms of the left (longitudinal) and right (trans-
verse) output in Eq. with parameters from Table [I] and
lo =0.75,z=2, A =0.1, and f; = 44100.

mental frequency. For [y values larger than the initial equilibrium
separation (lp > Ay), the string will reach a stable ‘loose’ state
such as depicted in Figure 2B] These results are summarised in
Table 2l

Preliminary tests show that lp &~ 0.75A causes a pitch glide
to fo/2 (the subharmonic) and lp = 0.94Aq to fo/4. More work
needs to be done to find the exact relationship between [y and fo.
As opposed to the nonlinear schemes presented in e.g. Ch.
8], the pitch glides do not start higher than the original fundamen-
tal frequency, but instead move towards O Hz, due to the tension-
reduction effect of lo.

Table 2: Effect of equilibrium separation lo on output (Eq. ) if
behaviour is not chaotic.

Effect on origh (1)
Glide to lower fo
Glide to fo =0

Effect on ojer(n)
Glide down and back up.
Glide to fo = 0.

Value for [
lo < Ao
lo > Ao

4.4. Note on only using the longitudinal direction

If one chooses to only excite the longitudinal direction, i.e.

u?ne:u,lne: [me—l—e O],

the following holds:
Vm, Vn.

n
Uy = 0,

In other words, the system behaves as if there was no transverse
dimension. For o < Ag pitch gliding effects still occur, but
chaotic behaviour already occurs for much lower values of ly. For
lo > Ay, due to the lack of the transversal dimension, the masses
effectively have “nowhere to go", resulting in chaotic behaviour at
all times.

4.5. Note on computational complexity

Compared to an implementation of the damped 1D wave equation,
the update equation in Eq. (I6) introduces additional computa-
tions in two different ways. First is the obvious extension to 2

DoF, doubling the number of computations with respect to a 1-DoF
implementation. The second and more important contribution to
computational complexity comes from the calculation of ¢{; more
specifically the calculation of the Euclidian distance between two
neighbouring masses (||-||), which adds Nypring Square-root opera-
tions every time step.

However, due to the already computationally inexpensive im-
plementation of the damped 1D wave equation, these additional
aspects should definitely not prevent a real-time implementation
of the model presented here.

5. CONCLUSION

This paper presents a mass-spring network configured like a string.
The masses in the network can move in 2 DoF and the springs con-
necting the masses have an equilibium separation. These proper-
ties cause nonlinear behaviour in the system, such as wobbles and
pitch glides.

Although parameters could be chosen that yield chaotic be-
haviour, results show that one can prevent this by choosing param-
eters away from the stability bound and including spring damping.
Future work includes to find a more precise definition for param-
eter ranges for which the implementation does not exhibit chaotic
behaviour, as well as a relationship for the fundamental frequency
and equilibrium spring separation. Finally, it would be interesting
to see how this model compares to other already existing models
of nonlinear strings or modular mass-spring networks, such as the
CORDIS-ANIMA software [3]].
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7. APPENDIX A: AN ALTERNATIVE DISCRETISATION

Using the centred averaging operator
1 -
peu = o (u" T+ u" ) (36)

an alternative discretisation of the nonlinear term in Eq. (TI) (as
opposed to Eq. (T4)) can be written according ¢

n K n n n
6ttum = M (u'm+1 - 2um + umfl)

_ KlO n

W(Ht‘uﬁl_‘.l/Q - /»Lt-um—l/Q) (37)

— 200, uy, + 220:. (U1 — 2uy, + Uup,_q) -

Although this makes the system fully implicit, preliminary results
show that this can reduce chaotic behaviour in some situations.
However, due to its implicit nature, this scheme takes much longer
to compute than the scheme in Eq (T4).

2Notice that the last term in Eq. (37) now also uses a 6;. operator.
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